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Abstract

We consider single facility location problems defined on rectilinear spaces and spaces induced by tree networks., We
focus on discrete cases, where the facility is restricted to be in a prespecified finite set S, and the goal is to evaluate the
objective at each point in S. We present efficient improved algorithms to perform this task for several classes of objective

functions.
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1. Introduction

In a typical single facility location problem we
are given a finite set of points ¥ = {v,...,v,} in
some metric space X, and the goal is to find a point
x € X which minimizes some objective function of the
distances of the points in ¥ from x. V is viewed as
the set of customers or demand points, and x is the
location of the serving facility, or server. For each pair
of points u, v € X we let d(u, v) denote the (symmetric)
distance between u and v. Classical examples are the
weighted 1-center and 1-median problems, defined by
the following objective functions. Suppose that each
point v;, j=1,...,n, is associated with a nonnegative
weight w;. (By an unweighted model we will refer to
the case, where w; =1, j=1,...,n.) Weighted models
have been quite standard in location theory, (see, for
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example [16,17]). If d(v;,x) is the (service) distance
of customer v; to the server located at x, then w;d(v;,x)
can be interpreted as the travel time of v to this server.
In the I-center model the goal is to minimize the ob-
jective function max{w;d(v;,x) : j = 1,...,n}, while
in the 1-median problem we wish to minimize the
function Z;;] w;d(vj,x).

A more general and unifying model is the
ordered-median function, (see [14] and the references
cited therein), defined as follows.

Givenis areal vector A=(41,...,4,). Foranyx € X
consider the multi-set of weighted distances from x,
D(x) = {w1d(v1,x),...,w,d(vs,x)}. Define the real
vector D*(x) = (d'(x),...,d"(x)), where d/(x), j =
1,...,n, is a jth largest element in the set D(x). The
value of the (A) ordered-median function at x is
given by

> hdl(x).
j=1
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Note that the center and the median objectives men-
tioned above, are defined by 4 =(1,0,...,0)and 41 =
(1,1,..., 1), respectively. There are two other impor-
tant special cases discussed in the literature. The first
is the k-centrum objective [24,30], Hy(x), defined by
the vector 4 which has the first £ components equal
to 1, and the last n — k components equal to 0, i.e.,

k

Hi(x) =Y d/(x).

Jj=1

The second is the lexicographic center objective,
which can be characterized by an instance of A, where
Aj is ‘significantly’ larger than A;,¢, for j=1,...,n—1,
and 4; = 0, for j =1,...,n, [10].

Generally, suppose that we are given a real function
g, defined on R", and the objective function of the
single facility location problem is f(x) = g(D*(x)).
When there are no restrictions on x, the location of the
server, we refer to the location model as a continuous
version.

We focus here on discrete models, where the server
must be located at some point x of a prespecified fi-
nite set S = {uy,...,u,} C X, which we call the fea-
sible set. In the discrete case we can use a graph to
represent the model. Let G be a complete undirected
graph with the node set ¥ U S. For each pair of nodes
(points) p,g€V U S, the weight of the edge (p,q)
is d(p, q), the symmetric distance between the pair in
the metric space X. Also, as stated above, each node
vy € V is associated with a nonnegative weight w;. We
then view f(x)= g(D*(x)) as a real function defined
on S. If the goal is only to find the minimum value of
f(x) on S, then in some special cases, e.g., the recti-
linear planar 1-center and 1-median problems, we can
exploit the special structure and the convexity of the
objective to find the optimal point without explicitly
evaluating the objective at each point of S. But in the
general case, we will need to evaluate f(x) at each
point x € S in order to identify the minimum value.
We refer to this task of computing the objective func-
tion at all points in .S as a complete evaluation.

Another context where complete evaluation is of-
ten used is multi-objective optimization [4,11,28]. To
illustrate and motivate consider the bi-objective case,
with two real objective functions, f(x) = g1(D*(x))
and fo(x) = go(D*(x)), (e.g., the l-center and the
I-median objectives), defined on S. A key concept in

bi-objective minimization is the pareto set, which con-
sists of all non-dominated solutions in S. Specifically,
consider the planar set S(f1, f2) = {(f1(x), f2(x)) :
x € 5}. Apoint (a,b) € S(f1, f2) is dominated if there
is a point (¢,d) € S(f1, f2), such that c < a, d <b
and (a,b) # (c,d). A common approach to generate
the pareto set is to apply complete evaluation to both
f1and £ and then eliminate the dominated solutions.

