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Abstract: When solving location problems in practice it is quite common to aggregate demand
points into centroids. Solving a location problem with aggregated demand data is computation-
ally easier, but the aggregation process introduces error. We develop theory and algorithms for
certain types of centroid aggregations for rectilinear 1-median problems. The objective is to
construct an aggregation that minimizes the maximum aggregation error. We focus on row-
column aggregations, and make use of aggregation results for 1-median problems on the line to
do aggregation for 1-median problems in the plane. The aggregations developed for the 1-median
problem are then used to construct approximate n-median problems. We test the theory
computationally on n-median problems (n � 1) using both randomly generated, as well as real,
data. Every error measure we consider can be well approximated by some power function in the
number of aggregate demand points. Each such function exhibits decreasing returns to scale.
© 20032003 Wiley Periodicals, Inc. Naval Research Logistics 50: 614–637, 2003.

1. INTRODUCTION

A location problem usually involves locating one or more facilities with respect to demand
points, also called existing facilities. In urban modeling contexts, each private residence can be
a demand point. Thus there can be millions of demand points to deal with. Demand point data
may be readily available, available at some cost, or unavailable within the time and budget
limitations imposed on solving the problem. Even if the data are readily available, it may be
computationally impractical to make use of all of it.
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Thus, it is a very common practice in location modeling, and other related geographic
modeling areas, to aggregate demand points and solve the problem using the reduced data set.
For example, if a postal code area (PCA) has 1000 distinct residences, we might suppose all
1000 residences are at the centroid of the PCA. Centroids (to be defined) are commonly used,
for example, with geographic information systems and CD-ROM phone books. Some Bureau of
the Census data is organized by centroids. Unless we state otherwise, centroid aggregations are
the only ones we shall consider in this paper. The tax office location problem in a metropolitan
area setting considered by Domich et al. [6] is a good example of using centroids for demand
points when solving median sorts of problems. Another good example is the branch bank
location problem discussed by Chelst, Schultz, and Sanghvi [4].

Aggregation often results in lower costs to obtain the demand point data. Certainly solving the
smaller aggregated location problem is easier than solving the original problem. However,
aggregation also introduces error into the model, due to inaccurate distance measures. Thus,
there is a tradeoff to consider. A sensible strategy is to try to aggregate in such a way as to
minimize the error, or to put some upper bound on the error while minimizing cost. Alterna-
tively, the problem of minimizing the error can be viewed as a resource allocation problem;
allocating aggregate demand points by choosing their number and placements. We shall adopt
this latter point of view.

There is little agreement on how best to measure aggregation error, and numerous error
criteria are available (Francis et al. [11]). To introduce the error criterion we advocate, let X and
P denote collections of new facility locations, and demand points respectively. We let f(X) be
the cost function for the underlying location model, the cost if we choose X, given P. Let P� be
the list of aggregate demand points, with P�i the aggregate demand point replacing Pi. Let g(X)
denote the approximating cost function resulting from using P� instead of P in the original
model. Thus e(X) � � f(X) � g(X)� is the (absolute) error for X, and max{e(X):X} is the
maximum (absolute) error over all values of X. Geoffrion [16] gives theoretical arguments for
using the maximum absolute error as an error measurement. He also points out how having an
error bound (an upper bound on the maximum absolute error) can provide bounds on differences
of values of optimal solutions to the true and approximating problems. This absolute error
measurement is well accepted in the field of numerical analysis (Francis, Lowe, and Rayco
[10]).

The purpose of this paper is to study, for median problems, the error associated with using
centroids (defined below) as aggregate demand points. We develop theory for the 1-median
problem with rectilinear distances. In particular we study the properties of an aligned row-
column (ARC) algorithm that minimizes, over all aligned row–column aggregations, the
maximal error for the 1-median problem with rectilinear distances. We then develop an
algorithm, denoted as CRC, which uses the partitions defined by ARC as aggregate demand sets,
but uses centroids of the sets as aggregation points. We test CRC on n-median problems with
rectilinear distances. Our computational experience for some n-median problems, reported in
Section 5, is encouraging.

