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In this note we apply recent results in dynamic programming to improve the complexity bounds of several median and coverage
location models on the real line,
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0. Introduction

We consider a general facility location model on the real line, where we have to select p sites for
facilities to serve » demand points. The model extends and unifies some of the classical problems in
location theory, e.g., the p-median problem, the p-coverage problem, and the simple uncapacitated plant
location problem. We apply recent results in dynamic programming [6,8,15] to improve the complexity
bounds of the general model from O( pn®) to O(n?). For the linear cases — the p-median and the simple
plant location models — we obtain O{ pr} and O(n) bounds, respectively, by implementing the elegant
computational geometry approach of [14]. Finally, for the stepwise case — the p-coverage problem — we
present a parametric approach which yields a further improvement under additional assumptions.

1. The general model

Let N={uv,...,v,} be a set of n points on the real line, identified as the set of demand points. In a
location model the objective is to select a subset § C N of points that will serve all the demand points in
N. The points in § are identified as the supply points or service centers. We assume that all potential
centers provide identical services and they are uncapacitated. The utility of a demand point v; depends on
its distance to the nearest center. Specifically, for /= 1,..., n, we let f.(d{(»;, S)) be the real monotone
nondecreasing (disutility) function of v;, where

d(v,, §)=Min{ |v—v,|:vES}.
For § = (¢} we denote d(v;, §) by d(v;, v). We assume that f,(0)=0, i=1,...,n. Fori=1,...,n,let C
be the fixed setup cost of establishing a center at point v,. We also assume that there is an upper bound, p,
on the total number of centers that can be selected in N. We are concerned with the following location

model,

Minimize G+ Y fi(d(v, S)) (1.1)
s ies i=1
subject to SCN,
|§] <p.
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The above formulation unifies several location models in the literature. For example, when C; =0, and

f; is linear for each i=1,..., n, (1.1) reduces to the well known p-median model on the line. When £,
i=1,...,n,is a step function
0 ifx<r,
filx) = {b,- otherwise, 12)

we obtain the p-coverage location problem of [2,3,7,11].

If the constraint | S| < p is redundant, e.g. p > n, (1 1) coincides with the simple uncapacitated plant
location problem [9] on the line.

To solve (1 1) we suggest the two function recursive approach. Suppose that v, <p, < -+ <uy,. Let
N/ = {vj..-50,}, j=1,..., n, and consider the following set of subproblems. Define, for j=1,..., n, and

q=p,

P(j) = Min | 3 6+ LA, $):181 2a).

ScN/ ies

G j)= Min { Y C+ Zf(d(v,, S)N:|IS|<gq, UES}.
SCN\ jes i=j
F3(j) is the optimal objective value of the subproblem reduced to N/, where ¢ is the upper bound, and
G9(j) is the respective value for the same subproblem, provided that a center must be set at v,
With the above definition we obtain the two recursions,

-1
GU(j)=C+ 1:[111 1{ ¥ fld(v, UJ))+F“' 1(k)} g=2, j=1,...,n, (1.3a)
J<k=zn+ =
Fi(j)= Min {Zf;(d(vn ”k))+Gq(k)} gz1, j=1,...,n. (1.3b)
The boundary conditions are
G (N=C+ X h(dv.9)), j=1,...,n, Fi(n+1)=0, g=1. (1.4)
=

The solution value for (1.1) is then given by F”(1). Assuming that it takes constant time to evaluate f,(x)
for any #=1,..., n, and argument x, F#(1) can be computed in O( pn*) time, using (1.3) and (1.4). If the
constraint | S| < p in {1.1) is known to be redundant, we obtain the recursive equations

G(j)=C+ <E/Ism+l{kf;:(d(u,,uj))ﬂ«"(k)}, j=1,...,n-1, (1.5a)
k

F(j)= 'NEH {Zf,(d(u,, vk))+G(k)}, j=1,...,n, (1.5b)
isk=<n r=j

G(n)=¢C,, F(n+1)=0, (1.5¢)

for the respective subproblems. Therefore, F(1), the optimal value for this case, can be computed in O(#?)
time. We will refer to the case when the constraint | S| < p is redundant as the relaxed model.

We will first show how to implement the recent results in [1,6,8,15] to improve upon the above
complexity bounds. We will then focus on the cases where the disutilities are linear or step functions, and
obtain further stmplifications.

