Available online at www.sciencedirect.com

SCIENCE DIRECT?® DISCRETE

@ APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 130 (2003) 437448

www elsevier.com/locate/dam

Improved algorithms for several network location
problems with equality measures

Juan A. Mesa®!, Justo Puerto®?, Arie Tamir®*>
> >

A Dpto. de Matematica Aplicada I, Universidad de Sevilla, Spain
YDpto. de Estadistica ¢ Investigacion Operativa, Universidad de Sevilla, Spain
¢School of Mathematical Sciences, Tel Aviv University, Tel-Aviv, Israel

Received 11 March 2002; accepted 29 July 2002

Abstract

We consider single facility location problems with equity measures, defined on networks.
The models discussed are, the variance, the sum of weighted absolute deviations, the maximum
weighted absolute deviation, the sum of absolute weighted differences, the range, and the Lorenz
measure. We review the known algorithmie results and present improved algorithms for some
of these models.
© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades there has been a major effort to develop location models
capturing more features of real problems. In particular, in the public sector the issue
of equity becomes relevant when locating facilities. However, while for efficiency and
effectiveness there is almost a consensus that median and center, respectively, are the
most representative objective functions, for purposes of equity there does not seem to
be an agreement on the proper criteria. One can find in the literature a plethora of
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functions measuring the inequality of the distribution of distances from demand points
to the facility. Two main different lines of research can be observed regarding location
models focusing on equity issues.

The first one deals with general aspects such as: how to measure equality, how
to define equality measures, what properties equality functions have and what they
should have, what the relative positions of the solutions provided by the corresponding
optimization problems arc and the comparisons among the standardized functions. These
topics have been studied in several papers [27,9,26,7]. A review of the existing literature
on equity measurement in Location Theory is given by Marsh and Schilling [22]. An
interesting discussion on how to select an appropriate equality measure is contained in
the paper by Eiselt and Laporte [6].

The second line of research is oriented towards obtaining efficient algorithms for
solving location problems involving equality measures. The utility of this research lies
not only in supplying good algorithms but it will also allow one to design more gen-
eral computational experiments for understanding the behavior of and the relationships
among the optima of the different associated problems.

We list below some of the most frequently considered equity location models. The
most popular models are those in which the variance measure is applied. Maimon [20]
obtained a linear time algorithm for the variance location problem on tree networks.
Kincaid and Maimon [13] extended this algorithm to the class of 3-cactus graphs
satisfying the triangular inequality. The same procedure of reducing 3-blocks to sub-
trees is applied in [14], for the discrete case. Hansen and Zheng [10] have proposed
an O(mnlogn) time algorithm for finding the minimum variance point in a network
with n nodes and m edges. Berman [2] has combined efficiency and equality mea-
sures into three models: minimizing the variance subject to an upper bound on the
average distance, minimizing the average subject to an upper bound on the variance,
and minimizing a linear utility function of the average and the variance. Other recent
approaches to the variance measure can be found in [15-17].

A second measure is the mean or the sum of weighted absolute deviations from
the average distance. This objective was used by Berman and Kaplan [3], where they
obtain an O(mn?) time algorithm to find an optimal solution on a general network.
Tamir [28] presented a modified algorithm of O(mnlogn) complexity.

The maximum weighted absolute deviation is considered by Lopez-de-los-Mozos and
Mesa in [18]. Based on Hershberger’s algorithm for constructing the upper envelope of
n segments, an O(mn® logn) time algorithm for the corresponding problem is obtained
in [18]. In the above three models: variance, sum of absolute deviations and the maxi-
mum deviation, the objective is a monotone function of the deviations from the average
distance. We now list and review results for equality measures that do not explicitly
depend on these deviations. Minimizing the range, which is a measure conceptually
related to the maximum absolute deviation, amounts to minimizing the difference be-
tween the maximum and the minimum weighted distances. An O(mnlogn) algorithm
for solving this model on a general network can be obtained by applying the algorithm
in [4]. Another equality measure, the sum of weighted absolute differences between
all pairs of customers, has also been studied by Ldpez-de-los-Mozos and Mesa [19].
For general networks they present an O(mn?logn) time algorithm. Finally we note
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Table 1
Bold letters indicate new results in the paper

Equality mcasures in networks

General networks Trees

Complexity Ref. Complexity Ref.
Variance O(mnlogn) [10] O(n) [20]
SAD? O(mnlogn) [28] O(n?)
MAD® O(mn?) O@?)
SAWD® O(mn?logn) [19] O(n?log? n)
Range O(mnlogn) (4] O(nklog? n)? 4]
Lorenz O(mn? log n) O log? n)

#Mean (sum) absolute deviation with respect to the average.

