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Abstract

Given are a finite set of points P and a compact polygonal set § in R2. The problem is to locate two new facilities in
S, maximizing the minimum of ail weighted distances between the points in P and the two new facilities, and the distance
between the pair of new facilities. We present subquadratic algorithms.
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1. Introduction

The location of undesirable or obnoxious facilities
has been a very important research area for more than
twenty years. Location problems of this nature have
been studied in a variety of metric spaces. Due to
their potential applications the most popular models
deal with planar and networks settings. (The reader is
referred to [12,30,38,18,17,37,24,33,29,5,26] and the
references cited therein, for further motivation and an
extended list of applications.)

In this note we focus on the problem of locating
two obnoxious facilities (new facilities) in the plane,
where the objective is to maximize the minimum of
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all weighted distances between the customers (existing
facilities) and the two new facilities, and the weighted
distance between the pair of new facilities. The pair of
obnoxious facilities is required to be located in some
prespecified compact, polygonal domain.

We formulate the k-obnoxious facility model. Sup-
pose that the input consists of a compact polygonal
domain § in R?, a set of demand points (existing
facilities) P = {p1,..., ps} in R2, and two sets of
nonnegative scalar weights: {wy, ..., w,} and {a; ; :
i, j=1,...,k}. Following [37,24,1], the problem is to
find &k points (new obnoxious facilities), {x1, ..., xg}
in S, optimizing

The maximin weighted k-obnoxious facility location
problem

max L
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s.t.
dixj, pyzwL, i=1,...
d(xg, xp) Ba.s,tlu

xjeS, j=1,...,k

To simplify the notation we assume that S has m =
O(n) vertices and edges. When w; =1, fori=1, ..., n,
and g; j=1,fori, j=1,..., k, we will call the model
unweighted. Here we study only the 2-facility case,
where d(—, —) is either the rectilinear, L1, or the Eu-
clidean, L, distance function. (For the 2-facility prob-
lem, i.e., k =2, we assume without loss of generality
that ayp = 1.)

1.1. Previous and related results

Gianikkos and Appa [24,1] discuss the rectilinear
version of the above weighted 2-obnoxious facility lo-
cation problem, and present an algorithm based on bi-
nary search for its solution. For a prescribed value of
L, they provide a geometric algorithm to test whether
this value is feasible for the above problem. The com-
plexity of this test is not explicitly stated, but it is cer-
tainly super quadratic in the number of points #. To
find the maximum value of L, they use a binary search
over a continuous range, known to contain the optimal
value. This binary search does not produce L*, the ex-
act optimal solution value of L. (It only approximates
the optimal value within any desirable accuracy level.)

We briefly survey some results in the literature, deal-
ing with related maximin planar location problems.
First, we refer the reader to [14,15,39,6,33,35,19,5]
for algorithmic results on the simpler single facility
model.

We are aware of only very few studies on planar
multifacility maximin models. (See [11,30,17,37] for
multifacility maximin problems on networks.)

Tamir {37] proved that when k, the number of
obnoxious facilities, is part of the input, then the
above maximin k-obnoxious facility location model
is strongly NP-hard even in the one-dimensional case
where S is the unit interval and w; =0fori=1,...,n.

Katz et al. [26], improving upon earlier results in
[9], consider the following decision model: given the
set P ={p1,..., pn} of n demand points (existing
facilities), a rectangular planar region S, and a pair

of reals L and L', verify whether it is possible to
locate k obnoxious facilities {xp, ..., x;} in S, such
that the minimum weighted distance between the de-
mand points and the obnoxious facilities is at least
L, and the distance between any pair of distinct ob-
noxious facilities is at least L’. (With the above no-
tation their problem amounts to testing the feasibility
of the multifacility problem, when a; j =a, for i, j =
1,...,k, for some constant a. In particular, L' =aL.)
For the rectilinear case they provide an O(n log n) al-
gorithm when k = 2,3, and an O(n*=2 log n) algo-
rithm for the case k> 4. They also consider the opti-
mization version, where L' is viewed as a fixed param-
eter, and the objective is to maximize the value of L
such that the above decision problem is feasible. They
present O(n log2 n) and O(n*—2 log2 n) algorithms for
the cases £ =2, 3 and k >4, respectively. (In the op-
timization version they consider only the unweighted
case, but the weighted case can also be solved with
the same complexity using the machinery developed
in [32,13].) They also solve the decision problem cor-
responding to the Euclidean unweighted case when
k =21in O(n log n) time.