To show the applicability of the algorithms in [1,6,8,15] to our model we need the following definition
and lemma,
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For 1 <j <k < n, define

w(j» k) = Zf:(d(vu Uj));

r=j

k
W(.j! k) = Zf;(d(f),, Uk))‘
t=j

Lemma 1. Let j, k, | and m be four indices satisfying 1 <j<k<lI<m=<n. Then,
w(j, m)—w(j, )=wlk, m)—w(k, /), (1.6
w(j, m)—w(j, 1) zw(k, m}—w(k, ). (L7

Proof.

wiim)=w(i )= Y £(d(o 0)) = T £(d(o. 00)) =w(ks m) - wik, 1)

t=1+1 r=1+1

where the inequality follows from the monotonicity of the functions f,, t =1,..., #. Similarly,

k=1 k-1
w(j, m)y—wl(k, m)= Y, f(d(v,v,)}= Y f(d(v, v))=w(j, 1) —w(k, ).
r=j 1=j
The inequalities (1.6) and (1.7} are recognized as the quadrangle or concavity property in [1,6,8,15]
They can also be viewed as the supermodularity property when w and w are regarded as functions definec
on the collection of intervals on the real line,
With the above definition we rewrite (1.3) as
G(j)=C+ Min . {w(j, k=1)+F(k)},

J<k<n+
FI(J)= Min (), k) +G*(k)).

Using the above concavity property and assuming that w{j, k) and W(, &) can be computed in constant
time for a fixed pair of indices j < k, we can use the algorithms in [6,8,15] to solve {1.3). In particular, the
algorithms in [6,8,15] will yield G*(j) and F9(;) for all g<p and j=1,..., s, in O( pn) total effort.
Similarly, G( ) and F(j) in (1.5) for al} j=1,..., n, can be computed in a total of O(#n) time.

it is certainly obvious that it takes O(n?) time to compute w(j, k) and w(j, k) for all indices
1 <j < k < n. Therefore, the solution value, F?(1), for (1.1) can be obtained in O( pr + n%) = O(#?) time.

Next, we focus on some special cases of the functions f,, 1 =1,..., #, and obtain further improvements.
These improvements will follow from subquadratic preprocessing that will enable an efficient computation
of w(j, k) and W(j, k) for a fixed pair j < k.

2. The linear case

Suppose that for each r=1,..., n, f(x) = a,x for some nonnegative a,. Then for 1 <j < k < n we have
k k Jj-1 k
W(ja k)ﬁ Za,(u,—vj)“—* Zafu.r_ a,U,—(Za,.)UJ-,
1=j t=1 =1 t=j
k k i=1 k
w(j, k)= Zar(vk_vr) == Za,v,+ Z a0+ (Zar)ﬂk-
1=j =1 =1 t=j
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Define, for j=1,..., A,
J J
AY= Y a,  AV(j)= X an.
=1 =1

Now,

w(j, k) = AV(K) ~ AV(j = 1) = (4(k) — 40— 1))v, - (2.1a)

w(Jj, k)= —AV(k) + AV(j— 1)+ (A(k) ~ A(j— 1)) v,. (2.1b)
It follows from (2.1) that after some preprocessing that consumes O(#) time, w(j, &) and w(j, k) can be
obtained in constant time for a fixed pair j < k. Therefore (1.3) can be solved in O( pn) time for the linear
case. When the constraint | S| < p is redundant the bound reduces to O(n).

Simpler algorithms with the same bounds can be derived by applying the simple and elegant ideas in
[14]. To facilitate the discussion consider for example, the equations in (1.5). Using (2.1) we rewrite (1.5) as

G(j)=C+ Min {-AV(j-1)+A(j—1)v;— A(k—1)v,+AV(k—1)+ F(k)},

J<k=ntl
F(j}= Igclg {AV(j—l)—A(jml)vk+A(k)vk—AV(k)+G(k)}.
Define, for j=1,..., n,
G/ = G- AV(j- 1)+ A~ Do,
¢ =AV(j-1),
FI(j)=F(j)+AV(j-1),
G'(/)=G(j)—AV(j) +4(j)v;-

Then,
G{j)=¢ +,-<12@f3+1 {—A(k=1)o,+ F'(k)}, (2.2a)
F(j)=¢+ Min {=A(j= 1o, +G'(k)}. (2.2b)
J=Kk=n