"Maximum absolute deviation with respect to the average.

°Sum of absolute weighted differences.

4k depends on the structure of the tree. For paths k= O(1), but there are trees with k = ©(n).

the use of the intricate Lorenz measure for the purpose of equalizing location on tree
networks, by Maimon [21]. He derives an O(n’® logn) time algorithm for this model.
In this paper we develop modified algorithms for some of the models listed above. We
consider the case of a general network, as well as tree networks. Our final results are
summarized in Table 1.

2. Notation and definitions

Let G =(V,E) be an undirected connected graph with node set V' = {vy,...,v,}
and edge set E. Suppose that |E| = m. Each edge e € E, has a positive length /,,
and is assumed to be rectifiable. In particular, an edge e = (v,,vy) is identified with
an interval of length I, so that we can refer to its interior points. An interior point is
identified by its distance along the edge from the two nodes v, and v;. Let A(G) denote
the continuum set of points on the edges of G. We also view A(G) as a connected
set which is the union of m intervals. The edge lengths induce a distance function
on A(G). For any pair of points x,y € A(G), we let d(x,y) denote the length of a
shortest path P(x, y), connecting x and y. A(G) is a metric space with respect to the
above distance function. We refer to A(G) as the network induced by G and the edge
lengths {/.}.

Each node v;, i =1,...,n, is also viewed as a location site of a demand point or
a customer. v; is associated with a pair of nonnegative weights, s; and w;. s; can be
interpreted as the inverse of the (constant) speed of the customer situated at v;. Thus,
if there is a server located at some point x € A(G) the travel time of the customer to
the server is s;d(v;,x). w; may represent the number of times the customer will travel
to the server. Alternatively, w; can be viewed as the number of customers, all having
speed s;, located at v;.
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We now define the equality measures which are the subject of this paper. For each
x€A(G), let di(x)=d(vy,x), i=1,...,n. Let W = E?:l w;. We define the average
travel time by

n
Zp(x) = Z wisid {(x)/W.
=1
Recall that a point x € A(G), minimizing z,(x) is called a weighted median of the
network. It is well known that there is always at least one node which is also a
weighted median.
Next we consider several equality measures defined by the following objective
functions:

Sox) =" wilsidi(x) = zn(x))*/W,

fz]

Silx) = Z wilsidi(x) — zw(x)|/W,

i=]

,,,,,

[3@) =D Iwisidi(x) — wys;d(x),

=1 jel

.....

Minimizing fo(x) asks for the location minimizing the variance, and f(x) amounts to
finding the location minimizing the mean or the sum of absolute deviations in travel
times of the W customers. Similarly, with f,(x) as the equality measure, we wish to
minimize the maximum weighted absolute deviation. f3(x) is the sum of all weighted
differences. Finally, fa(x) is the range of variation of the weighted distances.

In addition to the above measures we will also consider the Lorenz equality measure,
f5(x), which is explicitly defined in Section 7.

Our general solution approach to optimize the equality measures on A(G) is based
on decomposing the problem, and solving (independently) a restricted problem on each
edge. Thus, the properties of the function z,(x) and the functions {|sid;(x) — z,x(x)|}
on an edge are relevant.

Consider an edge e = (u,v) € E. For each vertex v; € V, the function b;(x) = s5;d;(x),
restricted to this edge, is concave, piecewise linear with at most two segments with
slopes s; and —s;, respectively. (Its breakpoint is called a bottleneck point.) Therefore,
the function z,(x) is concave and piecewise linear on e, and all its breakpoints are
bottleneck points. Let us denote by B, the set of bottleneck points of the edge e€ E.
Since there is at most one bottleneck point for each vertex on each edge, |B.| < n.

The difference s;d;{x) — z,,(x) changes sign at most four times on each edge. Let /,
be the set of (at most) 4n intersection points of the functions s;d;(x), i=1,2...,n, with
zy(x) on the edge e =(u,v). The sorting of the O(n) points in B, U, determines O(n)
intervals or secondary regions on the edge, each of them limited by two consecutive
points of B,UZL U {u,v}. Let [x;{e),x;+1(e)] denote such a secondary interval. Then all
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functions s;d;(x), i=1,...,n, as well as z,(x), are linear over this interval. Moreover,
each function s;d;(x) is either above (or coincides at some points) or below the function
zy(x). Denote by

Ni(e)={ic{1,....n}lsidi(x) = zn(x), Yx € (x;(€),x;51(e))},

Ny (e)= {ie{l,... n}sidi(x) < zu(x), Vxe(x;(e)x;51(e))}.