2. THE AGGREGATION PROBLEM

2.1. Problem Formulation: Centroids and the 1-Median Problem

We now introduce the specific median problem we analyze. Let I � {1, . . . , m} denote the
set of demand point indices, and P � {Pi: i � I} denote the set of (distinct) planar demand
points. We let X � ( x1, x2) denote any new facility location, Pi � ( p1

i , p2
i ), and denote by
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�X � Pi� � [�x1 � p1
i �p � �x2 � p2

i �p]1/p the �p-distance between X and Pi, with p � 1. We
let wi denote a positive “weight” for each demand point i; typically wi is proportional to the
frequency of travel between the new facility and the demand point. Thus the planar 1-median
problem is to find X* to minimize

f�X� � � �wi�X � Pi�: i � I	.

The n-median model is a generalization of the 1-median model. There are n new facilities (n �
2), and the travel distance between each demand point and the n new facilities is the distance
between the demand point and a closest new facility.

Let {IP1, . . . , IPq} denote any partition of P into q nonempty (disjoint) subsets. For each
u � 1, . . . , q, let Wu � ¥ {wi: Pi � IPu} denote the sum of weights of demand points in
IPu. The centroid Cu of IPu is defined by Cu � ¥ {(wi/Wu) Pi: Pi � IPu}. Also, define
f�(X) � W1�X � C1� � . . . � Wq�X � Cq�. Note that f� is an approximating 1-median
function defined using centroids as aggregate demand points. Thus f� is a specific instance of g.
The absolute error function for f� is

e�X� � � f�X� � f��X�� for all X.

Francis and White [9] prove that f�(X) � f(X) for all X, and all p � 1. We make extensive use
of this result and restate it as:

CENTROID AGGREGATION LEMMA: For the 1-median model with the �p-distance, for
all p � 1,

e�X� � f�X� � f��X� � 0 for all X.

For 1-median models, we therefore can write f(X) � f�(X) � e(X) � ¥ {ei(X): i � I}, with
ei(X) � wi�X � Pi� � wi�X � P�i� a “difference” error for demand point i. Each ei(X) can
be negative or positive. The result is that there is often self-canceling error (negative values
offset positive values). An alternative to our error measurement approach is worst-case error, as
measured by an upper bound on the error (Francis, Lowe, and Tamir [12]). While it is applicable
to many location models, this latter approach does not have the self-cancellation property.

Without loss of generality, we assume each IPu has at least two points. Then it can be shown
that when p 
 1, the inequality in the lemma is strict except on the union of a finite collection
of colinear line segments (possibly empty). Therefore the error is positive except on a set of
measure/area zero. It is possible to use the lemma to obtain some insight into the effect of
various degrees of centroid aggregation (abbreviated as CAG). One immediate observation is
that a CAG of a CAG is itself a CAG of the original data. Suppose we have an original location
model f, and use CAG to construct an approximating model fˆ . Next, we do aggregation of the
aggregate demand points that define fˆ , resulting in another model f�. For example, let Cu �
¥ {(wi/Wu) Pi: Pi � IPu} for u � 1, 2, and let fˆ be the location model defined using C1

and C2. We could then compute C� � (W1/(W1 � W2)C1 � (W2/(W1 � W2)C2 � ¥
{(wi/(W1 � W2)) Pi: Pi � IP1 � IP2}. Doing this, we aggregate C1 and C2 into C� with
weight W1 � W2 to obtain an approximating location model f�. From the lemma we have
f(X) � fˆ (X) � f�(X). The error for f� will therefore be no less than the error for fˆ . In the
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case when p 
 1, the error for f� will be greater than the error for fˆ almost everywhere. Thus
further centroid aggregation causes more error.

The relative error, defined by rel(X) � e(X)/f(X) for all X (perhaps expressed in percent),
will also be of interest. We can view rel(X) as a scaled version of e(X).

Henceforth we focus on the case where p � 1, i.e., the rectilinear distance measure. Also,
much of our theory is for the case with n � 1, i.e., the 1-median problem. Results for the
1-median problem lead to aggregation schemes for the rectilinear distance n-median problem.