. (Note that the elimination phase can be executed in

O(mlogm) time [15,25].)

In this communication, we consider the complete
evaluation of the single facility objective function
f(x) = g(D*(x)), defined above. We make the fol-
lowing suppositions. First, suppose that for each pair
of points u,v of the metric space X, it takes con-
stant time to compute their distance d(u, v). Second,
given a real vector (zy,...,z,), it takes O(n) time to
compute g(zy,...,z,). Therefore, by a straightforward
approach, for any x € S the multi-set D(x) is com-
putable in O(n) time, and the respective real vector
D*(x) can be generated in O(n logn) time. As aresult,
assuming that S = {u1,...,u,}, a complete evalua-
tion of f(x) over S will take O(mnlogn) time. The
question is whether we can improve upon the latter
complexity bound which is determined by the effort to
generate all the vectors of sorted weighted distances,
D*(x), x€S. Note that a trivial lower bound on the
effort to perform this task is Q(mn), since |S| = m,
and for each x € S, D*(x) has n components. We will
prove that for rectilinear spaces and spaces induced
by tree networks, all these vectors can be computed
in O(n? + mn) and O((m + n)?*) times, respectively.
In the classical discrete location models considered
in the literature, it is commonly assumed that a server
can be located only at points in V, i.e., § =V, see
for example [16,17]. Hence, for this case we reduce
the complexity by a factor of O(logn). (We will
concentrate mainly, but not exclusively, on this case.)

We are unaware of papers in the literature that sug-
gest efficient implementation of complete evaluation
in the context of functions defined in terms of weighted
distances. To the best of our knowledge there are re-
sults for the unweighted case only. For example, in
the unweighted case, [29] presents an O(»?) algorithm
to compute all the vectors D*(x), x €S, for a tree
graph when S = V. The weighted case is consider-
ably more complex. To illustrate, consider the case
where ¥V = {v),...,0,} is a set of points on the real
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line and S = V. In the unweighted case, we first sort
the points in ¥, and assume without loss of general-
ity that v; € v3 € --- € v,. Then, for each point v;,
the vector D*(v;) can be generated in O(») time by
merging the two (sorted) lists (v; — vy,...,0; — ;) and
(Vi1 =iy .., Uy—0;) [1]. It is not obvious what prepro-
cessing and tools should be used to extend the above
to the weighted case in order to achieve the O(n?)
total complexity bound. We discuss this case and its
extension to general rectilinear spaces in Section 2. In
Section 3, we consider tree networks.

In addition to [29] there are also some isolated re-
sults in the literature which refer to specific objective
functions. We will cite and discuss them later, when
we study the relevant weighted models in Sections 3
and 4.

In Section 4, we consider some important special
cases where a complete evaluation of the objective
function can be performed in subquadratic time. Some
relevant open problems are listed in the last section.

2. Sorting in rectilinear spaces

Consider first the case, where V = {vy,...,v,} and
S={uy,...,un} are sets of points on the real line and
d(u;,v;) = |u; — v;|. For each i =1, ..., m, the multi-set

D(u;) is given by

D(u)={wjv; —w;| : j=1,...,n}.
Fori=1,...,m, we now define the super multi-set
D(up) = {w;(t; —w;): j=1,...,n}

U{-wj(y; —u):j=1,...,n}

We first note that for cach i = 1,...,m, ﬁ(ui) con-
tains at most # positive entries and at most # negative
entries. The multi-set D(u;) consists of the largest n
elements of D(u;). Therefore, in order to justify the
claim that all the vectors D*(u;), i =1,...,m, can be
generated in O(n* + mn) time, it is sufficient to show
that the total effort to sort (individually) all the super
multi-sets ﬁ(u,-), i=1,...,m,is O(n* + mn).

We embed this problem in a planar setup. Consider
the collection L of the 2r lines in the plane defined
by the equations {y =w;(y; —x) : j=1,...,n} and
{y=—wivy,—x):j=1,...,n}.

The elements of D(; ) correspond to the intersection
points of the vertical line x = ; with the lines in L.

Therefore, we can use the machinary developed in
[6,7], to sort the above multi-sets.

Let L' be the collection of the m lines in the plane
defined by the equations {x =u; : i=1,...,m}.

