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AN O((n log p)*) ALGORITHM FOR THE CONTINUOUS
p-CENTER PROBLEM ON A TREE*

R. CHANDRASEKARAN® anD A. TAMIR:

Abstract. This paper considers the problem of locating p facilities on a tree network in order to mini-
mize the maximum of the distances of the points on the network to their respective nearest facilities. An
O((n log p)?) algorithm for a tree network with n nodes is presented.

Introduction. In this study we consider center location problems on undirected
tree networks. Let T = T(N, A) be an undirected tree, with N and A denoting the set
of all nodes and the set of all arcs respectively. With each arc is associated a positive
number called the length of the arc. We assume that T is embedded in the Euclidean
plane, so that the arcs are line segments whose endpoints are the nodes, and arcs in-
tersect one another only at nodes. (Any tree with positive arc-lengths can be so em-
bedded in R?%. See [6].) Using this embedding we can then talk about points, not nec-
essarily nodes, on the arcs, and denote by d(x, y) the distance, measured along the
arcs of the tree, between any two points x, y of the tree T.

In addition, a set, D, of points on T is specified. D, which may be finite or infinite
in cardinality, represents the set of demand points. Assume that supply centers can
be located anywhere on the tree. Given a number, p, the objective is to find locations
for p supply points on T, such that the supremum of the distances of the demand
points in D to their respective nearest supply centers is minimized.

Two special cases of the above model have been treated in the literature. The
first corresponds to the case where demand occurs only at the nodes of 7, i.e.,
D = N. Whenever |D| < «, one can also associate weights with the demand points
and consider minimizing the maximum of the weighted distances to the nearest
supply centers. Efficient, polynomially bounded algorithms when D = N are given
in [13], [3] for general p, while further specializations when p = 2 are discussed in
[6], [8], [9], [10], [11], [14].

The second special case of the general model is the continuous case when
D = T: i.e., each point of the tree is a demand point. This model is studied in [2],
where it is solved in polynomial time.

The general model introduced above is related to the following p-center disper-
sion problem. A set, S, of points on the tree T'is specified. Given an integer p, the ob-
jective is to locate p facilities at points in § such that these p facilities are as far from
each other as possible.

In this study we focus on the case when the sets D and S in the center location
and center dispersion problems, respectively, are identical and equal to the entire
tree. Theorem 1 below, (due to Shier [14]), shows a duality result between the p-
center location and (p + 1)- center dispersion problems, when D = § = T. It is con-

venient for the statement of the theorem to let U, = {u,, - - -, u,} and V,,, =
{vy, -+ +, vp4+1} denote any finite subsets of T of cardinalities p and p + 1 respec-
tively, and to define
(1) fo(Up) = max {min d(x, u;)},

xr€D=T ui€lp
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and
(2) gV =min{dv;,v))/2:1=si<j=p+ 1}
THEOREM 1. [14]. Let D = S = T. Then |
5 min {f,(U,) : U, E T, |U,| = p} :
=max {g(Voi): V, ES=T. |V, =p + 1}

We mention that the proof in [14] can be modified to validate the above duality
result for the general case when D = § and D is any subset of T with |D| > p. (One
would have to replace the min and max operations of (1) and (3) by inf and sup,
respectively, and also omit the equality of S and D to T in (1) and (3).) Another spe-
cialization of the general case, i.e., D = Sand p < |D| < =, is proved in [3], using the
equality of the maximum anticlique and the minimum cardinality clique cover in per-
fect graphs.

Focusing on the subject of this paper,i.e.. D = § = T, we show that for a given
p the minimum value of the objective function of the p-center location problem is
equal to d(i, j)/2k, where d(i, j) is the distance between some pair of nodes, / and J,
of T. and £ is an integer satisfying 1 = k = p. This result is then used to improve the
algorithm of [2], yielding the bound of O((n log p)?) for the continuous p-center loca-
tion problem, i.e., D = T, on a tree T(N, A) with n nodes. (Logarithms are taken to
the base 2.) We also indicate how to improve the O(n? log n) bound of the algorithms
of [13], [3] for the discrete p-center location problem, i.e., the case when D = N, to
obtain an O(n?) time algorithm.

