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A nonlinear generalization of square matrices with non-positive off-diagonal elements is
presented, and an algorithm to solve the corresponding complementarity problem is suggested.
It is shown that the existence of a feasible solution implies the existence of a least solution
which is also a complementary solution. A potential application of this nonlinear setup in ex-
tending the well-known linear Leontief input—output systems is discussed.

1. Introduction ?

Given a mapping f : R} > R” and a vector g in R", the complemen-
tarity problem is to find x in R” such that

x>0, flx)+g=>0, ' (1)

xT(fx)+q)=0 2)

If x satisfies (1), it is called a feasible solution, and if it also satisfies
(2) it is a complementary solution.

In this paper we consider a nonlinear generalization of Z-matrices
(i.e., square matrices with nonpositive off-diagonal elements), called
Z-functions, as well as a generalization of M-matrices (i.e., Z matrices
with positive principal minors), known as M-functions. We discuss pro-
perties of these classes of functions and then develop a scheme to solve
the complementarity problem (1)—(2) defined by members of the clas-
ses. The scheme is a modification of an algorithm suggested by

* Presented at the 8t International Symposium on Mathematical Programming, Stanford
University, 1973.

! After this research was completed, Professor J.J. Moré informed the author that he had ob-
tained a few of the results independently, but by different means. (See [4 and 5].)
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Chandrasekaran [1] for the solution of linear complementarity pro-
blems defined by Z-matrices.

It is shown that the modified algorithm produces a complementary
solution to problem (1)—(2), provided one exists. In addition, such a
solution is the least element of the feasible set defined by (1); that is,
the complementary solution x determined in the algorithm satisfies
0 < x <y forall y > 0 such that f(y) + g = 0. This result extends a
theorem recently proved by Cottle and Veinott [2] for M-matrices.

In [8] the author shows that if additional assumptions are imposed
on the Z-functions, yielding continuous surjective M-functions, then the
algorithm can be viewed as a principal pivoting scheme. This approach
leads to a natural extension of the Schur complement concept defined
with respect to square matrices. In [8] this extension is used to prove
the nonlinear equivalent of the theorem which states that a Schur com-
plement of an M-matrix is also an M-matrix. The iterative processes of
Gauss—Seidel and Jacobi have a key role in the development and deri-
vation of the complementarity algorithm. ‘

Existing and potential applications of Z-functions and M-functions
are included at the end of the paper.

While Z-matrices and M-matrices, also known as Minkowski matrices,
have been studied extensively in the literature regarding both applied
and theoretical aspects (see the work of Fiedler and Ptak [3], where
most of the known results are included), it seems that very little atten-
tion has been given to nonlinear generalizations. One generalization that
we focus on has been developed by Rheinboldt [7], whose motiva-
tion was to apply iterative schemes to nonlinear systems of equations.
Rheinboldt’s generalization is also studied by Moré [4].

We start by introducing the classes of Z-functions and M-functions.

2. Definitions and preliminary results

In this study we consider off-diagonally antitone functions, first in-
troduced by Rheinboldt [7]. For our purposes, a mapping f(x) from
R? into R” with components f;(x),i =1, ..., n, is off-diagonally antitone
if forall xin R} andi # j, i, j = 1, ..., n the scalar functions F;; : R! > R!
defined by

F () =fi(x +1 el)
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are nonincreasing. ¢ is the jth unit vecter in R”. f(x) is said to be
(strictly) diagonally isotone if for all x in RY the scalar functions

F,(t)=f(x+ré), i=1,..,n

are (increasing) nondecreasing.
We define the classes of Z- and M-functions corresponding to Z- and
M-matrices.

Definition 2.1. Let f be a mapping from R into R".
(a) f is said to be a Z-function if it is off-diagonally antitone on R”.
(b) fis an M-function if it is a Z-function as well as inverse isotone on
R} (i.e., for any x and y in R?, f(x) < f(») implies that x < y).

Rheinboldt has studied M-functions and their application to non-
linear network flows. In this work we explore the Z- and M-functions
in the context of complementarity theory and develop an algorithm to
solve complementarity problems associated with these classes of func-
tions.

In the algorithm which is later derived, we use the following nonlinear
generalization of a principal submatrix due to Rheinboldt [7].

