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The p-median problem with mutual communication is defined as follows: Let G = (V, E) be an undirected graph with positive edge
lengths. Suppose that each node represents an existing facility. The objective is to locate p new facilities (medians) while
minimizing the sum of weighted distances between all pairs of new facilities and pairs of new and existing facilities. We present new
complexity results for this model and for some of its variants.

facility location; p-median; tree networks

1. Introduction

The p-median problem with mutual communication is defined as follows:

Let G = (V, E) be an undirected graph with a node set V= {v,,...,v,} and an edge set E. Suppose
that each edge in E has a positive weight (length). For each pair of nodes v; and v, let d(v;, v;) denote
the length of a shortest path connecting v; and v,. Given nonnegative reals a;;, i=1,...,n; j=1,...,p,
and b;,, j=1,...,p; k=1,..., p, locate p points, medians, x,,..., X ,, at the nodes of V' to minimize the
expression

Z a;d(v;, x;) +% Z bied(x;, x;). (1)
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(We assume that b;, = beippi=1,...,p; k=1,... , p.) To justify the term ‘median’ consider the case
when G is a simple path and there is no mutual communication, i.e., b, = 0, for all pairs j, k. In this
case the nodes are viewed as points on the real line, and (1) decomposes into p 1-median problems. The
optimal solution is to let x;, J=1,...,p, be the weighted median of the points v,...,v,, using the
weights a,;,...,a,;, respectively.

Problem (1) has been discussed in several papers dealing with location models [1-4,6,8,11,13,14]. A
generalization of it, known as the Module Allocation problem, arises in the allocation of tasks to
processors in a distributed system to minimize total communication and execution costs [7].

When the graph G is a single edge, i.e., n = 2, (1) reduces to the classical minimum cut problem on a
complete graph with p + 2 nodes. The two nodes of G, v, and v, correspond to the source and the sink
respectively and the remaining p nodes represent the points x,..., x,. The real numbers a;;, i =1, 2;
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j=1,...,p,and by, j=1,...,p; k=1,...,p, are the respective edge capacities. Thus, when n =2 and
p is variable (1) is solvable in O(p?) time [12]. It is shown in [11] that (1) is strongly NP-hard when both n
and p are variable. (It is certainly solvable in polynomial time when p is fixed.) We will use the results in
[5] to prove that (1) is strongly NP-hard even when n =3 and p is variable. [2—-4,7] have discussed some
polynomially solvable cases of (1), based on the graph induced by the support of the {6, } numbers.

Extending the case n = 2, [1,13,14] have shown that if G is a simple path, (1) decomposes into n — 1
minimum cut problems, one for each edge of the path. This observation has led to an O(np?) time
algorithm to solve (1). Exploiting the relationships between these n — 1 cut problems, [8] have applied a
parametric approach to the minimum cut problems and solved (1) in O(p> + p? log n + pn) time. The
same complexity bound is also reported in [9]. [11,13] have shown that the decomposition into n — 1
minimum cut problems applies also to the case where G is a tree, hence yielding an O(np?) bound for (1)
on tree graphs. However, the parametric approach of [8,9] does not seem to be extendible to the tree
case.

In this paper we apply a centroid decomposition to the given tree, and improve the O(np?) complexity
bound to O(p> log n + pn + n log n). We will then focus on the case when the points x,,..., X,, are
restricted to a prespecified proper subset of nodes S. We will refer to this model as the restricted case. In
the unrestricted case S = V. Unlike the polynomial time results stated above we demonstrate that the
restricted variant of (1) becomes strongly NP-hard even when the tree has 4 nodes. However, when G is
a path we will show that even the restricted model can be solved in polynomial time. We note that this is
one of the few examples of location problems that we know of where the problem on a path is solvable in
polynomial time while the tree case is strongly NP-hard.

