POLYNOMIAL FORMULATIONS OF MIN-CUT PROBLEMS

Arie Tamir

Department of Statistics and Operations Research
School of Mathematical Sciences
Sackler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv 69978, Israel

October 1994

Abstract

We discuss formulations of several minimum cut problems on directed and undi-

rected graphs, where the number of variables and constraints is polynomial.



Consider a directed graph G = (V, A), where V = {v1,...,v,} is a finite set of nodes
and A is a finite set of arcs. Let m = |A|. For every arc (v;,v;), we assume v; #* v;,
and call v; its tail and v; its head. We will also say that the arc is directed from v; to v;.
(Assume that G has no parallel directed arcs, i.e. there is no pair of arcs with identical tails
and identical heads.) Every arc (v;,v;) € A is associated with a nonnegative number, ¢; ;,
called the capacity of the arc. A cutis a partition of V into two nonempty sets (S,V —S5).
The capacity of the cut, C(5), is defined by

C(S) = Yoless 5€S, meV -5 ad (on) €A}

Assume that two distinct nodes s and t are given, s being called the source and t the sink.
An s —t cutis a cut (S,V — §) such that s € S and ¢t € V — 5. The minimum s —t cut
problem is to find an s — ¢t cut with minimum capacity. More generally, given is a set D of

p ordered pairs of nodes (terminals) in V,

D ={vg,viplla=1,...,p, } ,

(i{q) # jilq), ¢ = 1,...,p). A (nonsimultaneous) D-cut is a cut (S,V — §), such that
vi(g) € S and vy € V — § for some ¢, ¢ = 1,...,p. The minimum D-cut problem is to
find a D-cut with minimum capacity. A D-cut of minimum capacity is called a minimum

D-cut.

In this note we discuss polynomial formulations of the above minimum cut problems

as linear systems.

Minimum s —t Cuts.

Two classical linear formulations of the minimum s — ¢ cut problem are known (Ford
and Fulkerson 1962). In the first formulation there is a variable u; for each node v; € V

and a variable y; ; for each arc (v;,v;) € A. (To simplify the notation suppose that s = v,

and t = v,. Also let A’ = {(i,7) : (vi,v;) € 4}.)
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Minimize Y ci;¥i;
(i) ea’
s.b. ws—wuj+yi; >0, V(,7)e 4,

Up — U] = 1

y=>0.

In the above formulation all the extreme points are binary vectors.

The second formulation involves only the arc variables {y; ;}. However, the number
of constraints can be exponential in |V|. Define a [v1,v,]-path as a sequence a1,as,...,aq,
of arcs in A such that v; is the tail of ay, the tail of a;y; is identical to the head of a;,
i=1,...,4—1, and v, is the head of a,. (Each path P is also viewed as a subset of A.
Let P' = {(2,7) : (vs,v;) € P}.)

Minimize E € 5Yi,;
(1,5)€A’

s.t. z vi; > 1, Y[vi,vn] —path P, (2)
(4,7) P

y=>0.

It is known (Ford and Fulkerson 1962), that all the extreme points in formulation (2)
are binary vectors. This integrality property is preserved even when we restrict all the

variables to be bounded by 1.

There is also another formulation of the s —¢ cut problem which has only a polynomial

number of constraints and uses only the arc variables. This formulation follows directly

from (2).
Suppose, without loss of generality, that A contains all possible directed arcs. Consider
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the following linear program:

Minimize 5 c; 5Yi

(2,7)€ Al
st. e >1, (3a)
Yij T Yk > Yik, Vi,7,k=1,...,n, (3b) (3)
1#7, 1#kandj#£k,
y2>0.

Theorem 1. The linear program (3) has a binary optimal solution, y*. Moreover, y* is

an optimal solution to the minimum vy — v, cut problem.

Proof: We start by proving that if y is a feasible solution to problem (3) then it is also
feasible for problem (2). Consider a directed path P in G, connecting the source v; with
the sink v,. Let ¥ j(1),¥;(1),5(2)s - - - » Yj(k),n De the sequence of variables corresponding to
the sequence of arcs in P. To prove that the sum of these variables is greater than or
equal to 1, we may assume that P is a simple path, i.e. j(£) # 1,n,for £=1,...,k, and
J(p) # j(q) for all p,g=1,...,k, p # q. To prove that y is feasible for problem (2) we use
the metric constraints (3b) repeatedly, then (3a) to see that

Y1,500) TYi(0),50) T T Yike = Y > 1.