For the symmetric optimization problem, where L
is viewed as a fixed parameter, and the objective is to
maximize the value of L’ such that the above decision
problem is feasible, one can use the algorithms in [37],
which are applicable to any norm and any value of &,
to obtain %-approximation in polynomial time.

Ben-Moshe et al. [3] consider the following variant
of the above model. The rectangular set S is replaced
by {S1, ..., Sm}, a set of m = O(n) translated copies
of some axis-parallel rectangle. In their model, L' =0,
w; =1, for i =1,...,n, and the goal is to locate
{x1,..., xx}, such that Sy N {x1, ..., xx} is nonempty
fort =1,...,m, and the minimum distance between
the demand points and the obnoxious facilities is at
least L. They provide an O(n log n) algorithm to re-
solve this variant of the decision problem when k =2,
for both, the rectilinear and the Euclidean distance
functions.

The above multifacility models generalize classi-
cal packing problems, where the objective is to pack
squares or discs into some prespecified compact pla-
nar set. These classical problems are known to be
NP-complete, (see [20]). Note that unlike the classi-
cal packing models, where each neighborhood (e.g.,
square or disc) is required to be contained in the
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feasible set S, in the above obnoxious facility loca-
tion problem only the centers of the neighborhoods,
{x1, ..., xt}, must belong to S. Several studies have
specifically addressed the problem of packing two Eu-
clidean discs in a polygon. Bespamyatnikh [4] presents
an O(n log? n) algorithm for packing two largest non-
itersecting discs in a simple polygon S, (i.e., a polygon
without holes). The algorithm is deterministic, and it
is based on parametric search. Bose et al. [7] obtained
a linear time algorithm for the case where the poly-
gon is convex. Finally, Bose et al. [8] provide a simple
O(n log n) randomized algorithm to solve this prob-
lem when S is a polygon, possibly with holes, We call
this problem of packing two largest nonintersecting
discs, the 2-disc packing problem.

The 2-disc packing problems can be viewed as an
unweighted case of our obnoxious facility location
problem, where the set of demand points (existing fa-
cilities) is the continuum planar set consisting of all
the boundary points of the set S. We focus on the more
complicated weighted problem, where the given finite
set of demand points P is not necessarily restricted to
be in the set S. The methods used by Bespamyatnikh
[4] and Bose et al. [8] rely heavily on the fact that the
model is unweighted, and therefore are not applicable
to our weighted problem. Specifically, the algorithms
in [4,8] are based on finding the medial axis M (S) of
a polygon § which is the locus of all centers of discs
that are contained in S and touch the boundary of S in
two or more points. M (S) is a portion of a Voronoi di-
agram, and it has a linear complexity. One can extend
this concept to a weighted model, but the linear com-
plexity of the respective weighted Voronoi diagram is
not guaranteed anymore.

1.2. Our results

In this paper, we present O(rn log3 ) and O(n log* n)
deterministic algorithms to solve the weighted 2-
obnoxious facility location problem in the case where
S is a convex compact polygon, for the rectilinear and
Euclidean versions, respectively. The algorithm for
the rectilinear norm is then extended to the case of a
general compact polygonal domain, without increas-
ing the complexity bound. The algorithms are based
on the general parametric approach of Megiddo [31].
In Sections 2 and 3, we discuss the rectilinear and the
Euclidean models, respectively, for the case where §

is a convex compact polygon. In Section 4, we extend
our algorithmic results for the rectilinear problem
to the case when S is a general compact polygonal
domain. The complexity remains O(z log* n).