2. NP-completeness results

It is shown in [5] that the following 3 Multiway Cut problem is NP-hard: Given a graph G=(V, E), a
set of 3 specified nodes x, y and z in V find a minimum cardinality subset of edges E’, such that the
removal of E’ from E disconnects each of the above three nodes from the other two. (See Theorem 3 in
[51)

We show that the p-median problem with mutual communication, defined on a triangle (a complete
graph with three nodes) is a generalization of the 3 Multiway Cut problem.

Consider the 3 Multiway Cut problem. Suppose that G has p + 3 nodes and V' = {v,, v,, v3, x;,..., X p}.
The 3 specified nodes are v,, v, and v;. Every 3 multiway cut corresponds to a solution to the p-median
problem with mutual communication on a triangle defined by the following sets of reals a,;=1 if and
only if nodes v; and x; are connected by an edge in G, and a;; = 0 otherwise. Similarly, b;, =1 if and
only if nodes x; and x, are connected by an edge in G, and b;; = 0 otherwise.

The 3 nodes of the triangle, v{, v; and v; correspond respectively to the specified nodes of G, v,, v,
and v,. The length of each edge of the triangle is taken to be 1. It is now a simple matter to verify that
each solution to the p-median problem with mutual communication on the triangle corresponds to a 3
multiway cut in the above p + 3 node graph G. An optimal solution to the p-median problem with
mutual communication is an optimal solution to the 3 Multiway Cut problem.

The above reduction of the Multiway Cut problem can also be used to show that the p-median model,
which is polynomially solvable on trees, is NP-hard even on a tree with 4 nodes if we restrict the sites of
Xy,-.., X, to a proper subset of nodes. For the reduction use a star tree with 3 leaves (tips) and restrict
Xy,..., X%, to these leaves. Assuming that the 3 edges of this star are of equal length, we note that the star
is equivalent to the above triangle. Nevertheless, in Section 4 we show that unlike the tree case the
restricted model on a path is polynomially solvable. We note in passing that using the above reduction it
follows from [5] that the restricted model on a k leaf star tree with equal edge lengths has a polynomial
time 2 — 2 /k approximation algorithm. For example, there is a polynomial time algorithm which yields a 3
approximation to the star tree with 3 leaves.
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3. Solving the unrestricted tree case

In this section we discuss the case where G is a tree and the points x,,...,x, can be located
anywhere in V, and improve the O(np?®) bound in [11,13]. To facilitate the discussion we introduce the
following notation. Let (v;, v;) be an edge. By removing this edge the node set V' is partitioned into two
subsets, say, V(i, j) and V(j, i), where v; is in V(i, j) and v; is in V{(j, i). Following [13] define the
[i, j]-local problem by

Minimize Y a,d(v,x,)+ Y a,,d(v;, x,,) +3 Y Bimd(Xis X)),

UleV(i,j) U,EV(j,i) k7m= ’’’’’ p
m=1,...,p m=1,..., D
(2)
where xi,...,x, are in {v;, v;}. Problem (2) is the reduction of the original problem obtained by

identifying all the nodes in V(i, j) with the single node v;, and the nodes in V(j, i) with the single node
Uj-

As noted above the [i, j]-local problem is equivalent to the classical minimum cut problem. The
following result is proven in [13].

Theorem 3.1. Let G be a tree. Suppose that x,,..., x,, is an optimal solution to the [i, jl-local problem (2).
Then there exists an optimal solution to problem (1) xf, ..., x ), such that fork =1,..., p, x} is in V(i, j)
if X, =v;, and x} is in V(j, i) if x, = v;.

Since the solution to the [, j]-local problem is independent of the length of the edge (v;, v;) it follows,
as shown in [13], that the solution to problem (1) on a tree is independent of the edge lengths. It depends
only on the topology of the tree. Furthermore, since the objective value varies continuously with the edge
lengths, it follows that the optimality of a solution is not affected when we contract edges. We use this
latter property to justify our centroid decomposition approach.