We first construct the planar arrangement of the
collection L in O(n?) time, using the incremental al-
gorithm in [6,7]. There are 2n stages, where at each
stage we augment a new line from L, and obtain in
O(n) time the sorted sequence of intersection points
of the new line with the lines that have already been
introduced.

We then consider the collection L'. For each vertical
line x =u; in L’ we apply (individually) an additional
single stage of the incremental algorithm, and obtain
in O(n) time L;, the sorted sequence of the y values of
the intersection points of this line with the lines in L.
The vector D*(u;) consists of the largest n elements
in L,'.

To conclude, we have shown that for the case of
the real line the total effort to generate all the vectors
D*(w;), u; €8, is O(n* + mn).

We now show how to extend the case of the real line
to the general rectilinear case. To facilitate the discus-
sion, suppose that for j=1,...,n, v,=(v},..., vH)eR?,
and fori=1,...,m, u; = (u},...,u?) € R?. Define

IEEE

A:{&:(&I,...,éd) : 5k€{+1,—1},

k=1,...,d}.
For each pair u;, v,
d
du ) = |of — .
k=1

Hence, there exists 8/ € A such that
d

d(vi,v) = 8 (f —uf).

k=1

Next we define a collection L? of 2%n lines (planar
equations) as follows: For j=1,...,n, consider the 2¢
equations

d
{y:wj l:(z&kvjk> —X:l 25k€{+1,—1},
oy

k:l,...,d}.
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We uniquely identify each line in LY by a pair
(j.0(p)), where j=1,...,n, and () € 4.

As described above, using the incremental algo-
rithm in [6,7], we first construct the arrangement of
the collection L in O((29n)?) time.

For each i = 1,...,m, generate the set of 22 reals,
A;, defined by

d
A; = {Zakuff e {+1,-1}, k= 1,...,d}.
k=1

Each o € 4; is uniquely identified by some d(x) € 4.

Next for each i = 1,...,m, (individually) apply the
following step.

For each o € 4;, consider the vertical line x = o and
apply (individually) an additional single stage of the
incremental algorithm in [6,7], and obtain in O(2%n)
time the sorted sequence of the y values of the inter-
section points of this line with the lines in L¢. Let C¥
denote this sorted list (sequence).

Since |4;| =29 and |C¥| = O(2%n) for a € 4;, in
0O(d2%n) time we can merge all the lists {C?}, a € 4;,
([1]). Let C; denote the merged list.

Note that each value in the sorted list C; is uniquely
identified by a triplet (J, 6(f),(a)). Therefore, us-
ing the above notation, for each j = 1,...,n, the term
w;d (v, u;) is the unique value of C; identified by the
triplet (j,6%/,5%). Thus, we conclude that the real
vector D*(u;) is exactly the subsequence of C; corre-
sponding to the # identifiers (j, 5"/,8"/), j=1,...,n.
The total time needed to construct D*(u;) is therefore
0(d2%n).

The total time to construct all the vectors
{D*(w;)}, i = 1,...,m, is therefore O((2%n)* +
d2¥ mn).

Theorem 2.1. Iz takes O((29n)? + d2*mn) time to
generate all the vectors D*(w;), i=1,...,m, for the
rectilinear problem in R?.

The above results on the rectilinear case can easily
be extended to the /o norm in B¢, where

d(“iavj):max{[vf —u¥| i k=1,...,d}.

In fact, in this case the d-dimensional problem reduces
to d one-dimensional problems. Hence, we have the
following result.

Theorem 2.2. It takes O(dn*+dmn) time to generate
all the vectors D*(u;), i=1,...,m, for the l o problem
in R4,

3. Sorting in tree network spaces

In this section we extend the above results to tree
network spaces.

Given is an undirected tree graph 7' =(V, E), where
V ={v|,...,v,} is the node set and E is the edge set.
Each edge e € E has a nonnegative edge length, /,.
The edge lengths induce a distance function on 7'. For
any pair of nodes, v;,v; € V' we let d(v;, v;) denote the
length of the unique simple path P(v;,v;), connecting
v; and v;. In this section we consider only the weighted
case, and therefore we assume that S = {uy,...,un}
coincides with V. (If § # V we can augment the
points in S to ¥, assign a zero weight to each point in
S — ¥V, and replace r by n + m.)

We use a recursive approach which is based on a
centroid decomposition of the tree [9,23], to compute
the vectors D*(v;), i=1,...,n.