Thus, we conclude that problem (3) is a restriction of problem (2). Let y' be an
optimal binary solution of problem (2). To prove the theorem we will now show that there
is a binary vector y*, y* < y', and y* satisfies the constraints (3a)-(3b). With each arc
(vi,v;) associate the length y; ;. Next, define y; ; to be the length of a shortest path from
v; to vj;. It is clear that y* is a binary vector satisfying y* < y'. Moreover by construction

*

y* satisfies the metric inequalities (3b) as well as the constraint (3a). This completes the

proof. o

We could not find an explicit exposition of formulation (3) in the literature. The case
of an undirected graph is implicit in the “Japanese Theorem” on multicommodity flows,
(see Lomonosov (1985)), which is attributed to Iri (1970/71) and Onaga and Kakusho
(1971).



The homogeneous constraints (3b) are called the metric constraints, and they define
the metric cone. The reader is referred to Grishukhin (1992) and Laurent and Poljak
(1992) for recent results on the extreme rays of this cone in the case of an undirected
graph.

If n > 5 the above feasible set contains noninteger extreme points. However, these
noninteger extreme points are not optimal for the minimum s — ¢ cut problem when the
objective vector is positive. Barahona and Mahjoub (1986) and Barahona (1993) have
used the metric inequalities to characterize the cut polytope of an undirected graph which
is not contractible to K5, the complete graph on 5 nodes.

It follows from Theorem 1 that the linear program (3) has a binary optimal solution

which also satisfies the constraints

Yij +Yik T Yik <2, (3¢)
Yij t Yk Uk <1, Vi k=1,...,n, i#3, i1#3j and j#k. (3d)

(Note that the constraints (3b)-(3c) imply that all variables are bounded above by 1.)
The dual of problem (3) suggests an interesting polynomial formulation for the classical

maximum s — ¢ flow problem.

Maximize F

n

s.t. Z (Tigb + Thij — Tik,j) < €ijs (1,7) € 4, (2,5) # (1,n),

zijr >0, Vi, k=1,...,n, 1#7j, i#k, j#k,
F >0.

To interpret the above formulation, let z;;; be the value of the flow circulation
through the ordered triplet (triangle), (z,7,k), i.e., the induced flow through the arcs
(vi,v5), (vj,vk) is @45k, while the flow through the arc (v;,v;) is —; ;5. The variable F
indicates a separate flow through the arc (v1,v,). Thus, the above constraints require that

the total flow on each arc does not exceed its capacity.
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Theorem 2. Suppose that all arc capacities are integer. Then there is an optimal integer
solution to (3*), =, F, which satisfies 21 n % = g1, = 0, k = 2,...,n— 1, and F =

n—1
Ztiz mlrtyn + Clyn'

Proof: From Theorem 1 we know that the optimal objective value of problem (3*) is
equal to the minimum value of a v; —v, cut. Using the dual of formulation (2), the latter is
also the maximum number of [v;,v,| - paths that can be packed, without violating the arc
capacities. Thus, it is sufficient to show how to convert a simple [v1,v,] - path into a feasible
solution to (3*), which satisfies the above properties. Without loss of generality consider a
simple [v1,v,] - path which has at least one intermediate node. Let vi,vy1),..., i), Un,
be the sequence of nodes on the path. Define a solution to problem (3*) by its nonzero
components. Set
Fr=1, 10,2 = 21,i(2),i(3) = T1,i(3),i(4) =
T1i(6-1),i(8) = T14(¢),n = L

It is easy to verify that this solution is indeed an integer feasible solution which satisfies
the above properties.This completes the proof. o

The polynomial formulation (3) can be extended to any minimum multicommodity
cut problem which can be formulated as a covering problem of a set of paths by the arcs
(edges) of the graph. As an example consider the two-commodity flow/cut problem on an
undirected graph G = (V, E), (Hu 1963). Given are two pairs of terminals (s1,¢1) and
(s2,t3). A (simultaneous) two-commodity cut is a set of edges separating each one of the
two pairs. Given a nonnegative capacity function on the edges of E, the problem is to find
a two-commodity cut of minimum total capacity. Following Hu (1963), (see also Schrijver

1983, Section 7), the problem can be formulated as:

Minimize Y cgij3¥gi g}
{t.j}eF’

s.t. Z Y53 = 1y V(sp,tp] —path P, p=1,2, (4)
{ij}ep

y=0.
For each edge {v;,v;} in E, cf; ;3 and yy; ;3 denote the capacity and the variable of the

edge, respectively. Assuming that G is a complete undirected graph with V' = {vy,...,v,},
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E={{vi,v;}:4,5=1,...,n,i#j}and E' = {{{,5} 4,7 =1,...,m, i 5}, let 51 = v,
59 = vy, t1 = Uy, ty = v, 1. Using the arguments as in the proof of Theorem 1 we conclude

that problem (4) is equivalent to problem (5).