For each pair of nodes v;, v, the functions b;(x)=s;d;(x) and b;(x)=s;d ;(x) intersect
at most twice on the edge e. Let F, denote the set of O(n*) intersection points of all
pairs of functions on e, and let H, = F, U B, U {u,v}. Additionally, the functions
ci(x) = wsidi(x) and ¢;(x) = w;s;d;(x) intersect at most twice on the edge e. Let C,
denote the sct of O(n?) intersection points of all pairs of ¢(x), ¢;(x) functions on
e, and let D, = C, U B, U {u,v}. (For convenicnce we view the sets D, and H, as
multi-sets, i.c., if several pairs of functions intersect at the same point, then this point
is accordingly multiplied in the corresponding set.)

3. The mean absolute deviation problem

In this section we consider the minimization of the function f{x). As mentioned in
the introduction the special case where all customers have the same speed, i.e., s; =,
for i = 1,...,n, was solved by Berman and Kaplan [3] in O(mn*) time. Tamir [28]
presented a modified solution approach improving the bound to O(mnlogn). It is easy
to sce that the algorithm in [28] is directly applicable to the general case of arbitrary
{s;} without affecting the O(mn logn) bound. This bound provides an O(n? logn) time
algorithm when it is applied to the particular case of tree networks. We will next show
how to improve this bound and solve the problem on a tree in O(sn?) time. More
specifically, we show how to minimize the objective on each edge of the tree in O(n)
time.

In order to determine the local minima on each edge e, the restricted problem can
be formulated as a linear program:

n
minZyi

i=1
vi 2z wilsidi(x) —zm(x)), 1=1,2,...,n,
yi 2z —wi(sidi(x) — zm(x)), i=12,...,n,

0<x <,

in which s;d;(x) —z,,(x) is linear since both s;d;(x) and z,(x) are linear on each edge.

This formulation can be considered as the dual of a Multiple Choice Knapsack
Problem for which Zemel [29] obtained a linear time algorithm based on adaptation of
Megiddo’s algorithm for linear programming in fixed dimension, [23]. Hence, in O(n)
time we identify a minimizer of fi(x) on each edge e. The total time to solve the
problem is therefore O(n?).
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4. The maximum weighted absolute deviation problem

The most common equality measures used in location problems, the variance and the
mean absolute deviation, do not sufficiently account for the worst performance of the
system. In order to overcome this drawback, the maximum weighted absolute deviation
measure, f7(x), has been proposed.

For the problem of minimizing the maximum weighted absolute deviation an
O(mn*logn) time algorithm, based on the determination of the non-dominant inter-
section points of all pairs of weighted absolute deviation functions and using the upper
envelope in each primary region, was proposed in [18]. (Actually, [18] considers only
the case s, =1, i=1,...,n.)

However, we will next show that a different approach based on solving a linear
program on each secondary region improves the time complexity to O(mn?).

Consider an edge e = (u,v) € E. Consider the set of points, B, U I, U {u,v} on e,
defined above. The O(n) points in B, U I, induce O(n) intervals or secondary regions
on the edge, each of them limited by two consecutive points of B, U, U {u,v}. Let
[x;(e),x;j+1(e)] be such a secondary interval. Then the problem

min max w;ls;di(x) — zm(x
XEDX(€)5j41(€)] =L i i () = 2n(5)

can be formulated as

min y
y 2 wisidi(x) —zn(x)), i€ Nj+(e),
y Z = wilsidi(x) —zn(x)), i€N; (e),

xi(e) < x < xjpi(e).

The above linear program can be solved in O(n) time by the algorithm in [23].

In each edge the procedure involves the sorting of O(n) points, which can be done
in O(nlogn) time, and solving O(n) linear programs. Thus the resulting time is O(n?)
per edge and O(mn?) for the whole network. )

The above bound reduces to O(n*) for tree networks. However, using the arguments
of the previous section we observe that it takes only O(#n) time to find the best solution
on each edge e. Specifically, the restricted problem on e can be formulated as the
following two variable linear program, and therefore can be solved in O(n) time by
the algorithm in Megiddo [23].

min y
y 2 wisidi(x) —zp(x)), i=12,...,n,
y 2 _Wi(Sid[(x)_Zm(x)), i:1929'~~7n5

0<x</,.