To solve the two recursive equation system (2.2) we modify and implement the idea used in [14] to solve a
single recursive equation system. For the sake of completeness we briefly review that idea. Consider the
equation defining G(j). For each k>j consider the point in the plane with coordinates (A(k — 1),
F'(k)). A minimizer, k = k(j), in the equation defining G(j) corresponds to an extreme point in the
convex hull of the planar set of points (4(k — 1), F'(k)), j <k <n+1. Thus, it is sufficient to maintain
only these extreme points. The minimizer amongst those points is determined by the coefficient —v;. This
coefficient is monotone in j and therefore we can assume that the sequence of minimizers is menotone,
i.e, k(j) < k(j+ 1). A similar observation holds for the second equation defining F( j), where we look at
the set of points in the plane, (v, G'(k)), j<k <n. These monotonicity properties of the minimizers
enable us to use standard techniques from computational geometry [4,13] to efficiently construct and
maintain the two convex hulls as ;j varies from #n to 1.

All the values G(j) and F(;), j=1,..., n, are generated in this process in linear time. The linkage
between the two convex hulls is governed by the two equations of (2.2). Specifically, we start with
G(n) = F(n)= C,. Then, recursively for j=n—1,...,1 we first compute G(j) and then evaluate F(j).

3. The stepwise case

Consider the case where each t = 1,..., n is associated with the two positive numbers 7, and b, and
0 ifx=g,
x)= .
Si%) b, otherwise.
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This model is the p-coverage problem discussed in [2,3,7,11]. As an instance of (1.1) it is solvable in
O( pn + n*)y=0O(n?) time. (Note that the bound for the relaxed model is also O(n?).) We will show a
different algorithm for this model which is based on a parametric approach. This algorithm will solve the
relaxed model in O(# log n) time and the general case in O(n? log®n) time.

Before we present the parametric approach we treat two special subcases by the general method
discussed above.

Subease L. b,= o0 for t=1,..., n. It is easy to verify that w(j, k) and wW(j, k) are now given by
w(j,k)={0 if|uj—.u,|51; for j=r=k,
o  otherwise,
0 if|ly,—v |k forj=sr=k,
oo otherwise.

w(, k)= {

For j=1,...,n, let k(j) (k(j)) be the largest index k =/ such that w(j, k) =0 (w(j, k) =0). The
sequences {k()} and {k(/)} are both monotone nondecreasing in j. Therefore, both sequences can be
generated in O(x) time,

With the above notation we obtain for j < k&

w(j,!c):{0 if ko< k().

oc otherwise,

({0 TESEO)
¢  otherwise.

For a given pair (J, k), j <k, both w(j, k) and w(j, k) are computable in constant time, Therefore, for
this subcase (1.3) and (1.5) are solved in O( pn) and O(#) times, respectively.

Subcase IL. r,=r for t=1,...,n. For each j, j=1,..., n, define /() () to be the largest (smallest)
index ! (/) such that |v,—v;| <7 (|o;—v;| <7). The sequences {/(7)} and {/{j)} are both monotone
and therefore can be computed in O(n) time. Defining for t=1,..., 1, B,=X|_b;, we obtain for j <k,

Ky 0 if k<I(j),
wlf, k) = B~ By, if k>1(),

0 it j=I(k),
Bi(k)—] _B 1 ifj<j(k).

w(J, k)= {

3 _
The total effort to compute B,, t=1,...,rn, is O(#n). Since w(j, k) and w(j, k) can be computed in
constant time for a fixed pair (j, k) we conclude that (1.3) and (1.5) can be solved in O( pr) and O(n)

times, respectively.