In the preprocessing we compute for each k=1,..., p, and edge (v, uj) in E the quantities
Ali,j: kl= Y a, and A[j,i:k]= Y a,.
v, €V, 0, € V(i)

To compute the above we root the tree at some node, say v,, and then use a standard ‘bottom-up’
approach. With this approach we first compute A[i, j: k] for the edges (v;, v;) where v; is a leaf of the
rooted tree, and then recursively proceed towards the root of the tree. The total preprocessing time is
easily observed to be O(np).

We start by finding a centroid of the given tree, i.e., a node whose removal splits the tree into
connected components none of which contains more than n/2 nodes. A centroid can be found in O(n)
time [10]. If v; is a centroid then V can be split into two subsets U and W such that their intersection is v;
and |U|, |W|< 2n+ ;. Consider the tree obtained by connecting the subtree induced by U with the
subtree induced by W by a new edge. This step is called splitting the node v, according to U and W.
Arbitrarily label one copy of v; as v; and the second v;*. To define problem (1) for the new tree we
assign zero a coefficients to the node v*.

From the above it follows that solving problem (1) on the new tree and contracting the edge
connecting the subtrees induced by U and W, will yield the optimal solution to the original tree. We first
solve the local problem corresponding to the augmented edge in O(p?) time using any of the classical
algorithms for the minimum cut problem [12]. Using Theorem 3.1 we are then left with two problems
defined on the subtrees induced by U and W. Having computed the terms Ali, j: k] for i, j=1,...,n,
and gc =1,..., p, it is easy to see that the marginal effort needed to define these two subproblems is only
O(p?).

Thus the recursive equation for the effort ¢(n, p) to solve problem (1) is

t(n, p) <c(p*>+n)+t(ny, py) +t(n,, py)
where n, +n,=n+1,n,<3n+ 3,i=1,2, and p, +p,=p (c is some constant independent of p and

n.)
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The solution to the above is #(n, p) = O((p>+ n) log n). Adding the preprocessing time we get
O((p?®+n) log n + np) as the complexity bound for solving the (unrestricted) p-median problem with
mutual communication on a tree graph.

4. Locating in a proper subset of nodes

From the results in Section 2 it follows that if we allow the new points to be established only at a
proper subset of the nodes of the tree, then the problem becomes strongly NP-hard. However, the case
of a path is still solvable in polynomial time. We will show that in this case the solution depends on the
edge distances, but still constitutes a parametric minimum cut problem satisfying the conditions in [8].

We assume that the nodes in V are points on the real line with v, < --- <wv,. Let § denote the subset of
V where the new medians may be set up. For each k, k=1,..., p, let
Fu(x )= X aylv,—xl.
i=1,...,n

Since x, is restricted to the nodes in S we define and consider the function f,(x,), the restriction of
F,(x,) to S. For each x, in S let f,(x,)=F,(x,). If x, is not in S, f,(x,) is defined as the respective
linear interpolation of the values at the two adjacent points in S which bound x,. The function f,(x,) is
convex, piecewise linear, coincides with F,(x,) on S, and has its breakpoints at S only. Thus the
objective function of the restricted model is to minimize

Y filx)+z X bulx—x, (3)

k=1,...,p 5k=1,...,p

where x, isin S for k=1,..., p.

The above is a convex minimization problem in the variables x,. If we remove the requirement that
x, must be in §, and view x,,..., x, as real variables, then there is still an optimal solution such that
Xy,..., X, are all in §. In particular, Problem (3) can be solved in polynomial time. Furthermore, we show
that (3) can be solved by applying the parametric approach, which is used in [8] to solve the unrestricted
case.

Without loss of generality suppose that we relabel the nodes in § and assume that S ={v;, v,,...,0,,}
with v; <v,,;. S is also viewed as the node set of a path. Consider the edge (v;, v;, ;) connecting v; and
v;, ;- Define the [i, i + 1] local problem corresponding to (3) by

Minimize Y fillx)+3 X bulx;—x|
k=l,...,p j,k=l,~.-,p (4)

Subject to  xy,...,x, € {v;, V;44).