Definition 2.2. Let f be a mapping from R to R” and consider a permu-
tation (m(1), ..., m(n)) of (1, ..., n). Given an integer number p,
1 < p < n, and real numbers ¢, ,,, ..., ¢,, we define the principal sub-
function of dimension p, mapping R? to R?;

14 n
g;(xX s s X )=fm(l)<2 x].em(f) + 2 cjem(f)>, i=1,..,p.(3)
P j=1 j=p+1
For example, if (m(1), ..., m(n)) = (1, ...,n), thenforany 1 < p<n
we get the leading principal function of dimension p

gl.(xl, e xp) =fl.(x1, ey Xy Cpgs vens cn), i=1,..p.

Note that unlike the linear case, the dependence of a principal function
on the constant terms, Cp+1s -5 Cns cannot in general be represented as a
separable term. Thus every principal function depends parametrically on
the set of constants associated with it. A result concerning this depend-
ence is given in [8].

For convenience of presentation, the following notation is used to
denote principal functions. If (m(1), ..., m(n)) is a permutation of (1,
..., n) and Cpt1s - G ATE given constants, then the corresponding prin-
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cipal function will be denoted by f;(x;, c¢;), where I = {m(1), ..., m(p)}
and J = {m(p + 1), ..., m(n)}. In most cases, Cpa] =T 6 = 0, and we
shall say that the corresponding principal function f;(x;, 0) is defined by

the set of indices /.
The following result is an obvious consequence of the definition of a

Z-function.

Lemma 2.3. Any principal function of a Z-function is in itself a Z-func-
tion.

The next lemma shows that principal functions preserve also the in-
verse isotonicity property.

Lemma 2.4. Any principal function of an M-function is an M-function.

This lemma was first proved by Moré and Rheinboldt [6], and inde-
pendently by Tamir [8], who used a different approach.

It is interesting to note that in fact the inverse isotonicity of principal
functions of dimension 1,2 and » induce the same property on principal
functions of any dimension p, p = 1, ..., 1.

Lemma 2.5. Let f be a continuous function from R7 to R". If fis strict-
ly diagonally isotone and every principal function of dimension 2 is in-
verse isotone, then [ is a Z-function.

Proof. Assume on the contrary that there exists indices i < j, a vector x
in R?, and scalars s and ¢ such that

fl.(xl, s X 8 Xy ...,xn) > fl.(xl, s X qs t > TIPS xn),

s= 1.
Clearly s > t. Using the strictly diagonal isotonicity property we have

f].(xl, s X108 Xy ...,xn)>f].(x1,v e Xi g, t, Xippo s X))

The continuity assumption assures that the two strict inequalities are
maintained if the ith coordinate of (x5 - Xj_ 1 b Xjyqs oo x,) X, is in-
creased somewhat to get y; > x;. Using the inverse isotonicity property

of the principal function defined by {i, j}, and the set of constants
(X s eees X 15 Xjyqs oes X;_1r Xjpqs oo X,

we get the contradiction (x;, s) = (y;, ).
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Note that Lemma 2.5 extends [2, Proposition 1], that deals with M-
matrices.
As a consequence of the lemma we have the following.

Theorem 2.6. Let f be a continuous strictly diagonally isotone function
from R to R" If fis inverse isotone, and every principal function of di-
mension 2 is inverse isotone, then principal functions of any dimension
are inverse isotone and [ is an M-function.

The next lemma, dealing with principal functions of surjective (onto)
M-functions, is proved by Rheinboldt in [7]. It should be observed,
however, that this result is applicable only to functions which are .de-
fined and satisfy the M-property on the entire space R". The proof is
based on the application of iterative solution procedures.

Lemma 2.7. Let f : R" - R" be continuous, surjective, off-diagonal-
ly antitone and inverse isotone on R". Then every principal function of
f is continuous, surjective, off-diagonally antitone and inverse isotone
on the corresponding subspace.

Notice that continuity is not assumed in Lemmas 2.3 and 2.4.

Before turning to complementarity aspects related to the Z-functions
and M-functions, we present two well-known iterative processes used for
the solution of systems of equations.