We emphasize the main differences between our
results and those in [8]. As explained above, the
O(n log n) expected-time algorithm in [8] applies
only to the unweighted case, where the feasible set is
a polygon, possibly with holes. (They consider only
the Euclidean model, but their approach seems to be
extendable to the unweighted rectilinear case.) Our
O(n log? n) algorithm for the weighted rectilinear case
is deterministic, and it is applicable to more general
regions. On the other hand, the randomized algo-
rithm in [8] is quite simple, while our deterministic
algorithm, which is based on the general parametric
approach, is not that easy to implement.

1.3. Formal definitions and model presentation

For any planar set Y, we use &(Y) and CH(Y) to
denote the boundary and the convex hull of ¥, respec-
tively.

Considering the above weighted 2-obnoxious facil-
ity location problem, to facilitate the discussion, we
say that a positive scalar L is feasible if there exist
x1 and x3 such that the triplet (x1, x;, L) satisfies the
constraints of the above problem. The optimal solu-
tion value L* is the largest feasible solution.

For any L >0 define

O(Ly=1{x e R* :d(x, p)2wiL, i=1,...,n)
and
S(LYy=SNQ(L).

Then, a given positive L is feasible if and only if S(L)
contains two points xj, xg with d(x1,x) = L. L* is
then the largest value of L for which the diameter of
S(L) is at least L.

2. A parametric algorithm for the rectilinear case
when S is convex

Since we deal with a planar problem, for conve-
nience we replace the rectilinear norm L1 by the equiv-
alent maximum norm L.
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For the rectilinear case, we show how to solve the
problem in (serial), subquadratic, O(n log® n) time, us-
ing the parametric approach of [31]. Specifically, we
present an O(log n) time parallel algorithm with O(n)
processors, to test the feasibility of a given positive L.

In the rectilinear case, Q(L) is the complement of
the union of n open squares with edges parallel to the
axes. (We have replaced the rectilinear norm by the
equivalent maximum norm.) The boundary of Q(L),
0(Q (L)), consists of O(n) edges and isolated points
(see [34,27]).

0(Q(L)) can be constructed in O(n log n) serial
time, and also in O(log n) parallel time, using O(n)
processors [25].

By definition, a given positive L is feasible if
and only if there exist x{,xp € S(L) such that
d{(x1, x2) = L. To verify feasibility we check whether
the Lo, diameter of S(L) is at least L.

Due to the convexity of the distance function, the
diameter of any compact planar set is attained at the
extreme points of its convex hull. In particular, if S(L)
is a singleton its diameter is equal to zero. Otherwise
the diameter of S(L) is attained at two distinct extreme
points of CH(S(L)), the convex hull of S(L). The
boundary of S(L) is clearly piecewise linear with a fi-
nite number of corner points (“‘break points”). Hence,
the extreme points of C H (S(L)) are also corner points
of 6(S(L)), the boundary of S(L). Every corner point
of (S(L)) is either an extreme point of S, or an ex-
treme point of one of the O(n) edges of §(Q(L)),
or an intersection point of an edge of 6(Q(L)) with
the boundary of S. (An isolated point of 5(Q(L)) is
viewed as a degenerate edge.) In particular, 5(S(L))
has O(n) corner points.

‘We now show how to identify all these corner points
in parallel in O(log n) time, using O(n) processors.

First, since S is fixed and independent of L, we
assume that its extreme points are circularly presorted.
Therefore, using binary search, for each open square,
{x € R? : d(x, p;) <w;L}, it takes O(log n) time
to find the (at most four) circular sublists of extreme
points of § which are in the open square. (By a circular
sublist we refer to the list of extreme points on each
one of the at most four connected piecewise linear
arcs that we obtain on the boundary of S.) Hence, in
O(log n) time with O(n) processors, we can identify
all the extreme points of S which are in S(L). Since S'is
convex each edge of 6(Q (L)) intersects the boundary

of § in at most two points. Thus, in O(log n) time
we can find the (at most) two corner points of S(L)
contributed by a given edge of 5(Q(L)).