The next theorem follows from the same arguments used in [13] to prove Theorem 3.1 above.
Therefore we skip its proof.

Theorem 4.1. Suppose that x,,..., x,, is an optimal solution to the [i, i + 1] local problem (4). Then there
exists an optimal solution to (3), x{,...,x), such that fork=1,...,p, x} isin VG, i+ 1) if x, = v, and
xFisinVi+1,0)ifx,=v; .

We note that the [i, i + 1] local problem can be formulated as a minimum cut problem on the
following auxiliary graph G’ with p + 2 nodes. The source node is v; and the sink is v, ;. Then, for
k=1,...,p, there is a node corresponding to the point x,. In this auxiliary graph connect the pair of
nodes corresponding to x; and x, with an edge of capacity b | v; — v, |. Connect a node correspond-
ing to x; by an edge to the source node, v,, with capacity fi(v; +1), and by an edge to the sink node, v, ,,
with capacity f;(v,).

We can further subtract the capacity f;(v;) from both edges to obtain zero capacity for the edge
connecting the node corresponding to x, with the sink. Next divide all edge capacities by | v; —v; .
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Thus, the only edges in G’ whose capacities depend on the distance | v; —v;,,| are the edges that are
incident to the source. Using the convexity of the f; functions we now observe that the [i, i + 1] local
problem and the [i + 1, i + 2] local problem differ only in the capacities of the edges connecting the
source to the nodes corresponding to the x, variables. The capacity at the [i, i + 1] local problem is not
larger than the respective capacity at the [i + 1, i + 2] local problem. In particular, the monotonicity
property in [8] is indeed satisfied, and we can apply the procedure in [8] to solve parametrically the
sequence of the m —1 [i, i+ 1] local problems (4), i=1,...,m — 1. The total complexity will be
O(p® +p? log m + np).

1t is easily seen from the above that when S is a proper subset of V/, the solution does depend on the
distances {|v; —v;,;|}. Using the above framework for the unrestricted case § =V, we compute and
note that

[fj(UiH)_fj(Ui)]/IUiH“Uil= Z a,;— Z a;.
t=1,...,i t=i+1,...,m
In particular, the edge capacities of the [i, i + 1] local problem are independent of the distance
between v; and v, ;. This is already shown in [13].
In our p-median model the functions f; are explicitly defined above. However, we note that the
minimum cut approach applies to any set of functions that are piecewise linear and convex with
breakpoints at the nodes in S.

5. Extensions and concluding remarks

The results in [13] for the unrestricted case on a tree can be further extended.
Let T=(V, E) be a given tree. Consider the following extension of the unrestricted p-median

problem with mutual communication. Locate p points, x,,..., x,, at V' to minimize the expression
1
Z Gi(x;) +3 Z by d(x;, x;), (5)
j=1,...,p J,k=1,...,p
where G;, j=1,..., p, is a piecewise linear and convex function on T, with breakpoints at V. (Convexity

on T is defined as convexity on each path of T [6].)

The results in [13] hold for this extension but the solution depends on the edge lengths. In view of the
NP-completeness result of Section 2 it is essential that medians can be established anywhere in V. Note
that if a certain node is not a potential site the value of the G functions will be infinite, hence the
convexity is destroyed. In the case of a path this problem is resolved by eliminating that node. This
elimination cannot be done on a node with degree greater than 2.

A natural extension of the location model on the line discussed in Section 4 is to allow setting up a
median at each node of the path, but associate a setup cost which might depend on both the node and
the median. (See [3,7] for a definition of a general model with setup costs.) The restricted model of
Section 4 is a special case where the setup costs are 0 for each node in S and infinity otherwise. The
complexity of the extended model is an interesting and important open problem.
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