The continuous p-center problem. In this section we consider the problem of lo-
cating p facilities on a tree network in order to minimize the maximum of the dis-
tances of the points on the network to their respective nearest facility. Using the no-
tation presented above, we want to find r(p) such that

(4) . r(p) = min {fT(Up) . Up g T, ]UPI = p}9

and also the locations for facilities that achieve this value.

Given a point x on T and r > 0, we define N,(x), the r-neighborhood of x. by
N,.(x) ={y € T: d(x, y) = r}. The location problem is then to find the minimum r
such that p r-neighborhoods will cover the entire 7. Similarly, given r > 0, we con-
sider the reverse problem of covering the tree with a minimum number of r-
neighborhoods. This number is denoted by M(r). It is clear that M(r) is a monotone,
nonincreasing, step function, which is continuous from the right. »(p) is, therefore,
the smallest r such that M(r) = p.

The algorithm of [2] for finding r(p) is based on an O(n) subroutine for finding
M(r) for an arbitrary r > 0. (n is the number of nodes in 7.)

In this section we show that r(p) = d(i, j)/2k, where d(i, j) is the distance
between some pair of tips, / and j, of T, and % is an integer satisfying 1 = k = p. (A
tip is a node of degree 1.) The latter property combined with the monotonicity of
M(r) will imply that the O(n) routine for finding M(r) is to be applied at most O(n?p)
times, before r(p) is found.

To prove our claim on r(p) we will need the algorithm of [2] for finding M(r).
Thus, for the sake of completeness we describe it here as well.

ALGORITHM 1. Suppose that the tree is rooted at some node and arranged in
levels. Define the level of a node as the number of arcs in the unique path connecting
the node with the root. Node i is a son of node j if j is the immediate predecessor of i
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on the path connecting i with the root. We also say that j is the father of i. Consider a
maximal set of tips having the same father, say node s. If all sons of s are tlps we call
such a set a cluster, and denote it by C(s).

The algorithm will successively eliminate clusters from the tree, where at each
iteration it will find the minimum number of supply centers, (r-neighborhoods), re-
quired to cover the cluster under consideration.

We start by motivating the first step of the Cluster Elimination Routine. If the
length of any arc (s, i)—i being a tip—is greater than 2r, a facility must be located on
(s, 7). Without loss of generality, that facility can be established at a point on (s, 7)
whose distance from the tip i is 7. (Note that this facility covers only points on (s, i).)
One can then reduce the length-of the arc by 2r.

The Cluster Elimination Routine.

Step 0. Choose a cluster, C(s), of the initial tree, (possibly one of the highest
level).

Step 1. Let {(s, 0}, i € C(v) be the set of arcs connecting the tips to their
predecessor s.

For each i let d(s, /) = k;(2r) + b;, where k; is a nonnegative integer and
O < bi = 2r. -

Set d(s, i) < b; fori € C(s).

(At this point k; facilities have already been established on arc (s, i), with the dis-
tance between two adjacent facilities being 2r. Also note that the trimmed arcs have
positive lengths.)

Step 2. Let a = min {d(s, i) : d(s, i) > r} = d(s, i}),

i C(s)
and .
B =max {d(s, ) : d(s, ) = r} = d(s, i¥).
1€ C(s)
In case of a tie i} (i¥) can be chosen as the smallest index for which the minimum ~
(maximum) is attained. Also, if a(g) is defined on an empty set it is set equal to
+ o(—). (Note that at least one of «, S is finite.)

(1) If &« + B > 2r, then for each i such that d(s, i) > r, locate a facility on (s, 7
at a distance r from the tip i (of the reduced cluster obtained in Step 1). Remove each
arc (s, i) in C(s) except (s, i¥).