To summarize, all the O(n) corner points of (S(L))
can be found in parallel in O(log n) time, using O(n)
processors. The serial time is clearly O(n log n).

Let V(L) denote the set of vertices, corner points,
of 6(S(L)). Then, the diameter of S(L) is the largest
dimension of the smallest closed rectangle with edges
parallel to the axes, which contains V(L). Hence, it
will suffice to compute the largest and smallest hori-
zontal and vertical coordinates of the O(n) points of
V(L). The latter task can be achieved in O(log log n)
time in parallel, using only O(n) processors [40]. The
serial time is clearly O(n).

Summarizing, we have given above an algorithm
to test the feasibilty of a prescribed L in parallel, in
O(log n) time, using O(n) processors. The serial time
is O(n log n). We now have all the necessary ingredi-
ents, and we can directly use the parametric approach
in [31] to find L*, the solution value to the rectilin-
ear weighted 2-obnoxious facility location problem, in
O(n log? n) (serial) time. This algorithm will also gen-
erate (x}, x3), an optimal location for the two obnox-
ious facilities. Alternatively, we can identify (x}, x5
by applying the above O(n log n) feasibility test rou-
tine to L*,

Theorem 2.1. Let S be a planar compact and convex
polygon with m = O(n) extreme points. Then, there
is an O(n log® n) deterministic algorithm to solve the
rectilinear 2-obnoxious facility problem in S.

2.1. A binary search algorithm for rational data

Suppose that the input data (including the descrip-
tion of the facets of ), is rational, where each rational
scalar is a ratio of two integers bounded above by an
integer upper bound M. Then, in the rectilinear case
L* is rational with integer numerator and denomina-
tor bounded above by O(M'°). (The O(M ') bound
follows from the fact that the above problem is for-
mulated in terms of five scalar variables: the four co-
ordinates of x1, x2 and L. The optimal values of these
five variables are defined by solving a subsystem of
five linear equations with rational input data.) Hence,
we can use the search over rationals approach [41] to
find L* in O(n log n log M) time.
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Theorem 2.2. Let S be a planar compact and convex
polygon with m = O(n) extreme points. Suppose that
the input data (including the description of the facets
of S), is rational, where each rational scalar is a ra-
tio of two integers bounded above by an integer upper
bound M. Then, there is an O(n log n log M) deter-
ministic algorithm to solve the rectilinear 2-obnoxious
facility problem in §.

3. A parametric algorithm for the Euclidean case
when S is convex

TFor the Euclidean case, we show how to solve the
problem in serial subquadratic, O(n log? n) time, using
the parametric approach of Megiddo [31]. Specifically,
we present an O(log? n) time parallel algorithm with
O(n) processors, to test the feasibility of a prescribed
positive L.

In the Euclidean case, Q(L) is the complement of
the union of n open discs. We next show that S(L)
can also be viewed as the complement of the union of
O(n) discs. The convex polygon S is assumed to have
m = O(n) facets. Each one of them can be viewed
as a circle with infinite radius (centered “outside” §).
Hence S is the complement of the union of m open
discs. Moreover, S(L) is the complement of the union
of n + m = O(n) open discs. From [27], we conclude
that 8(S(L)), the boundary of S(L), consists of O(n)
circular arcs and isolated points, which we view as
degenerate arcs. Following {20], we note that §(S(L))
can be constructed in parallel, in O(log?n) time us-
ing O(n) processors. Also, the serial time to construct
S(S(L)) is only O(n log n).

Consider C;(L), an arbitrary connected compo-
nent of 3(S(L)). We observe that C;(L) consists
of “concave” circular arcs and has a finite num-
ber of corner points (“break points”). Moreover, the
two-dimensional cell of S(L) bounded by C;(L) is
contained in the convex hull of the corner points of
C;(L). Therefore, using the convexity of the distance
function we conclude that when S(L) is not a single-
ton, its diameter is attained at a pair of corner points
of 6(S(L)). We now use this observation to complete
the description of the parallel algorithm to test the
feasibility of L.