A centroid of the tree is a node v characterized by
the property that each of the connected components
obtained by the removal of v, contains at most § nodes.
A centroid can be found in linear time, and it is also an
unweighted 1-median of the tree, [16,17]. Moreover,
the tree can be decomposed into two subtrees, say, T
and T with respective node sets ! and V2 such that,
Viurt=v, vinrt={v}, V'l < (2n+1)/3, and
V2 < (2n+1)/3.

We now describe the recursive approach.

Find a centroid v of the tree.

Recursively, for each v; € V!, compute L}, the
sorted list of weighted distances of all nodes v; € V!
from v;. (L] is the sorted list of the elements in the
multi-set 4! = {w;d(v;,v;) : v; € V'}.) Similarly, for
each v; € V2, compute L2, the sorted list of weighted
distances of all nodes v; € ¥'2 from v;. (L? is the sorted
list of the elements in the multi-set 4? = {w;d(v;, v;) :
v € Vz})

For each v; € V!, define K} to be the sorted list
of the elements in the multi-set B! = {w;d(v;,v;) :
v € ¥2 — {v}}. Similarly, for each v;€ V2, de-
fine K? to be the sorted list of the elements in
the multi-set B? = {w;d(v;,v;) : g€ V! — {v}}. It
then follows from these definitions that for each
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v € VI, (U,‘ S Vz), D(U,)ZA‘Il UB}, (D(U,’):A%UB%).
Therefore, for each v; € V', (v; €V?), the vector
D*(v;) is defined by the vector (sorted list) obtained
by merging L! with K}! (L? with K?).

We now show how to generate the sorted lists
K}, v;e V!, and K?, v;€ V2 Due to symmetry we
focus only on K.

For each v; € V, let a;=d(v;, v). Therefore, K] isthe
sorted list of the elements in the multi-set {wj(a,_,—!—ai) :
v, €V?* — {v}}. From the above results on the case
of the real line we conclude that the total effort to
generate all the lists K, v; € V!, is O(n?) time.

At this stage we have all the lists K}, L!, v, V!,
and K?, I3, v; € V2. Therefore, for each v; € V! (v; €
V%), we can obtain D*(v;) in O(n) time by applying a
standard merging step, [1], to the sorted lists K} and
L}, (K? and L?).

To evaluate the complexity of the above recursive
procedure, let 7(n) denote the total effort needed to
generate all the vectors D*(v;), v; €V in a tree with
n nodes. From the above we obtain

T(n) < cn* + T(m) + T(ny),

where ¢ is a constant, ny +ny=n+1, ny < 2n+1)/3
and n; < (2n 4 1)/3. Thus, we conclude that T(n) =
o(n?).

Theorem 3.1. It takes O(n?) time to generate all the
vectors D*(v;), i=1,...,n, for a tree network with
n nodes.

Remark 3.1. Tt is shown in [14] that the single facility
discrete unweighted ordered-median problem on a tree
network can be solved in O(n?) time. The last theorem
implies that the weighted version can also be solved
with the same complexity, since complete evaluation
can be performed in O(#?) time.

4. Complete evaluation for special cases

We have shown above that in the cases of rectilin-
ear spaces and tree networks, for an arbitrary objective
function depending on the ordering of weighted dis-
tances to the server, a complete evaluation of the ob-
jective at all points in the feasible set S can be carried
out in O(n?) time when |S| = O(|V']). (We have as-

sumed above that when D*(u;) is given, it takes O(n)
time to evaluate the objective at u; €S.)

We note that in some special cases where the ob-
jective depends only on some components of D*(x),
a complete evaluation of the objective at all feasible
points in § can be performed in subquadratic time.
Following are some examples.

Consider first the case of the weighted 1-center
problem. The objective value depends only on the first
component of D*(x), i.e., the maximum weighted dis-
tance to the server at x. It is easy to check that in the
real line case of this model, where V' ={vy,...,v,} and
S={u,...,un} are two sets of points on the real line,
a complete evaluation of the objective at all points
in ¥ can be performed in O(nlogn + mlogn) time.
A minimum point over S can actually be obtained in
O(n + m) time by first solving the continuous version
of the problem, where the server can be located any-
where on the line [21]. If x* is the unique solution
to the continuous version, then one of the two closest
points in S on either side of x* is a solution to the dis-
crete 1-center problem. (Note that a complete evalu-
ation for the discrete 1-center problem in R? with the
s norm, can be done in O(dnlogn +dmlogn) time,
since the model decomposes into ¢ one-dimensional
problems.)