If 5 is the root of the tree, locate a facility at s and terminate. Otherwnse remove
node s so that we have the case shown in Fig. 1, and go to Step 3.

(ii)) If & + B = 2r, then for eachi # if with d(s, i) > r, locate a facility on (s, i)
at a distance r from the tip i. Remove all the arcs (s, i) except (s, if).

If s is the root of the tree, locate a facility on (s, i¥) at a distance r from i} and
terminate. Otherwise, remove node s as shown in Fig. 1, and go to Step 3.

Step 3. Choose a cluster of the remaining tree (possibly one of the highest level),
and return to Step 1.

It is clear that the above algorithm takes O(max (n, M(r))) time, if the output is
to be the M(r) facility locations. However, the following method of recording the
output reduces the time bound to O(n). On an arc, if there are k facilities to be lo-
cated at a distance 2r from each other, the location of only the ﬁrst one and their
number may be output.

THEOREM 2. Let r(p) be the solution to the continuous p-center problem, i.e.
r(p) is defined by (4). Then r(p) = d(i, j)/2k, where d(i, j) is a distance between a
pair of tips, i and j, of the tree T, and k is an integer, 1 = k = p
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I Ddis.h>r

: : } I Ddis,i)=r
15

a+ 8> 2r a +B=2r
: : : : o T
s is removed s is removed
FiG. 1
Proof. Let S = {x;, - - -, x,} be the set of points on T at which the p optimal

supply centers are located. Define D = {y:y € T, min, =, d(y, x;) = r(p)}, and let
S’ be the subset of supply points serving the members of D, i.e.,

={x:x €S, dx,y) = r(p) for some y € D}.

First we claim that without loss of generality it can be assumed that each
member of S’ is the midpoint of a simple path of length 2r(p), connecting two points
of D. Suppose that x € S’ does not have the above property. Then, the supply center
there can be slightly perturbed to x’ such that the optimality is not affected: all points
y in D served by x satisfy d(x', y) < r(p), and no additional points are added to D.
Therefore, x can be omitted from S’ and all points y in D served by x can be omitted
from D. Note that the minimality of r(p) ensures that the set S’ remaining after this
process is not empty. .

To complete the proof of the theorem we show that each member of D which is
not a tip of 7 must be the midpoint of a simple path of length 2r(p), connecting two
points of S’.

Let y € D. Then there exists x; € §' with d(y, x;) = r(p). If y is not a tip there
exists z # y, z € T, and y is on the simple path between z and x;. Considering only
the subpath connecting z and y, we observe that all points on this subpath but y are
not served by x;, since they are at a distance greater than r(p) from x;. So, let x; be
the point in §, closest to y, and serving at least one point which is not y, on the above
subpath. Clearly d(y, x,) = r(p), since y is in D, and therefore x, is in S'.

Moreover, since d(x,, u) = r(p) for some u # y on that subpath, y is the only
intersection point of the path connecting y and x;, and the path connecting y and x;.
Hence y is on the simple path between x; and x, with d(y, x;) = d(y, xx) = r(p).

Using the above properties satisfied by the members of D and S’, we start with x
in S’ and consider the path of length 2r(p), which connects two points of D and has x
as its midpoint. If at least one of these endpoints is not a tip, the path can be ex-
tended by 2r(p) such that the new path will still connect two members of D. Contin-
uing this process, the no-cycle property of a tree ensures that we find a simple path of
the tree connecting two tips and havmg total length of 2&kr(p), 1 = k = p. Thls com-
pletes the proof.

The above theorem implies that r(p), the solution to the p-center problem, can
be found by applying Algorithm 1 O(n2p) times, thus yielding an O(n®p) bound for
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solving the continuous p-center problem. Next we show a reduction of this bound
which is based on the nature of the O(n?p) possible values for r(p).