4. A parametric approach for the stepwise case

We have noted above that this model can be solved in O( pn + n?) = O(n*) time using the general
method. As explained above, the bottleneck term, #n%, accounts only for the preprocessing phase when we
compute w( j, k) and w(j, k) for all indices 1 <j < k < »n. Because of that the O(»n”) bound applies also
to the relaxed case where the constraint |S| <p in (1.1) is omitted. We will now present a different
solution procedure for the p-coverage model based on a parametric approach, which solves the problem in

O(n*® log®n) time and the relaxed case in O(n log n) time. Let 4 = (a, ;) be an nXn 0-1 matrix where
_{1 il |o;—o| <1,
Y ¢ otherwise.
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The p-coverage problem is

H H
Min Y Cux;+ 2. bz (4.1)
j=1 i=1
s.t.  (dx);+z;=1, i=1,...,n,
Exjsps
J=1

x;€{0,1}), j=1...,n,
z,€{0,1}, i=1,...,n.
The matrix A has the row consecutive 1’s property. Therefore, the binary constraints on the variables can

be relaxed and replaced by a nonnegative requirement without affecting the optimal solution [12]. Taking
the Lagrangian with respect to the constraint £}_;x; < p, (4.1) is equivalent to

Mai{ir(r)ljze{}\p +g(A)} (4:2)
where

" "
g(My=Min Y, (C;—A}x;+ X bz,
=1 i=1
st (Ax),+z,=1, i=1,...,n,
x, z=0.
Note that g(A) is a concave, monotone nonincreasing and piecewise linear function of A.

For each A, for which g(A) is finite, g(A) is attained at some 0-1 vector x. Therefore, the slopes of
2(A) constitute a decreasing sequence of nonpositive integers, where the smallest (finite} slope is bounded
below by —n. In particular, g(\) has at most » breakpoints. The maximum value at (4.2) is attained at a
breakpoint, say A*, satisfying

—g' (M —)<p< —g'(A*+)
where g'(A* — ) and g’(A* +) are, respectively, the left and right derivatives of g(A) at A =A*. Let T(n)
be the computational effort required to compute g(A) for a given value of A. (Note that g(0) is the
solution value to the relaxed model). Then using the parametric algorithm in [10], A* can be obtained in
O((T(n))?) time. We will show that T(n) = O(n log n). That would imply an O(n* log*n) algorithm for
the p-coverage problem.

We consider the following coverage model

H H
Min ¥ Cx;+ ¥ bz (4.3)
j=1 i=1
sit. {Ax);+z;=1, i=1,...,n,
x=0,z=0
where EJ bjz0, j=1,...,n. It should be noted that the matrix A, which has the row consecutive 1’s

property, is stored as foliows. For each i, there exist integers n; < m, such that

qi;

{1 if n,<j=<my,
0 otherwise.

Thus, for each row index i, i=1,..., n, we store its pair of indices #, and m,; only. We first permute (in
O(n) time) the rows of A4 so that the permuted matrix, say 4, satisfies the following rule:
For every pair of rows i and k in A,

i>k implies m;=m,.

400



Volume 10, Number 7 OPERATIONS RESEARCH LETTERS October 1997

1t is easy to verify that A does not have [{3] as a 2 X 2 submatrix. A matrix with this property is called :
greedy matrix in standard form [9]. The dual of (4.3} is

Max Z ¥ ’ (44:
=1

5.t. (A_’y)jgc_}, j=1,...,n,
yi<b, i=1,...,n,
y=0.

The matrix A" possesses two essential properties:
(1) It is in greedy standard form.
(2) It has the column consecutive 1’s property.
Therefore, from [9], (4.4} can be solved by the following greedy algorithm.

Greedy Algorithm. Consider y;, i =1,..., n, in (4.4), by increasing index of /, and set it equal to the larges|
possible value with respect to the constraints. Thus,

»=Min{b, Min{C:n <j<m}},

and for 1 <i<n,

i-1
y, = Min{b,-, Min{aj.— Y omap i sj< mi}}.

k=1
We claim that the above greedy procedure can be implemented in O(# log #) time. Initially, we are given
set of # numbers C,, C,,..., C, which are updated at each one of the n steps. At step / of the algorithm we
are given an interval of indices, { j: n, <j < m,}, and we find the minimum of the current values of these
numbers over this interval. Let «; denote this minimum. We then subtract §, = Min{b,, «;} from each
number in this interval and proceed to the next step.

There are simple data structures that require O{n) preprocessing time and then perform each one of the
two typical operations (‘minimum over an interval’ and ‘subtract over an interval’) in O(log n) time. The
reader is referred to [5] for more details concerning such data structures.

To conclude we have shown that the parametric approach can be used to solve the general p-coverage
model in O(n* log?n) time. Also, if the constraint e’x <p in (4.1) is redundant the effort is only
O(n log n), since only g(0) has to be computed.
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