We conclude that for tree networks f,(x) can be minimized in O(n?) time.
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5. The maximum absolute deviation problem

In this section we consider the unweighted case where there is a single customer at
each node v;, ie., w;=1 for i=1,...,n. We will show that the O(mn?) bound for the
general case can be improved to O(mn log” n) when

f2(x)= imax ‘Sidi(x) - zm(x)"

st

For this problem we use a different approach to solve the restricted problem on cach
edge.
Consider an edge e = (u,v) € E. Using the notation in the previous section let

xi(e) <x(e) <---<x(fe), 1=0(n),

be the sorted sequence of distinct points in B, U [, U {u,v}. For each interval
[x;(e),x;11(e)] consider both, the set of indices of the functions s;d;(x) above and below
zn(x): Ni7(e) and N (e).

Next, define the following piecewise convex functions over the interval [x;(e),x;.1(e)].

gi{(x) = max s;d;(x),
€N (e)

hi(x)= max {—s;di(x)},
IEN] (€)

Fi(x) = max{g;(x) — zu(x), ~;(x) + z,x(x)}.

Then, to find the best point on this interval we need to find a minimizer of F;(x).
Equivalently we will solve the following lincar problem dynamically, using the ma-
chinery developed in Hershberger and Suri [12].

min y,
y 2 gj(x) — zm(x),
y 2 hi(x) + zn(x),

xj(e) <x < xj(e).

With the above machinery we (separately) maintain dynamically the breakpoints (or
the slopes) of the functions g;(x) and %;(x). In particular, for each value of x we can
compute both functions and their directional derivatives in O(logn) time. Hence, for
each value of x, we can determine in O(logn) time whether x is to the left or to
the right of a minimizer of the function F;(x). Therefore, by applying a binary search
over the breakpoints of g;(x) and A;(x) we can find a minimizer of F;(x) over the
given interval in O(log? n) time. (We suspect that the latter bound can be improved to
O(logn) but we do not yet know how to achieve that.)

Next we discuss the total effort needed to maintain the sequence of functions {g;(x)}
and {h;(x)}. Each of these functions is an upper envelope of a collection of at most »
linear functions, which is maintained dynamically by the data structure in Hershberger
and Suri [12]. It takes O(logn) time to delete or insert a linear function, if, as is the case
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here, the sequence of insertions and deletions 1s known a priori. To explain and identify
this sequence, consider two consecutive intervals, [x;(e),x;+1(e)] and [x;.1(e),x;42(e)].
Suppose first that x;.((e) is in B,. Then it is a maximum point of some function
5;di(x). (To simplify, assume that there is only one such index i, and x;4i(e) is not in
I.. Otherwise we perform the following step sequentially for all relevant indices.) We
now delete the linear function, which is the increasing part of s;d;(x), and replace it in
the same collection, by the decreasing part of that function. Respectively, we update
the (linear) function z,(x) by subtracting the increasing part of s;d;(x) and adding its
decreasing part. Next suppose that x;.1(e) is in /.. Then there is a function s;d;(x)
which intersects z,(x). (Again, to simplify the discussion, suppose that there is only
one such index i, and x;. (e) is not in B,. Also assume that it is the increasing part
of s;d;(x) which intersects z,(x), and z,(x;41(e)—) > sidi(xj+1(e)—). In this case the
function s;d;(x) is in the collection N;"(e).) We delete i from N (e) to obtain N7 (e),
and add it to Nj+(e) to obtain N jj__l(e). (The other cases are treated similarly.) From
the discussion in the previous sections it is clear that the total number of deletions
and insertions over the underlying edge e is O(n). Moreover, the sequence of deletions
and insertions can be determined a priori during the process of computing and sorting
the sequence xi(e),x2(e),...,x(e). Therefore, after an initial effort of O(nlogn), we
can conclude that the total effort to perform all the deletions and insertions is also
O(nlogn) according to the algorithm proposed by Hershberger and Suri [12]. As noted
above the minimization over each interval [x;(e),x;+i(e)] takes O(log? 1) time. Thus,
in O(nlog?n) time we find a minimum point on an edge, leading to an O(mn log® n)
time algorithm for the entire network.

6. The sum of ahsolute weighted differences problem

In this section we consider the minimization of the objective

n

3= " wisidi(x) — wysid;(x)

=1 j=1

An O(mn?*logn) algorithm to minimize this measure over a general network is given
in Lopez-de-los-Mozos and Mesa [19]. We briefly describe such an algorithm, and then
show an improved algorithm for tree networks.