2.2. Motivation for Focus of Study

A principle objective of our study is to obtain insights into aggregation schemes for solving
the NP-Hard (Meggido and Supowit [23]) rectilinear-distance n-median problem by studying
the 1-median problem. We note that although the 1-median problem is well solved if all of the
data is available (Francis and White [9]), in many instances all data are not available. In fact,
the demand data may be changing over time due to shifts in demographic data. In these
situations, aggregation may be used to generate an approximation to the true underlying model.
Thus, we seek qualitative insights into the problem that are not especially data dependent, and
which apply to n-median problems with n � 2. We study in detail a particular type of
aggregation scheme (row–column). This scheme partitions demand points into cells made up of
rows and columns (with edges parallel to the x1- and x2-axes) of varying spacings, and then
aggregates all original data points in each cell into the centroid of the cell. Thus, our approach
is a heuristic approach for solving the underlying aggregation problem. At the end of subsection
2.3, we list some of the insights gained from our work. This list also provides an overview of
our paper.

2.3. Related Literature and Insights from Results

Rogers et al. [32] give a review of basic aggregation ideas in optimization models. Early
recognition of various errors created by demand point aggregation appears to have begun in the
geography literature, with papers by Hillsman and Rhoda [19] and by Casillas [3]. This literature
has been discussed in some detail by Francis et al. [11]. Plastria [28, 29] has studied centroid
aggregation error for the planar 1-median problem. An important finding of his is an asymptotic
result; for q � 1 centroid, e(X) goes to zero as the distance between X and the centroid increases
while X varies along a half-line with its end point at the centroid. For other work on demand
point aggregation for various n-median models, see Erkut and Bozkaya [7], Murray and
Gottsegen [26], and Zhao and Batta [34].

Francis and Lowe [8] showed how to compute error bounds on the maximum absolute error
for both n-median and n-center problems. Their work was preceded to some extent by the work
of Zemel [33], although the bounds he computed were not for purposes of aggregation. The error
bound results in these two papers have recently been substantially generalized by Francis, Lowe,
and Tamir [12]. They develop a methodology to compute aggregation error bounds for an entire
class of location models, including many of the best-known models. Their work strongly
suggests the need to exploit model structure to obtain aggregations with small error bounds.

The work most closely related to ours is by Francis, Lowe, and Rayco [10], abbreviated
hereafter as FLR. For rectilinear distance n-median problems, they develop a means of
minimizing the error bound of Francis and Lowe [8] over a class of row–column aggregations.
They use medians, instead of centroids, as aggregate demand points. Also, we minimize the
maximum error instead of an error bound. Therefore, we use a different objective and approach
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for doing aggregation. The FLR approach was specifically designed for n-median problems,
while our new approach is derived from analysis of the 1-median problem. However, our new
approach worked uniformly better on all problems we tried, including several n-median
problems, where n 
 1. For example, it gave a maximum relative error of less that 1%, using
400 aggregate demand points for a problem with 70,000 actual demand points.

A row–column aggregation, when rotated 45° with respect to the axes, provides an effective
means of doing aggregation for rectilinear distance n-center problems. Various aspects of these
ideas have been studied by Francis and Rayco [13], Rayco, Francis, and Lowe [30], and Rayco,
Francis, and Tamir [31]. Again, an upper bound (often tight) on the maximum error is being
minimized instead of the maximum error. Centers, instead of medians, are used as aggregate
demand points. Andersson et al. [1] have experimented with how to adapt the demand point
aggregations obtained through these various row–column approaches to the case where demand
points all lie on a network.

Much of the work mentioned above has indicated, mostly based on computer experimenta-
tion, that the maximum error decreases at a decreasing rate as q increases. We believe that this
decreasing returns to scale phenomenon has important implications for aggregation done in
practice. Choosing a small number of aggregate demand points can cause a large error. Choosing
a larger number can cause a small error, while an even larger choice will not decrease the error
appreciably.

We conclude this section with a list of insights supported by what follows in our paper.

● Centroid aggregation always causes underestimation of the median cost function.
● For the 1-median problem on the line, and where all weights are identical and

centroid aggregation is used, a contiguity property holds. That is, there is an
aggregation that minimizes the maximal error such that the demand points aggre-
gated into each centroid are contiguous. In addition, the maximal error (and
maximal relative error) is always attained at a centroid.

● For planar problems, doing aggregation on each axis using “projected” planar
demand point data leads to a good way (the row–column method) of doing
aggregation.

● For the rectilinear 1-median model, the maximum error, as well as the maximum
relative error, always occurs at a centroid or at a point with the property that each
of its coordinates is a coordinate of some centroid (a total of q2 points).