Consider the following n-dimensional system of equations in the va-

riables xy, ..., x,,

10y, s x,))=ay,

: : 4)

f, (xl, ey xn) =a,.

The (underrelaxed) Gauss—Seidel iteration for the solution of (4)is
defined as follows

Solve fi(x’f”, ey xffll, X, xf."ﬂ, ...,xﬁ) =a, for x;.
(5)
Set xl’.”1 = (l—wk)xf.c tw.x;, i=1,..,n k=0,12,...
The corresponding (underrelaxed) Jacobi iteration is:
p
Solvefl.(x’f, ...,xf.‘_l, X xf.‘ﬂ, ...,x’;) =a, for x;.
(6)

Set xF*l=(l-wy) x¥+w,x, i=1,..,n k=0,12,...
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In both processes, {w;} is a given sequence of relaxation factors, where
esw,<1,k=0,1,2, ... forsomee > 0.

Rheinboldt [7], provides sufficient conditions for the applicability
of Gauss—Seidel and Jacobi processes to systems of equations defined
by strictly diagonally isotone and continuous Z-functions. The strict
diagonal isotonicity property is necessary to guarantee the uniqueness
of the iterates {x¥} and {y*¥} defined by the Gauss—Seidel and Jacobi
schemes. To obtain a result which applies to Z-functions as well, we de-
fine modified versions of these two iterative procedures.

Given the system of equations f;(x, ..., x,) =q;, i =1, ...,n, and x0in -
R”, the forward (unrelaxed) Jacobi iterates {x*} are given by

Find xl?" = minimum Xx;,

subject to x; = xl’.‘,

k k k kN —
fl.(xl,...,xi_l, X;) xiﬂ,...,xn)—al.. (7)
Set XKL = i=1,..,n, k=0,1,2, ...

i i’
For a given »° in R”, the backward (unrelaxed) Jacobi iterates {y*}
are defined by

Find y¥ = maximum y,,
subject to y,; < yl(‘,
k k kK L ky =
FiOs o Vi_p Yo Viep = V) =4 (&)

Set yl’.‘+1 =y* i=1,..,mn, k=0,1,2, ...

The analogous definitions of the modified Gauss—Seidel iteration as well
as those corresponding to the underrelaxed cases are clear, and we omit
their formulation. It should be noted that all subsequent results, proved
for the modified (unrelaxed) Jacobi process, are valid for the Gauss—
Seidel iteration as well as for underrelaxed cases.

The modified process allows us to omit the strictly diagonal isoton-
icity property, required by Rheinboldt [7], and to establish the fol-
lowing theorem, which is applicable to continuous off-diagonally anti-
tone functions.

Theorem 2.8. Let f: R} > R" be a continuous, off-diagonally antitone
function. Suppose that for some z in R" there exist vectors x0 and y9 in
R? such that x0 < y0 and f(x9) < z < f(9). Then the corresponding
(unrelaxed) Jacobi iterates {y*} and {xk} , given by (7) and (8) and
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starting from y9 and x0, respectively, are uniquely defined and satisfy

x0 < xk <Xk Iy b < )0,

fxR)<z<f0%), k=0,1,2,.
as well as

lim x*f = x* < y* =1lim y*¥,

k— oo k— oo

f&x*)=fp*) =z

The proof of this theorem is achieved by introducing slight modifica-
tions into the proof given by Rheinboldt to the case where the Z-func-
tion is also strictly diagonally isotone. Therefore we omit the proof.

We also point out that the result of Theorem 2.8 holds for the modi-
fied underrelaxed Jacobi process as well as for the corresponding modi-
fication of the Gauss—Seidel procedure.

Theorem 2.8 is the key result used to prove the validity of the fol-
lowing algorithm, which is applicable to complementarity problems
corresponding to Z-functions.

3. The complementarity algorithm and the main results

Assume that f: R? > R” is a continuous Z-function and that q is any
vector in R”.

Algorithm

Step 0. Let (1) ={i: q; +f,(0) < O} in the initial form.

Step 1. 1f I(1) is empty, stop; x = 0 is a complementary solution.
Otherwise, set W(1)(1) = (0 and go to step 2.