Next consider the single facility discrete planar rec-
tilinear k-centrum problem defined in the Introduction.
Using the results in [2], it is shown in [14] that for the
unweighted case, a complete evaluation can be per-
formed in O(n log® n) time, when S = V. (Recall that
by the unweighted model we refer to the case where
w; = 1, ]: 1,...,1’1.)

Another example where complete evaluation can
be executed in subquadratic time is the discrete un-
weighted Euclidean planar 1-center problem. First,
generate the furthest point Voronoi diagram of the
pointsin ¥ in O(n log n) time [25]. We can then evalu-
ate the 1-center objective at any point of S in O(log »n)
time, by using point location [18,25]. The total time
amounts to O(nlogn 4+ mlogn). (When § =V, the
O(nlog n)bound is actually optimal as shown in [20].)

Two other examples are the (weighted) discrete
l-median and 1-center problems on tree networks.
Evaluating the median objective function at all nodes
of the tree T=(V, £') can be done in O(n+m) time by a
simple bottom-up algorithm. (See [26].) We next show
that a complete evaluation of the weighted 1-center
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objective at all nodes of the tree can be executed in
O((n + m)log (n + m)) time.

4.1. Complete evaluation of the I-center objective
on a tree

Given the tree 7' = (V, E) our goal is to evaluate
the terms ¢; =max{w;d(v;,v;) : vy €V}, forallv; e V.
(As in Section 3, we assume that S = V)

We apply the centroid decomposition of a tree
introduced above.

Let v be a centroid of T, and let V!, 72 be the
respective partition of V. (See Section 3.)

Recursively, for each v;€ V! compute a =
max{w;d(v;,v;) : iy € ¥'}, and for each v; € V'* com-
pute a7 = max{w;d(v;, ;) : v; € V?}.

For each v; € V!, define b} = max{w;d(v;,v;) :
v; € V'2}, and for each v; € V', define b7 =max{w;d (v;,
y) iy eV}

Hence, for each v; € V!, ¢; = max{a},b}}, and for
each v; € V2, ¢;=max{a?,b*}. We show how to gen-
erate b}, v; € V! and b2, v; € 2. Due to symmetry we
focus only on the computation of b}, v; € V!

We first use the approach in [23], which yields
an O(nlog?n) complexity, and then improve it to
O(nlogn) by applying the machinery in [9].

In O(n) time compute all the distances d(v, v;), v; €
V. With each v; € V2, associate the single variable
linear function A;(1) = w;{(d(v;,v) + ¢). Next, define
the pointwise maximum function,

F(t)=max{h;(t): v; € V*}.

F(t) is a piecewise linear and convex function with
at most | V2| breakpoints. Using a standard divide and
conquer algorithm we generate the sequence of its
breakpoints, and the corresponding values of F(¢) in
O(nlogn) time. With such a representation of F(¢) it
takes O(log n) time to compute F(¢) for any value of £.
Noting that b} = F(d(v;,v)), for v; € V!, we conclude
that it takes O(n log n) time to compute all the terms
b}, v; € V', Therefore, the total time spent at this stage
of the algorithm is O(nlogn).

To evaluate the complexity of the above recursive
procedure, let T'(n) denote the total effort needed to
generate all the terms ¢;, v; € V' in a tree with n nodes.
From the above we obtain

T(n) <cnlogn+ T(ny) + T(ny),

where ¢ is a constant, ny +m=n+1, n; < 2rn+1)/3
and n, < (2n+ 1)/3. Thus, T(n) = O(nlog? n).

The above procedure can be expedited to reduce the
complexity to O(n logn). We apply the machinery in
[9]. First, we note that at each stage of the recursion
we can sort all the distances d(v;,v), v; € V, from the
centroid v in O(n) time, using sorted lists generated
at earlier stages. (See [9].) Let L' denote the sorted
list of elements in the multi-set {d(v;,v) : v;€ V'},
and let L2 denote the sorted list of elements in the
multi-set {—d(v;,v): v, € V2}.

Next consider the construction of the function
F(1). Note that for v; € V2, —d(v;,v) is the unique
zero of the linear function 4,(¢). Hence, L* is the
sorted list of these | V2| zeroes. Using L? we can now
construct the sequence of breakpoints of the function
F(t) in O(n) time [25]. (Note that the latter con-
struction is equivalent to the problem of finding the
convex hull of a set of points in the plane, when the
points are already sorted with respect to one of the
coordinates. )

Finally, given the sequence of breakpoints of F(¢),
and the list L!, we can evaluate b} = F(d(v;,v)) for
all the nodes v; € V! in O(n) time.