Minimize Y cgi Y0}
{i}EB!

s.t. y{lm} 2 1 5 (5)
Y{2,n—1} = L.
y{i;j}+y{j7k} zy{i,k}a Vivj7k:17-'->n> Z#]’ i#ka ]%k
The reader is referred to Schrijver (1983, Section 7) for a survey of additional models

that can be formulated as path covering problems.

Minimum D-Cuts.
In this section we show that the polynomial formulations (1) and (3) of the minimum
s — t cut problem can be extended to the minimum D- cut problem.

Consider the following linear program.

Minimize E E ci jys J

=1 (i,j)eA’
s.t. ugqugﬂthyi,]‘ —0> q213---7p7 and (2’.7) EAI’
p
q q —
> (g —#y) =1
g=1
yz,JZO qzla---apa and (%J)EA,

The dual of (6) is the following (nonsimultaneous) p-commodity flow problem.

Maximize F

F if 1=1(q)
s.t. z 2, — z zf, =0 if i+1i(q),7(q)
{ili,5)e A"} {il5,) €A’} (7)
~F if i=j(q)
,]Scz,]y qzla-"apa and (i,j)EA,,
:1::-17]»20, g=1,...,p, and (4,5) € 4"



(To interpret (7) as a p-commodity flow problem, for each ¢ = 1,...,p, and (¢,7) € 4,
let iE;ij denote the flow of commodity g in arc (v;,v;). The node v;(4) is the source of

commodity g and vj(, is its sink.)

We prove that problem (6) is a valid formulation of the minimum D-cut problem.

Theorem 3. Suppose that the minimum D-cut is achieved by a cut (S,V — §), where

vi(ry € S and vy € V =S, for somer, r = 1,...,p. Then, an optimal solution to problem

(6) is defined by setting

u; =0, forv; €85, wu; =1, forv; ¢V -5,
vw!'=0,9g=1,...,p, qg#7r, andi=1,...,n, and (8)

y;?,]. — maX{O,u‘; —uf}, g=1,...,pand (i,7) € A".

Proof: The vector defined above is certainly feasible for problem (6). By definition the
objective value associated with it is the optimal objective value of the minimum v;(,) —v;(r)
cut problem. Let F, denote the latter value. For each ¢ = 1,...,p, the value of the
minimum v;,) — vj(g) cut is at least Fi.. Therefore, by the Max flow-Min cut Theorem
for a single commodity, there is a feasible solution to problem (7) with F' = F,.. Thus,
using the duality of problems (6) and (7), we conclude that the vector defined by (8) is an

optimal solution to problem (6). O

The following result is also worth mentioning.
Theorem 4. The coeflicient matrix of problem (6) is totally unimodular.

For the sake of brevity we skip the proof of Theorem 4, and note that it can be derived,
for example, by the characterization in Ghouila-Houri (1962).

Next we show how to extend formulation (3) to the minimum D-cut problem.

We assume without loss of generality that the arc set A contains all possible directed

arcs. Consider the following linear program.



P
. ® @ L. q
Minimize E E CijY;

g=1 (i,7)eA’
st oyl vyl >yl Vi k=1,m,
1#7, 17k, j#k and g=1,...,p, (9)
P
q
> ¥ 2 b
g=1
y > 0.

We will prove that (9) is a linear programming formulation of the minimum D-cut
problem. We start by reformulating the maximum flow problem (7) as a maximum problem
of packing {vi(q),v]—(q)] - paths, g =1,...,p.

For each ¢ = 1,...,p, let {P/}, l € L9, be the set of all simple {vg(q),v;?(q)} - paths.
Associate a variable ] with the path P. Consider the following packing problem.

Maximize F

s.t. Z z] <cij, g=1,...,p, and (3,7) € 4',
{l|lEL‘1,('u,-,'uj)€qu}
Zm?ZF) q=1,...,p,
leLe
¢l >0, g=1,...,p, and [€ L% and

(10)

F > 0.

The dual of the packing problem (10) is given by,

P
‘ . . . L. q
Minimize E E Ci Y5

g=1 (i,j)€A’
s.t. Z yg,]- > 2%, Vopath P},leL?,
{(iaj)l(”i)”j)eplq}

(11)

yg’jZO, g=1,...,p, and (z,7)€ 4,



Problems (10) and (11) correspond to problems (7) and (6) respectively. In particular,
if the optimal solution to the minimum D-cut problem is attained by some cut (S5, V —.5),
where v,y € 5§ and vy, € V — 5, for some r, 7 = 1,...,p, then an optimal solution to

problem (11) is obtained by setting

0 otherwise,

zq:{l ifg=r, (12)

’ :{1 ifg=rvi€S v;eV -5 and (i,j) € A,

td 0 otherwise.