Step 2. Consider the principal function f;(x;, 0), defined by the cur-
rent set of indices / = /(¢) and the set of constants {c; = 0: i ¢ /}. Let the
corresponding system of equations be

l(]) <E X, e’(’)> = =4,y i=1,..k, (9)
where / =1(¢) ={i(1), ..., i(k)}, i) <iG+ 1),/ =1,..., k-1.

Apply the forward Jacobi process, (7), starting at w}) to the system
(9) defined by f;(xy, 0). If the system of equations (9) has no solution,
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stop; the complementarity problem has no solution. Otherwise, let x,o
be the (positive) solution and go to step 3.

Step 3. LetI, (1) ={i: i€1(t),f;(x?,0) +q; < O}. If I,(¢) is empty, stop;
x = Ek_ xO ’(75 is a complementary solution. Otherwise, define

It+1) =I(t) v I, (1) ={i(1), ..., i(k), ..., i(m)}.
Define wj,, ) by

w](.)—*—x](.) ifl<j<k; wld=0 ifk<j<m.
Set ¢+ 1~ ¢ and go to step 2.

The next lemma leads to the proof of the validity of the algorithm for
continuous Z-functions.

Lemma 3.1. Let y be any feasible solution to the complementarity pro-
blem defined by the continuous Zfzmctzon fand a vector q (i.e., f(y) +
q=0,y>0),and t be the cycle index. Ifxl ) denotes the solution gen-
erated by the modified Jacobi process in step 2 at the tth cycle, then

x](.) >0, j=1, ..k, Z x e,
where I(t) ={i(1), ...; i(k)}.

Proof. Supposing that the algorithm terminates in r cycles and setting
[,0)=1(1),1(0) =0, I,(r) —(2) and I(r+1) = I(r), we define wl(,ﬂ) xm)
Note that for 1 < 1< r, Wl(t) is defined in step 3 of the algorithm. Fol-
lowing this definition, the proof of the theorem will be complete if it is
shown that forevery ¢, 1 < ¢t<r+1, W?(t) satisfies

O <

0 . 0 — .
wi > 0; fl.(])(wl(t),O)+ql.(j) =0, 1I<j<k, (10)

0 =n. 0 7 .
w; 0; fl.(j)(w](t),0)+ql.(j)< 0, k<j<k,
where

1) =1¢-1) v I -1)={i(l), .., i(k)} U {itk+D), ..., i(k)}.

From step 1 of the algorithm it is clear that (10) holds for # =1. Sup-
pose that (10) holds for some ¢ > 1, with /(¢) as above.
Let

I+ 1) =1(0) v I, () ={i(1), ..., i(k)} U {i(k+]), ..., i(m)}
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be the set of indices generated in step 3. We note that the principal func-
tion fy) (-, 0) and the k-vectors x = w?(t), Y =Yiey 2=~ satisfy the
assumptions of Theorem 2.8. The inequalities X < y and f (¥, 0) < —qy
are implied by the induction hypothesis, while f10@,0) = —qp follows
from the feasibility of y and the off-diagonal antitonicity

Jip®,0)= fj(t)()/) Z —q1y
Thus we can apply Theorem 2. 8 yleldmg a solutlon xI(t that satisfies
f[(l‘)('xl(l‘): O) —di@) and 0 < W[(t) < x[(l‘) < yI(t) WI(Z‘+1) is defined by

w](.)=x](.) ifl<j<k; w](.)=0 ifk<j<m

Therefore, Yiiy = wd 1 <j<m, andf,(wmﬂ), 0) +ql =0 forie ().
Furthermore, from the definition of /, (¢#) we have f; (Wl(t+1), 0)+¢q;,<0
for i € I;(¢). To show that the jth component, 1 <j < k, of Wi, is
pos1t1ve we prove that x > 0, 1 <j< k. The induction hypothesis and
X0 = Wiy vield the p031t1v1ty of x{ for 1 <j < k. Assume that x9 =0
and k <j< k, then

- 0 0
0=finCry O+ gy < Jiny Wiy O + 4y
follows from the off-diagonal antitonicity and x?(t) > W?(,). But the non-

negativity of the right-hand side contradicts the induction hypothesis
for kK <j< k. Thus the theorem follows.