Suppose that (S(L)) has been constructed by the
above procedure. In particular, we now have V (L), the

set of all vertices, corner points, of §(S(L)). Clearly
V(L) = O(n).

We next use the algorithm in [23] to find the convex
hull of V(L) in parallel in O(log n) time using O(n)
processors. When this convex hull is specified in terms
of its circular list of extreme points, for each extreme
point it takes O(log n) time to identify the (extreme)
point of the hull which is furthest away. In particular,
it takes O(log n) time to compute in paralle] the Eu-
clidean diameter of S(L), using only O(n) processors
[2]. The serial time is O(n log n).

Summarizing, we have given above an algorithm to
test the feasibilty of a prescribed value of L in par-
allel, in O(Iog2 n) time, using O(n) processors. The
serial time is O(n log n). We can now directly use
the approach in [31] to find L*, the solution value to
the optimization problem for the Euclidean case, in
O(nlog* n) (serial) time. This algorithm will also gen-
erate (x, x3), an optimal location for the two obnox-
ious facilities. Alternatively, we can identify (x], x3)
by applying the above O(n log n) feasibility test rou-
tine to L*.

Theorem 3.1. Let S be a planar compact and convex
polygon with m = O(n) extreme points. Then, there
is an O(nlog* n) deterministic algorithm to solve the
Euclidean 2-obnoxious facility problem in S.

4. Relaxing the convexity assumption on S in the
rectilinear case

The above algorithms rely heavily on the fact that
S is a compact convex polygon in the plane. Never-
theless, we can modify the algorithms for the rectilin-
ear case, to handle general planar compact polygonal
sets.

We use the following notions from [16,28]. A
polygon is an open, connected and simply connected
subset of the plane whose boundary can be partitioned
into finitely many points (vertices) and open intervals
(edges). A finite planar subdivision is a partition of
the plane into polygonal regions, induced by a finite
collection of finite intervals whose pairwise inter-
sections are restricted to segment endpoints. Such
a subdivision is indistinguishable from a straight-
line embedding of a planar graph. Let G be such
a graph (finite subdivision), with m vertices, O(m)



102 A. Tamir / Operations Research Letters 34 (2006) 97-105

edges (one-dimensional cells) and O(m) faces or re-
gions (open two-dimensional cells). Only one of the
two-dimensional cells is unbounded.

Given the subdivison G, and a finite subset « of its
bounded regions we next define the planar compact
polygonal set Sy as follows: S, consists of the vertices
of G, the points on the union of all edges of G and the
union of the regions in «. (Note that for each «, the
boundary of the compact polygon set S, consists of
all the vertices and edges of G.) The set of open two-
dimensional cells that are not in o, and the isolated
vertices of G, are viewed as the “holes” of Sy. A poly-
gon with no holes is called simple. (Note that a simple
polygon is usually defined by a simple nonintersect-
ing closed and piecewise linear curve, i.e., the planar
graph is a simple cycle. Our definition is slightly more
general.)

We now consider the rectilinear version of the 2-
obnoxious facility location problem, and show how
to solve it for the case where the convex polygon is
replaced by some general compact polygonal set S,
defined by some finite subdivision G and a subset of
its regions «. We assume that the number of vertices
(corner points) of G is m = O(n).

Extending the notation in Section 2, we set S(L) =
SN Q(L). From the above arguments we still conclude
that the diameter of S(L) is attained at the extreme
points of CH(S(L)). Moreover, each extreme point
of CH(S(L)) is either a corner point (vertex) of G,
which is also in Q(L), or an extreme point of the
convex hull of the intersection of an edge of (Q (L))
with S. Note that unlike the convex case, an edge of
O(Q (L)) can intersect the boundary of S at more than
two points. (In fact, an edge can intersect the boundary
at Q(n) points, even when S is a simple polygon.)
Nevertheless, for our purposes it is sufficient to find
only the at most two extreme points of the convex hull
of the intersection of the edge with S. We note that
for each edge the at most two extreme points can be
found in O(log n) time by using data structures for
point location and ray shooting, (see [36]).