To conclude, the recursive equation corresponding
to the modified version of the algorithm is

T(n) <cn+ T(ny) + T(na).
Therefore, T(n) = O(n logn).

Theorem 4.1. It takes O(nlogn) time to compute the
1-center objective values at all the nodes of a tree
network with n nodes.

Remark 4.1. We have described a superlinear algo-
rithm to evaluate the weighted 1-center objective at
all nodes of a tree. We should also note that the min-
imum value of this objective can be found in linear
time by the algorithm in [21].

Remark 4.2. We note that the O(nlogn) algorithm
from the last theorem can be replaced by a simple O(n)
algorithm when the 1-center problem is unweighted.
Specifically, using the O(n) algorithm in [12], we first
find a diameter of the tree. Suppose without loss of
generality that the nodes v;, v, are the leaves of a di-
ameter, i.e., d(vy, v2) =max{d(v,v;) 1 i,/ =1,...,n}.
Then it follows from the discussion in [12] that for
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each node v;, the unweighted 1-center objective value
at v, is given by max{d(vs,v1),d(vs,v2)}.

In the case of a path network the O(# logn) bound
stated in the above theorem can be improved to
O(n). Suppose without loss of generality that the
nodes of the path are points on the real line sat-
isfying vy < vy <-.- € v, For j =1,...,n, define
Al (1) =w;(t —v;) and h; (1) = —w;(f — v;). Let

F(£) = max{max{h; (1), h; (1)} : j=1,...,n}.

F(¢) is a piecewise linear convex function. By the
arguments used above, the sequence of breakpoints of
F(t) can be constructed in O(n) time. Moreover, given
that the points satisfy v; < vy < -+ < vy, the values
of the weighted 1-center objective, F(vy),...,F(vy),
can be obtained in O(n) total time.

Theorem 4.2. It takes O(n) time to compute the
I-center objective values at all the nodes of a path
network with n nodes.

4.2. Complete evaluation of the k-centrum objective
on a tree

The algorithmic results of the previous subsection
can be extended to the k-centrum objective. Con-
sider first the case of a path graph, and suppose
that the nodes are points on the real line satisfying
v < vy < -0 < v, Using the above notation note
that for each point x on the real line, the k-centrum
objective, denoted by H;(x), is given by the sum
of the & largest elements in the multi-set {A;(x) :
J=L.onfUlhi(x):j=1,...,n}

The function Hi(x) is piecewise linear and con-
vex, and its minimum value can be computed in O(n)
time [24]. Moreover, using the duality between points
and lines in the plane, from Theorem 3.3 in [5] we
conclude that the number of breakpoints of Hy(x) is
O(nk'’?). (Actually, the exact number can be much
smaller. O(nk') is an upper bound on the number
of breakpoints of the k-level function, whose set of
breakpoints is a super set of the set of breakpoints of
Hi(x). For example, in the unweighted case, all the
slopes of Hy(x) are integers bounded between —k and
+k, and therefore, due to convexity, it has at most 2%
breakpoints. )

Algorithms to generate all the above breakpoints
(and the respective values of Hi(x)) are reported in
[3,8,13]. The one with the best complexity is the (ran-
domized expected time) O(nk'Po(nk'/?*)logn) algo-
rithm in [13]. (For each integer m, o(m) is the inverse
of the Ackermann function, [27].) The O(nk!? log? n)
algorithms in [3,8] are deterministic.

To conclude, we have the following result.

Theorem 4.3. It takes O(nk' log? n) time to com-
pute the k-centrum objective values at all the nodes
of a path network with n nodes.

Turning to tree networks we can combine the last
result with the centroid decomposition to obtain a sub-
quadratic algorithm for complete evaluation of the
k-centrum objective on a tree network.

We use the above notation. Recursively, for each
node v; € ¥, we will maintain the set of the £ largest
elements in the multi-set D(v;)={w;d(v;,v;) : v; €V}
Let (¥',7?) be a centroid decomposition of the tree
T = (V,E) mentioned in the previous subsection.
Define k; = min{k, |V'|}, k» = min{k, |[V*|}, k] =
min{k, |V''| — 1} and &, = min{k,|V?| — 1}.