● Doing aggregation well for the 1-median problem helps with the n-median problem.
● The maximum error decreases at a decreasing rate as q increases and this error is

proportional to 1/q. All our computational experience, and some theoretical anal-
ysis, indicates that the maximum error (as well as other related error measures) can
be represented quite well as a power function of q, of the form a/qb, with b � 1.

● The maximum relative error does not seem to depend significantly upon the size of
the region containing the demand points, but only on q, the number of centroids.

3. CENTROID AGGREGATION ERROR ANALYSIS

3.1. Row–Column Aggregation

We now motivate our row–column approach. For the rectilinear 1-median model f(X), we
would like to find a centroid aggregation approximation function f�(X) such that the maximum
error, max{e(X): X}, is minimized (where e(X) � � f(X) � f�(X)�). Note that each approxi-
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mation function is defined by some partition of the demand set into q (nonempty) disjoint
subsets. Even for q � 2, the total number of partitions is exponential in m, and therefore
exhaustive enumeration is not tractable. Generally, little is known about the structure of an
optimal partition. One might conjecture that partitioning the demand set into rectangular blocks
is optimal, but this is not the case even for the 1-dimensional situation, i.e., when all the demand
points are collinear. We conjecture that finding an optimal partition is NP-hard even in the
1-dimensional case. (We later show that the 1-dimensional case is polynomially solvable if all
demand points are equally weighted.) We thus suggest concentrating only on some classes of
partitions, and seeking a best partition in these classes.

Several classes of partitions have been considered in earlier studies of general partitioning
problems of 2-dimensional arrays (grid graphs). The most common class used for partitioning
grid graphs is the class of partitions defined by horizontal and vertical cuts only. A more general
class is the class defined by allowing guillotine cuts. This latter class is then a subclass of all
partitions of the 2-dimensional array into rectangles with the same orientation as the given array.
(See Conti, Malucelli, Nicoloso, and Simeone [5] and Khanna, Muthukrishnan, and Skiena
[20]). Unfortunately, as illustrated in the above references, several 2-dimensional (discrete)
partitioning problems, defined by simple objective functions, are NP-hard, or at least very
difficult to solve, even in the class defined by horizontal and vertical cuts.

The objective function we focus on, minimizing the maximum error, seems to be more
involved and complicated than the criteria used in the literature cited above. While our problem
appears to be a continuous problem, we prove (see Appendix, Theorem 11) that it can be
reduced to a discrete problem. The maximum error is the maximum of the errors evaluated at
the set of q2 grid points defined by using vertical and horizontal cuts through each one of the
centroids of the q subsets of the partition. Because of this reduction to a discrete problem, our
problem seems closely related to the ones discussed in the previous paragraph.

Since we believe that our problem is computationally difficult even when we limit the search
to horizontal and vertical cuts, we consider an aggregation heuristic, called the aligned row–
column aggregation method. It is based on projecting the demand point data onto the two axes,
and solving the two 1-dimensional problems optimally. The vertical cuts of the solution the
heuristic provides are determined by the optimal solution of this problem projected on the
x1-axis, while the horizontal cuts are determined by the problem on the x2-axis.

For the rectilinear-distance 1-median problem, called the rectilinear problem for short, we
observe in this subsection that for certain types of aggregations, the aggregation error is
separable into x1 and x2 error components. This separability allows aggregation on each axis
using “projected” data from the planar problem. By taking the cross-products of these aggre-
gations on the axes we can construct a planar aggregation, referred to for short as an ARC
(aligned row–column) aggregation.

To motivate this row–column approach, imagine a plot of all the demand points with a grid
superimposed. The grid has n2 rows and n1 columns [sometimes written as n(2) and n(1),
respectively]. Spacings of rows, and of columns, need not be the same. Given a collection of
demand points and weights, Pi, wi, i � 1, . . . , m, an aligned row column (ARC) aggregation
with n2 rows and n1 columns is defined as follows.