The validity of the algorithm is a straightforward consequence of
Lemma 3.1.

Theorem 3.2. Let f : R - R" be a continuous Z-function, and let q be
an arbitrary vectorin R". Then the algorithm when applied to the corres-
ponding complementarity problem finds a complementary solution or
indicates that no feasible solution exists in at most n cycles. Infeasibility
of (1) is indicated either by an unbounded sequence of iterates {xk} or
by infeasibility of (7) for some iteration k, k =1, 2, ..., and component
indexi,i=1, .., n.

Proof. Assume first that the complementarity problem is feasible and
let y be a nonnegative vector which satisfies f(y) + ¢ = 0. Lemma 3.1
assures that the systems of equations defined in step 2 have positive so-
lutions which are obtained by applying the modified Jacobi scheme (7).
The set of indices, corresponding to positive components of an arbitrary
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complementary solution, is increased every time step 3 is visited; hence
the process terminates in at most # cycles.

Lemma 3.1 implies also that a failure of the modified Jacobi process
to converge to a positive solution indicates that the complementarity
problem is not feasible. Specifically, the sequence {x¥} generated by the
forward Jacobi process is monotone increasing. Therefore, a failure to
converge implies that for some iteration &, £ =1, 2, ..., and component
index i, i = 1, ..., n (7) is infeasible, or that {xk}, k =1, 2, ..., is un-
bounded. Moreover, such a failure must occur in at most n cycles, pro-
vided the complementarity problem is not feasible.

We note that indeed each of the two indications of failure to converge
may occur. The scalar linear function f(x) = —x with ¢ = —1 and start-
ing point x0 = 0 is an example of the first possibility, while the linear
function f(x,, x5) = (x;—x,, —x;+x,) with g = (—1, —1) and starting
point x0 =0 demonstrates the second.

Another important and immediate consequence of Lemma 3.1 is the
following minimality property satisfied by the complementary solution
produced by the algorithm.

Corollary 3.3. Let f: R? » R" be a continuous Z-function and let g € R".
Denote the feasible set defined by fand q by

X; ={x: f(x)+q=> 0, x> 0}.

If X; is not empty and x is the complementary solution produced by
the algorithm, then x < y for all y in X:“I.

As demonstrated by the next two results, a certain surjectivity pro-
perty guarantees the existence of complementary solutions to (1)—(2)
forall g in R", while inverse isotonicity assures the existence of at most
one complementary solution.

Theorem 3.4. Let f be a continuous Z-function. (1)—(2) has a solution
forany q in R" if and only if {x: x = f(0)} C f(R}).

Proof. Sufficiency: From Corollary (3.3) it is sufficient to show that for
any q in R” there exists x in R7 such that f(x) + ¢ = 0. In fact it is suffi-
cient to consider vectors g satisfying ¢ < —f(0) only. But if ¢ < —f(0),
then the surjectivity property yields the existence of x = 0 such that
fix)+4g=0. . ,
Necessity: Consider v in R” such that u > f(0). Then there exists y in
R” such that f(y) — u = 0 and y(f(y)—u) = 0. We prove that f(y) = u.
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Suppose first that y; > 0, then y(f(3)—u) = 0 implies f;(y) = ;. If y; =0,
we use the off-diagonal antitonicity property to obtain O > f;(0) — u;
> f;(y) —u; = 0; hence f;(y) = u;.

We note that a sufficient condition (which is not necessary), for the
existence of a complementary solution to (1)—(2) for all g in R”, is pre-
sented by Moré€ [5]. He assumes that the continuous Z-function is order
coercive, i.e., for each unbounded increasing sequence {x*} in RY

lim fl.(xk) =+ o0 for some index i.

k— oo

Theorem 3.4 shows that order coercivity of continuous Z-functions
implies {x: x > f(0)} C f(R}). To see that this condition is not necessary
(i.e., that {x: x = f(0)} C f(R}) is indeed weaker than order coercivity
for continuous Z-functions), we consider the scalar function f(x) =
x sin x. This function satisfies R} C f(R}), since f((2n + 1) 7) > =, but
it is not order coercive (f(2n 7) = 0 for all n).

Corollary 3.5. If f is a continuous M-function, then for any q in R”
(1)—(2) has at most one complementary solution.