Due to the monotonicity property of M(r), found by Algorithm 1, it is clear that
if M(F) = p then r(p) = i, and one can ignore all values of r greater than 7. Similarly,
if M(F) > p we have r(p) > F. Let R be the set of possible values for r(p) as specified
by Theorem 2. We start by finding the median of R, say r,, and then applying
Algorithm 1 to find M(r,). Comparing M(r,) and p we then eliminate half of the
members of R from further consideration, leaving the subset R,. We then continue
by finding the median of R,, say r,. computing M(r,), and so on. Let r; denote the
median found at the ith iteration and let R; be the respective subset of R that we are
left with at this iteration. Next we show that the total effort of evaluating the se-

quence of medians {r,, r,, - - - } is O(n® log ?p).
First, an effort of O(n?) ylelds the distances between all tlps of T. For each such
distance d(i, j) the sequence {d(i, j)/2k}, k = 1, - , P, 1s a monotone decreasing se-

quence. One can then apply the methods of [7], [12] to find r; in O(n? log p) time.
Applying Algorithm 1 to r, (for O(n) time), we can then use a binary search on each
one of the sequences {d(i, j)/2k}. k =1, - - -, p, to find R,. Since there are n? se-
quences, this effort amounts to O(n? log p). In general, at the jth iteration, two point-
ers are sufficient to limit that part of a sequence {d(i, j)/2k}, k = 1, - - -, p which is
contained in R;. Hence the storage requirement is of order O(n?). Successive appli-
cations of the methods of [7], [12] for ¢ = log p times will yield r;, 5, - - - , r,. By
that time the remaining set of possible values, R,, will contain O(n?) elements.
Therefore, the remaining medians in the sequence are found in total effort of O(n?)
using the linear time algorithm of [1]. Thus, we have demonstrated that the total ef-
fort of our procedure to find r(p) is of order O(n? log 2p) with O(n*) storage.

Finally, using the duality result presented in the Introduction we observe that
the optimal objective value of the p-center dispersion problem is also found in
O(n? log ?p) time. To find the locations of the p centers achieving this optimal value,
one can use the procedure given in [2]. As shown in [5] this procedure can be imple-
mented in O(n?) time.

Remarks.

1) There are certain circumstances where the bound O(n? log ?p) given above
can be improved if a different method is used to find the sequence of medians. We
mention two such procedures. The first one is based on the observation that the me-
dian of the set R is also the median of the set R™!, consisting of the reciprocals of R.
But then the sequence {2k/d(i, )} k =1, - - -, p, is a linear sequence. It is shown
in [4] how to find a median of set consisting of n? linear sequences in O(n? log n)
time. Applying the latter procedure to compute {r,, ry, - - - } yields the bound
O(n? log n log p) for the algorithm to find r(p).

For the second procedure we first sort the sequence of the m = O(n?) distances

between the tips. Denoting this sorted sequence by ¢; = ¢, - - + = ¢, We represent
R as the union of p monotone sequences. Foreachk = 1, - - - |, p we consider the se-
quence {c;/2k}, i = 1, - -+, m. Applying the methods of [7], [12] to this structure

yields the bound O(n? log n + p log n log p) for the total effort to find r(p).

2) The discrete p-center problem, i.e. the model where demand occurs only at
the nodes of T, is solved in [13], [3] by an O(n? log n) algorithm. We indicate that this
bound can be reduced to O(n?) for the method in [13]. The set R of possible values
for r(p) for the discrete problem is known to contain O(n?) elements. All these ele-
ments are computed in O(n?) total effort. Then, for each given r, an O(n) routine
finding M(r), the minimum number of r-neighborhoods covering all nodes, is given.
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As was done above for the continuous p-center problem. one can generate the
sequence of medians {r,, r,, - -+ - } and apply the procedure to find M(r) a total of
O(log (n?)) = O(log n) times. Since each time the cardinality of the remaining set R,
is cut by half. the linear time algorithm of [1] will generate the entire sequence of
medians in total effort of O(n?). This latter term is then the dominating term yielding
the bound O(n?) for the effort to find #(p).
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