Our algorithm is based on the parametric approach
used in Section 2 with the following exception. Before
we apply the approach based on the parallel algorithm,
we first show how to identify all the vertices of G
contained in Q(L*) without explicitly knowing L*. To
apply this step, we will need a serial algorithm to test
the feasibility of a prescribed value of L.

4.1. A serial O(n log n) time feasibility test

First we compute 6(Q (L)), the boundary of Q(L),
in O(n log n) time as in Section 2.

Secondly, when 5(Q (L)) is given, the set of vertices
of S contained in Q(L) can be found in O(n log n)
time by a sweep-line procedure as described in [29].

As noted above the relevant sets of pairs of points
contributed by all edges of 6(Q (L)) can be generated
in O(n log n) time by using data structures for point
location and ray shooting, (see [36]).

Thus, it takes O(n log n) time to generate a set
V(L) c S(L), with |[V(L)| = O(n), which contains
all the extreme points of CH (S(L)).

Finally, the rectilinear diameter of the set V(L) can
be generated in O(n) time, as described in Section 2.

To conclude, it takes O(n log n) serial time to test
the feasibility of a prescribed value of L.

4.2. Finding the set of vertices of G contained in

Q(L")

We denote the vertices of G by {vy, ..., vy}. Since
Q (L) is the complement of the union of n open squares
with edges parallel to the axes, we conclude that there
existapoint p; € P and a vertex v; of G, such that the
set of vertices of G contained in Q(L*) is the same as
the set of vertices of G contained in Q(L; ;), where
Li’j = w;d(p;, v]'). Define the set

X={L;j:Li;=wd(pi,vj),

i=1,...,n; j=1,...,m}

X is of O(n?) cardinality, and our goal now is to
identify two consecutive elements in the sorted list of
elements of X, say, L'and L2, suchthat L' < L* < L2,
and for each L'<L < L2, the set of vertices of G
contained in Q(L) 1s the same as the set of vertices
of G contained in Q(L*).

As in Section 2, for convenience, we replace the
rectilinear norm L) by the equivalent maximum norm
Loo. We will search over a superset X’, containing X,
which is also of O(n?) cardinality. X’ is defined as fol-
lows. Fori=1,...,n,let p; = (p;(1), p;(2)) denote
the two coordinates of p;. Similarly, for j=1,...,m,
let v; = (v;(1), vj(2)) denote the two coordinates
of Vj.
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Let {ay, ..., an} be the sorted list of the elements
of the set {v;(1)} and let {1, ..., by} be the sorted
list of the elements of the set {v;(2)}. Next, for each
i=1,...,n, define the following four vectors (sorted
columns):

Li(1, +) = wi(pi(1) —ay, ...
Li2,4+)=wi(pi(2) = b1, ...
and

Li(l,-)=—-L;(},+), L;(2, —) = —L;(2, ).

Finally, define the set X’ to be the collection of the 4n
sorted columns

{L;(1, ), L;(0, =), L;2,H), L;i 2, =):i=1, ..., n}.

, pi(l) — a),
, Pi(2) — by),

It is clear that each element in the above set X appears
as a component of at least one of these 4n columns.
Hence, instead of searching over X, we can search over
X'. Specifically, viewing X' as a matrix with 4n sorted
columns, we apply the search procedures in [21,22] to
find two consecutive elements in the sorted list of el-
ements of X', say, L’ and L”, such that L' <L* < L”,
and for each L’ < L < L”, the set of vertices of G con-
tained in Q(L) is the same as the set of vertices of
G contained in Q(L*). (Note that these search proce-
dures do not require X' to have both sorted columns
and sorted rows.) The total time needed to identify L’
and L” is O(n log n+ T log n) (serial) time, where T
is the serial time to test the feasibility of a prescribed
value of L. From above, we have T =0(n log n), and
therefore the total time to identify the set of vertices
of G contained in Q(L*) is O(n log2 n). (Note that
X’ contains all the elements in X, and therefore we
have L' <L’ < L* < L” < L?. Since, we already have
identified the set of vertices of G contained in Q (L*),
we do not need to find L' and L? explicitly. We can
proceed with the interval [L’; L”], which contains our
target L*.)