(We say that (12) is the solution defined by the cut.) Therefore, the following result holds.
Theorem 5. Every minimum D-cut defines an optimal solution to problem (11).

We are now ready to prove that the polynomial formulation (9) is indeed a valid

formulation for the minimum D-cut problem.

Theorem 6. There exist a binary optimal solution y to the linear program (9), and

r € {1,...,p}, such that
yf,j =0, Yq=1,...,p, ¢#r, and (3,7) € 4', and

the set of arcs (v;,v;) satisfying y;; = 1, defines a vy(;) — v;(,) cut of minimum capacity.

This cut is 2 minimum D-cut.

Proof: We apply the same idea used in the proof of Theorem 1. Let y be an arbitrary

feasible solution to problem (9). For each q, g = 1,...,p, define 27 = yg(q) Using the

d(g)°
metric constraints in (9) repeatedly, we can show (as in the proof of Theorem 1), that the
pair y, z constitutes a feasible solution to problem (11). Thus, we conclude that problem
(9) is a restriction of problem (11). Next, consider an optimal solution to problem (11),
which is defined by a D-cut of minimum capacity (as in (12)). Suppose that the latter is
also a vy(,) — vj(r) cut of minimum capacity for some r, » = 1,...,p. Using Theorem 1 we
may conclude without loss of generality that the y vector representing this cut is feasible

for problem (9) as well. Since problem (9) is a restriction of problem (11), the proof is now

complete. o



Concluding Remarks.

We considered above several linear systems which formulate the mimimum D-cut
problem on directed graphs. In all the formulations each arc of the graph is represented
by |D! real variables. At optimality all these |D| variables, but one, are zero, and the
non-zero variable is equal to 1. We note two instances where the number of arc variables
can be reduced. The first case is that of an s-cut defined by some distinguished node, say
s,and D = {[s,t]lt € V, t # s}.

An exponential formulation of this problem follows from the work of Edmonds
(1970,1973). A spanning arborescence in G rooted at s (an s-arborescence) is a span-
ning tree of the underlying undirected graph of G, having the properties:

(i) each node of G other than s has just one arc of the arborescence directed toward it,
(ii) no arc of the arborescence is directed toward s.

To simplify the notation suppose, as above, that s = v;. If R is an s-arborescence ,

we also view R as a subset of 4, and let R = {(7,7) : (vi,v;) € R}.

Counsider the following linear program.

Minimize E i jYij
(i,7)eA’!

s.t. Z ¥i,j > 1, Vwv; —arborescence R , (13)
(i) ER’
y=>0.

It follows from Edmonds (1970,1973) that problem (13) has an integer optimal solu-
tion vector, which is a minimum v;-directed cut. Moreover, when the arc capacities {c; ;}
are integer, the dual of (13) also has an integer optimal solution. Note that the dual corre-
sponds to the following packing problem of v;-arborescences: Assign each vi-arborescence
a weight in such a way that the sum of all the weights of v;-arborescences that contain the
arc (v;,v;) does not exceed ¢; ;. The maximum packing of vj-arborescences is a packing
in which the sum of the weights assigned to vj-arborescences is as large as possible.

The second case is that of finding the minimum unrestricted cut of an undirected
graph. (The unrestricted cut problem is defined by D = {[vi,v;]l5,7 = 1,...,n, t # j}.)

When the graph is undirected, the unrestricted cut problem can be converted into an s-
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directed cut problem by replacing each undirected edge by two oppositely directed arcs,
and assigning each one of them the capacity of the original edge. The terminal node s can
be selected arbitrarily. Thus, we obtain a linear system for the minimum unrestricted cut
on an undirected graph, where each edge of the graph is represented by two variables.
The reader is referred to Ahuja, Magnanti and Orlin (1993) for a survey of the most
efficient algorithms for finding a minimum s — ¢ cut. Generally, a minimum D-cut of a
graph can be found by solving O(min(n, |[DJ)) s —t cut problems. However, direct al-
gorithms for solving the minimum unrestricted cut problem have recently been proposed.
Mansour and Schieber (1989) considered the case of unit arc capacities, and gave an O(nm)
algorithm for this case. (The same bound for undirected graphs was proposed in Karzanov
and Timofeev (1986) and in Matula (1987).) Gabow (1991) used a matroid approach and
designed an algorithm for this case with an improved bound of O((m?/n)log(n?/m)). Hao
and Orlin (1992), and Nagamochi and Ibaraki (1992) considered graphs with general ca-
pacities and presented O(nmlog(n®/m)) and O(nm+n? logn) algorithms for the directed
and undirected cases, respectively. Finally, Karger and Stein (1993) gave an O(n? log® n)

randomized algorithm for undirected graphs with general capacities.
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