Proof. Let y € R” be a solution to (1)—(2) corresponding to a vector g
in R", and define / = {i: y; > 0}. Following Corollary 3.3, let x be the
minimal element in X;. Then x; = 0, i ¢ I. Considering the principal
function defined by the set of indices / and zero constants, we obtain

CI[ +f](.y]9 0)= O<~f](x19 O)+q1's

where the equality sign follows from the complementarity condition
yI(f(y) + q) = 0. Inverse isotonicity of the principal function yields
y < Xx; hence x = y.

Several comments are in order. First, note that when fis an M-func-
tion, the surjectivity property {x: x = f(0)} C f(R?) (which reduces to
R} c f(RY) if f(0) = 0) is equivalerit to order coercivity. This is esta-
blished by combining Theorem 3.4 and Corollary 3.5 of this study with
[5, Theorem 4.8]. When the off-diagonal antitonicity property is re-
laxed, order coercivity does not necessarily imply the surjectivity con-
dition. As an example, consider the function f : RE -~ R? defined by
f(xl, Xy) =(xy+x,, x1+x2).

Finally, as pointed out by a referee, a result stronger than Corollary
3.5iscontained (implicitly)in [4 and 6]. [6, Theorem 4.4 and 4, Theorem
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2.31 imply that Corollary 3.5 is true even when continuity is not as-
sumed.

We mention several simplifications of the algorithm when applied to
continuous M-functions. Note first that the forward and backward
Gauss—Seidel and Jacobi schemes coincide with the original processes
since f is strictly diagonally isotone. As any principal function of an M-
function is injective (one-to-one), the system of equations defined in
step 2 has at most one solution in R}. Hence any valid procedure, rather
than the Gauss—Seidel and Jacobi iterative procedures, can be utilized
to obtain the unique solution in R”, provided one exists. When the Z-
function is linear, a finite procedure is applied to solve the linear equa-
tions (see [11]).

Suppose that f is continuous, off-diagonally antitone and inverse iso-
tone on R” (rather than R7”). We observe that if f is surjective, then the
equations system defined by (9) has a unique positive solution. This is
implied by the surjectivity of the principal functions of f (Lemma 2.7).

While studying polyhedral sets having a least element, Cottle -and
Veinott [2] proved the following theorem characterizing M-matrices in
terms of complementary minimum solutions.

Theorem 3.6. If A is an nXn matrix, the following are equivalent:

(1) A is an M-matrix.

(2) For each q in R" the polyhedral set X+ ={x:Ax+qg> > 0}
has a least element xy (i.e., x5 € X, and xq < < x for all x € X7) and Xq IS
the only vector ofX+ satisfying xT Ax+qg)=0.

Corollary 3.3 provides a nonlinear generalization of the implication
(1) = (2) when A4 x is replaced by any continuous M-function and (2) is
replaced by (2') to assure the nonemptiness of X -

(2") For each g € R” such that the feasible set X+ ={x:f(x)tqg>=
x = 0} is nonempty, there exists a least element in X+ which is the only
vector ofX+ satisfying xT(f(x) + ¢) = 0.

Corollary 3.3 can be used to establish a characterization of Z-matrices
in the spirit of Theorem 3.6.

Theorem 3.7. If A is an nXn matrix, the following are equivalent

(1) A isa Z-matrix.

(2) Foreach q in R" for which the polyhedral set X+ ={x:Ax+q=0,
x = 0} is not empty, there exists a least vector X in X+ satisfying
xTAx+qg)=
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Proof. The implication (1) = (2) follows from Corollary 3.3. To prove
the converse statement we show that the off-diagonal elements of A are
nonpositive. Assume, on the contrary, that for some i # j the (i, j) entry,
a;;, is positive and consider the vector g defined to be the negative of the
jth column of 4, i.e., g = —(ay}, ..., a,;). The vector e/, the jth unit vector,
belongs to X; In fact it belongs to X+ for any vector p = ¢q.Consider
the vector p = ¢ + ¢ and let x-be the least element of X+ Thus
0 < x < ¢, which yields x; =0 for any k£ # j. This, in turn, 1mpl1es that

X; =1, since (4 x); — a;; > 0. x is a complementary solution and thus
requires

x((Ax) —a; +1) x(x]a]] a].].+1)=0

which contradicts x; = 1.