Consider an edge e=(u,v) € E. We will show how to find a minimizer of f3(x) on
e in O(n?logn) time.

The function f3(x) is clearly linear over each interval of e connecting two adjacent
points of D,. In particular, there is a point in D, which minimizes f3(x) over e.
Therefore, to optimize f3(x) over e it is sufficient to evaluate this objective at all
points of D,. To perform the latter task, we first sort the points in D,, consuming
O(n*logn) time.

To evaluate the objective at a point x, we note that if the ordering of the elements in
the multi-set {¢;(x)} is known, f3(x) can be computed in O(n) time. (Recall that ¢;(x)=
w;s;d(x) was defined in Section 2.) Specifically, assume without loss of generality that
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a(x) < ofx) € Cen(x), i=1,...,n Also, define Ci(x)=ci(x)+ -+ cilx), for

3000 =200 = Den(®) = Gy @) + (1 = a1 () = Goa))
+oe (X)) = CiexN,

or

n
f3(x)=2) (2 —n—1)ei(x).

i=1
We start the evaluation by computing f3(x) at the node u, using O(nlogn) time. We
then follow L., the (sorted) sequence of points in the multiset D,. It is easy to see
that if x, and x,:) are consecutive points of L., then it takes constant time to compute
S3(xg41) from f3(x,). Therefore, the total effort to compute f3(x) at all points in D,
is dominated by O(n?logn), the eflort needed to sort D,. The total effort to minimize
f3(x) over the entire network is O(mn* logn). The above bound reduces to O(n> log n)
for tree networks. However, we will show how to reduce this bound to O(r? log2 n),
by solving the problem on each edge of the tree in O(nlog® n) time.

Consider an edge of the tree e = (u,v). Then, for each pair of nodes v;,v;, the
function w;s;d;(x) —w;s;d;(x) is linear over e. In particular, f3(x) is convex there. For
i=1,...,n, suppose that the linear representation of the function w;s;d;(x) over e is
given by w;s;d;(x) = o;x + ;. Then D, consists of all points of the form x;; = (8; —
ﬂl’)/(ai - O‘./)’ Lj=1,...,n, I%]

As mentioned above there is a point in D, which is a minimizer of f3(x) over e,
and it takes O(n logn) time to evaluate the function at any point x. Using the convexity
of f3(x), and the special structure of the set D, we can apply the search procedure in
Megiddo and Tamir [24], with the modification in Cole [5], to find the minimum in
O(nlog? n) time. This will lead to an O(n?log® ) algorithm for finding the minimum
of f3(x) on a tree network.

7. Maximizing the Lorenz measure

In this section we consider another equality index, called the Lorenz measure, which
is quite common and useful in economics to define and measure equity in the income of
a population. Maimon [21] has adapted this measure to location models. He argues that
choosing the location of the server according to this measure ensures that the distance to
the population is as much as possible homogenously distributed. (The reader is referred
to Maimon [21] for additional characteristics of this criterion.) Maimon presents an
O(n* logn) algorithm to find the optimal location on a tree with respect to the Lorenz
measure. [n an unpublished report, written more than ten years ago, Hansen and Zheng
[11] gave an O(n?logn) improved algorithm for this model. We consider a weighted
version of this model, where we replace the distances to the server by travel times. We
focus on the algorithmic aspects of this generalized model. Specifically, we will present
an O(n?log? n) algorithm to find an optimal solution to the generalized model on a
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tree. (For the case treated by Maimon [21] the complexity of our algorithm reduces
to O(n? logn), which matches the improvement reported by Hansen and Zheng [11].)
We also show how to extend the results to general networks.

To facilitate the discussion and introduce the Lorenz measure consider a point
x € A(G), where a service facility is to be located. The travel time of a customer at v;
to x is s;d(x). Assume, without loss of generality, that b;(x) < ba(x) < -+ < by(x),
where bi(x) =s;d(x), i=1,...,n. For each k=1,...,n, define W, =w| + -+ +w,.
(Note that the latter definition depends on the ordering of {b;(x)}. Also recall that with
the notation introduced above W, = W. Since in this section wy is interpreted as the
proportion of the population situated at v, we assume that ¥, = W =1, and define
Wy =0.)

Following the derivation and expressions in Maimon, [21], we define

n k—1
Lix)= Zwk Z w;bi(x) + wbi(x)/2
k=1 j=1

Rearranging terms we obtain,

Lx) =Y wiW — Wimy — we/2)be(x).
k=1

The Lorenz measure, fs5(x), is then defined by
S5(x) =2L(x)/zp(x).