For each node v; € V!, (v;€V?), let C}, (C?),
be the subset of the k, (k;), largest elements in
{wid(vi,v7) s v € V'Y, ({wid(vi,vp) 1 vy € V2.

For each node v; € V!, (v;€V?), let D}, (D?),
be the subset of the kj, (kj), largest elements
in {w;d(v;,v;) yevt — {v}}, ({wid(vi,v)
yer— o)},

Note that for each v; € V1, (v; € ¥'2), the set of the
k largest elements in D(v;) is the set of the & largest
elements in the multi-set C} U D}, (C? UD}). (Since
\C}UD]| <2k, (|C}UD?| < 2k), it takes O(k) time
to compute the & largest elements of D(v;), when the
sets C}, D}, (C%,D?), are given, see [1].)

Due to symmetry we focus only on the construction
of the sets D}, v; € V'L,

Let H2(¢) be the function which is the sum of the
largest & functions in the collection of linear functions
{w;(d(v,v;)+1) : v; € V? — {v}}. From the above dis-
cussion it takes O(nk!/? log? n) time to generate the
entire sequence of breakpoints of H2(¢). (We note that
for all values of ¢, lying between two consecutive
breakpoints, the set of k} largest functions is fixed.)

Next, for each v; € V', the set D! corresponds
to the set of k; largest functions defining the value
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H?(d(v,v;)). Hence, assuming that the distances
{d(v,v;)}, v; € V!, are already sorted, by scanning
the sequence of breakpoints of H?(7), we construct
all the sets D}, v; € V!, in O(kn) time.

To evaluate the total effort spent by this recursive
algorithm, we denote by T'(n) the total time to compute
the k largest clements in D(v;), foralli=1,...,n. We
have the following recursion:

T(n) < c(nk'? log? n + kn) + T(ny) + T(ny),

where ¢ is a constant, ny +ny=n+1, n; < (2n+1)/3
and ny < (2n+1)/3. Thus, we conclude with the next
result.

Theorem 4.4. It takes O(nk'? log® n+knlogn) time
to compute the k-centrum objective values at all the
nodes of a tree network with n nodes.

Remark 4.3. We note in passing that the time al-
gorithm O(nk'?log’ n + knlogn) to compute the
k-centrum objective from the last theorem, can
be replaced by an O(n 10g2n) algorithm when the
k-centrum problem is unweighted. We can direcly use
the data structure in [23] which provides a compact
O(n log n) representation of the set of unweighted dis-
tances between all pairs of nodes of the tree. With this
data structure, for each node v, it takes O(log® 1) time
to compute the k-centrum objective at v;. Therefore,
a complete evaluation can be executed in O(n 1og2 n)
time.

5. Related open problems

We have presented above some improved algo-
rithms to evaluate objective functions corresponding
to several discrete single facility location problems.
In some important cases the O(n?) procedure for a
complete evaluation, (in the case when S| =O(|V])),
is the fastest known procedure to find the minimum
value of the objective over the discrete feasible set.
The question is whether better complexity bounds are
attainable for finding the minimum in these cases. We
list some examples.

Consider first the discrete rectilinear weighted
I-center and 1-median problems in RY, d > 2. The
median problem decomposes into d one-dimensional
problems, and, therefore, can be solved in O(dnlogn)

time [19]. It is not known how to find the minimum
solution to the discrete center problem in subquadratic
time for a fixed d > 3. (For d = 2, the rectilinear (/,
norm) model is equivalent to the /., norm problem,
and therefore, as noted above, a complete evaluation
can be performed in O(n logn) time.) For comparison
purposes note that the continuous version is solvable
in O(n) time [22,24]. The same results and questions
apply to the k-centrum objective defined in the In-
troduction. The continuous version in R is solvable
in O(n) time in [24], but no subquadratic algorithm
is known for the discrete version for d = 2. (Of
course, the above O(n?) complete evaluation scheme
identifies the minimum value.) More generally, con-
sider the case of the ordered-median objective, where
A=Ay 2 4, 2 0. In this case the objective is
piecewise linear and convex. Subquadratic algorithms
for the continuous case are presented in [14]. For this
objective, it is not known whether complete evalua-
tion can be executed in subquadratic time even for
path graphs.

Finally, we mention the Euclidean case. To the best
of our knowledge, it is not known how to generate
the sets D*(v;), v; € V, in O(n?) time, even for the
unweighted planar Euclidean case.
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