We note that the implication (2) = (1), proved in Theorem 3.7 for
Z-matrices, does not necessarily hold for nonlinear continuous Z-func-
tions. This is illustrated by the following.

Example 3.8. Let f : R2 » R? be defined as

f10ep x5) = =X, [0 x,) =8(x)) — x5,
where
—X, forO<x; <1,
gx)= {—-2+x for 1 <x; <2,
0 otherwise.
The setX+ ={x:f(x)+qg> > 0} is nonempty if and only if g > 0.

Forg> 0,x =0is the least element in X+ and it satisfies xT(f(x) + ¢) = 0.
To see that fis not off-diagonally antltone notice that £, (1,0) < 1, (2,0).

It is of interest to observe that the algorithm when applied to linear
functions, reduces to the algorithm suggested by Chandrasekaran [1].
It should be noted, however, that the modified Jacobi process used in
step 2 is replaced there by a linear system of equations which has a
unique nonnegative solution or none at all. In fact, the matrix associated
with this linear system is a (surjective) M-matrix provided a nonnegative
solution exists. Hence, it follows that the Jacobi iteration will converge
to the unique nonnegative solution of the relevant system provided one
exists.

Corollary 3.3 implies that Chandrasekaran’s algorithm finds the least
solution to the linear complementarity problem defined by a Z-matrix.
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4. Applications of Z-functions

We conclude this paper by discussing a potential application of Z-
functions in extending well-known linear Leontief input—outputsystems.
We describe the simple Leontief Interindustry Model as follows. Consider
n industries, each with one type of output (type i for industry i) during
a given time period for production. Let 298 1 < i, j < n be the number of
units of type i required per unit of typej (a;; > O)andlet b, i=1,..,n,
be the number of units of type i required exogenously (e.g. a demand
vector). A negative b; is interpreted as availability of b; units. If x; de-
notes the number of units of type i to be produced, then the feasible
production set is given by the polyhedral set

n

i = i Xp

x. =0, x;zbtZlia;x, i=1,..,n (11)
i=1
Setting A = (al-]-), b =(b,, .., b, and x = (x, ...,kn), (11) becomes
in matrix form

({—A)x=0b, x = 0.

The ith row of (/—A) x characterizes the net output of type i produced
by the »n industries, when Xj, | = 1, ..., n units of type j are produced.

Motivated by the linear model, we consider an interindustry system
that produc’és n items. Suppose that f;(x,, ..., x,),i =1, ..., n, is the net
output of typei, i =1, ..., n, produced by the system when the gross
production is given by x = (x,, ..., x,,). For a given demand vector the
feasible production set is given by the solutions to

x= 0, fl.(x)> b; i=1,..,n. (12)

Assume as in the linear case, that the mapping f : R} - R" defined
by the components f;(x),i =1, ..., n is off-diagonally antitone, continu-
ous and maps the zero vector into itself. (The latter assumption is simply
the fact that the net production is zero whenever there is no gross pro-
duction.) We note that the off-diagonal antitonicity property and f(0) = 0
assure that if there is a positive demand of item i, b;, then the system
has to produce a positive gross production, x;, of item i.

Given a demand vector b we can then apply the algorithm to yield a
feasible production if one exists. Furthermore, the solution provided by
the algorithm satisfies interesting minimality and complementarity pro-
perties (Corollary 3.3). If we denote by x0 the solution obtained by the
algorithm, then x0 < x for any feasible production x satisfying (12).
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We also observe that the least solution minimizes any isotone objec-
tive function g : R? - R, (i.e., x < p implies g(x) < g(¥)), defined on
the set of feasible productions.

It is our belief that the proposed nonlinear generalization of Leon-
tief input—output model will be more applicable to real life situations
where linearity assumptions have been found to be invalid. The author
is currently engaged in a study which extends the above model to situa-
tions where several industries may produce the same type of product
and thus face some competitive problems.

A different application of M-functions has been presented by Rhein-
boldt [7] who discussed the connection between nonlinear network
flows and the class of M-functions.
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