(We note that the model discussed by Maimon [21] corresponds to the case where
si=1 for i=1,...,n.) The objective is to find a point in A(G) maximizing f's(x).

We first observe some useful properties of the functions involved. Consider an edge
e=(u,v) of the network G=(V, E). The function L(x) is clearly linear over each interval
of e connecting two adjacent points of H,. (See Section 2.) From the above discussion
we also recall that the average function z,,(x) is piecewise linear and concave on e. B,
is the set of breakpoints of z,(x). In particular, the Lorenz function, fs(x) is a ratio
of two linear functions over each interval of e connecting two adjacent points of H,.
Therefore, there is a point in H, which maximizes fs(x) over e. To find an optimum
point it is sufficient to evaluate this objective at all points of H,. The total effort to
perform this task, is O(n®logn). It is very similar to the procedure described in the
previous section to evaluate the function f3(x), and therefore we skip the details. We
only note that the effort is dominated by the O(n*logn) time needed to compute and
sort the O(n?) elements of H,. It is easy to see that with the above expression for L(x),
it takes only constant time to compute fs(x) at each additional point of the sorted list
of points obtained from H,. To summarize, we conclude that in O(mn® logn) time we
can locate a point of A(G) maximizing the Lorenz measure fs(x).

For tree networks, the above bound reduces to O(n’ logn), the bound reported by
Maimon [21]. However, we will show how to reduce this bound to O(#n?log”n), by
solving the problem on each edge of the tree in O(nlog®n) time. (The approach is
again very similar to the one described above for optimizing f3(x). However, some of
the ingredients are different.)
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Consider an edge of the tree e = (4, v). Then, for each node v;, the function bi(x)=
s;d(x) is linear over e. Moreover, the proof given in Maimon [21] for the case where
s;=1, for i=1,...,n, showing that L(x) is concave and piecewise linear, extends directly
to arbitrary nonnegative {s;}. Thus, L(x) is a piecewise linear and concave function
over e. H, is its set of breakpoints. Also, z,(x) is linear over ¢. Using Proposition
5.20 in Avriel et al. [1], we conclude that fs(x) is semistrictly quasiconcave over e.
In particular, by Theorem 3.37 in [1], every local maximum of fs(x) on e is a global
maximum over e. Thus, to find a maximizer of f5(x) over an edge, we can apply a
binary search over H,, and locate a maximum point in H,, by evaluating the objective
fs(x) at O(logn) points. We perform the search on A, without explicitly generating
this set of O(n?) cardinality.

For i=1,...,n, suppose that the linear representation of the function b;(x)=s:d;(x)
over e is given by s;di(x) = y;x + 0;. Then H, consists of all points of the form
Xij = (5] - 51)/(% - ‘Y_})a la] = 1"":”’ i %J'

As mentioned above there is a point in H, which is a maximizer of fs(x) over
e. It takes O(nlogn) time to evaluate the function at any point x. Using the above
quasiconcavity of fs5(x), and the special structure of the set /7, we can apply the search
procedure in Megiddo and Tamir [24], with the modification in Cole [5], to find the
maximum in O(nlog? ) time. This will lead to an O(n%log? n) algorithm for finding
the maximum of fs(x) on a tree network.

An improvement is possible for the model considered in Maimon, [21}, i.e., 5, =1
for i=1,...,n. In this case the structure of H, is simpler. Specifically, for e =(u,v), let
T, (T,) be the subtree containing the node u (v), obtained by cutting the edge e. Then
for each node v; € T, we can assume that b;(x) = x + J;, where J; = d(v;,u), and for
each node v; € T, we can assume that b;(x)=—x+J;, where §;=d(v;, u). Therefore, H,
consists of all points of the form x; ;= (5, —9,)/2, v; € T, v; € T,. Moreover, if we sort
the coefficients o, =d(vy,u), k=1,...,n, then for each point x of /. it takes only O(n)
time to sort {by(x),...,b,(x)}. When the sorting is known, it follows from the above
expressions that fs(x) can then be evaluated in O(n) time. With these tools we can
now directly apply the search procedure in Megiddo et al. [25], and Frederickson and
Johnson [8], to find the maximum in O(nlogn) time. This will lead to an O(n? logn)
algorithm for finding the maximum of fs5(x) on a tree network in the case where
si=1,i=1,...,n
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