4.3. A parallel algorithm to find V(L)

Suppose now that L’ and L” have already been com-
puted. In particular, L' <L'<L” < L? and for each
L'<L < L" we already know the (fixed) set of ver-
tices of G contained in Q(L).

To find V(L) it is now sufficient to find for each
edge of 5(Q(L)) the at most two extreme points of

the convex hull of the intersection of the edge with S.
Let (L) denote such an edge. As noted above, to find
the at most two extreme points corresponding to e(L)
we can use the O(log #) time data structures for point
location and ray shooting ([36,16,28] and also [10]
which treats only simple polygons). The preprocessing
time and space are O(#n log n) and O(n), respectively.
(The preprocessing for the ray shooting is on the set
S, which is independent of the parameter L. Hence,
we do not need a parallel polylogarithmic algorithm
for this phase. Also note that we need to apply the ray
shooting only for rays parallel to the axes, and that
can be used to simplify the preprocessing.)

To summarize, for any L' <L < L”, we can iden-
tify in parallel in O(log n) time, using only O(n) pro-
cessors, a set of points V(L) in S(L) that includes all
the extreme points of C H(S(L)). Moreover, |V (L)|=
O(n).

We now proceed exactly as in Section 2. To con-
clude, we have presented an O(n log3 n) algorithm
to solve the rectilinear 2-obnoxious facility location
problem even when S is a general compact planar
polygonal set.

Theorem 4.1. Let § be a planar compact polygonal
set with m=0(n) edges and corner points. Then, there
is an O(nlog® n) deterministic algorithm to solve the
rectilinear 2-obnoxious facility problem in S.

5. Final comments

An improvement in the complexity of the algorithm
to solve the rectilinear case can possibly be achieved
as follows: The serial time for testing feasibility of a
prescribed value of L is O(n log n). Hence, if we can
identify apriori, a “well structured” set containing L*,
we might be able to apply efficient search procedures,
as in [32,13], to find L* in O(nlog? n) time.

For example, consider the one-dimensional version
of the 2-obnoxious facility location problem, and sup-
pose without loss of generality that S is the convex
hull of P and p; < p2< -+ - € py. Then for some pair
i,j=1,...,n, L* is of the form (p; ——pj)/(wH—w}),
where w; = w; + %, w;. =w; + %; (L* satisfies the
bottleneck equation L*w; + L* + L*w; = |p; — p;l),
or L* is of the form (p; — p;)/(w; + w;) (L* satisfies
the bottleneck equation L*w; + L*w; = |p; — p;|).
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Thus, L* is an element in the set X! U X2, where
X'={(pi—pp/wi+w)) i j=1,...,n},
and

X2={(pi — p)/(wi +wp) i, j=1,...,n}

In the one-dimensional case testing for feasibility can
clearly be done in O(n) time. Therefore, by using the
search procedure in [32] with the modification in [13],
L* can be found in O(n log n) time.

An interesting topic to investigate is the extension of
the above results to the case of 3 or any fixed number of
new facilities. In particular, we suspect that the recti-
linear weighted 3-obnoxious facility location problem
is solvable in subquadratic time. As noted above, for
the case of 3 new facilities, a partial answer is given
in [26]. They consider the case where S is a rectangu-
lar planar region, and present an O(rn log? ) algorithm
for maximizing the minimum distance between the ex-
isting facilities and the new facilities, when there is a
prescribed lower bound L’ on the distances between
the new facilities.
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