1. Choose positive integers n1 and n2, numbers of columns and rows respectively.
2. Construct a smallest box B in the plane, with sides parallel to the axes, containing

all demand points. Let v10 and v1n(1) (h10 and h1n(2)) be smallest and largest x1

coordinates ( x2 coordinates) respectively in B: B � {( x1, x2): v10 � x1 �
v1n(1), h10 � x2 � h1n(2)}.
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3. Construct any n1 � 1 vertical lines (any n2 � 1 horizontal lines) intersecting B
from bottom to top (left to right) to partition B into n1 columns (n2 rows). Denote
the x1 coordinates of the vertical lines by v11 � . . . � v1n(1)�1 ( x2 coordinates
of the horizontal lines by h11 � . . . � hyn(2)�1), respectively.

4. Define Colt � {( x1, x2): ( x1, x2) � B, v1t�1 � x1 � v1t}, t � 1, . . . , n1 �
1; Coln(1) � {( x1, x2): ( x1, x2) � B, v1n(1)�1 � x1 � v1n(1)}.

5. Define Rows � {( x1, x2): ( x1, x2) � B, h1s�1 � x2 � h1s}, s � 1, . . . , n2 �
1; Rown(2) � {( x1, x2): ( x1, x2) � B, h1n(2)�1 � x2 � h1n(2)}.

6. For each Colt (each Rows) containing demand points, define Wt
1 (Ws

2) to be the
total weight of all demand points in Colt (in Rows).

7. For each Colt (Rows) containing demand points, define the centroid c1
t of Colt by

c1
t � ¥ {wip1

i /Wt
1: ( p1

i , p2
i ) � Colt} (centroid c2

s of Rows by c2
s � ¥ {wip2

i /Ws
2:

( p1
i , p2

i ) � Rows}).
8. For each Rows and Colt whose intersection contains demand points, define Wst to

be the total weight of all demand points in both Rows and Colt.
9. For each s and t with Wst 
 0, aggregate all demand points in Rows and Colt into

(c1
t , c2

s ), so that (c1
t , c2

s ) has a total weight of Wst.
10. Define the approximating function g by g( x1, x2) � ¥ {Wst(�x1 � c1

t � � �x2 �
c2

s �): s � 1, . . . , n2, t � 1, . . . , n1}.

An ARC aggregation is aligned in the sense that all the aggregation points in a given row
(column) have the same x2 coordinate ( x1 coordinate). Note that an ARC aggregation is not
necessarily a centroid aggregation since (c1

t , c2
s ) may not be the centroid of the demand points

in cell s, t. Another way to think of an ARC aggregation is that each cell s, t represents a city
block. Line segments separating adjoining columns (rows) can be thought of as streets parallel
to the x2-axis ( x1-axis), as can the edges of the smallest enclosing box, B.

Table 1 introduces some needed notation and terminology. With reference to Table 1, for
example, note that the original model, f( x1, x2), is the sum of f1( x1) and f2( x2). We shall do
aggregation on the line to replace the functions f1 and f2 by the approximating functions g1 and
g2, respectively.

ARC LEMMA: Given any ARC aggregation, e( x1, x2) � e1( x1) � e2( x2) � 0 for all ( x1,
x2).

PROOF: We have

Table 1. Separation of original and approximating location models, and error, into independent
x1 and x2 parts.

Notation Notation meaning Name

f 1(x1) ¥ {wi�x1 � p1
i �: i � I} Original model: x1 part

f 2(x2) ¥ {wi�x2 � p2
i �: i � I} Original model: x2 part

f(x1, x2) f 1(x1) � f 2(x2) Original model
g1(x1) ¥ {Wt

1�x1 � c1
t �: t � 1, . . . , n1} Approximating model: x1 part

g2(x2) ¥ {Ws
2�x2 � c2

s �: s � 1, . . . , n2} Approximating model: x2 part
g(x1, x2) ¥ {Wst(�x1 � c1

t � � �x2 � c2
s �): Approximating model

s � 1, . . . , n2, t � 1, . . . , n1}
e1(x1) f 1(x1) � g1(x1) Error for x1

e2(x2) f 2(x2) � g2(x2) Error for x2

e(x1, x2) e1(x1) � e2(x2) Total error
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g�x1, x2� � � �Wst��x1 � c1
t � � �x2 � c2

s ��: s � 1, . . . , n2, t � 1, . . . , n1	

� � �Wst�x1 � c1
t �: s � 1, . . . , n2, t � 1, . . . , n1	

�� �Wst�x2 � c2
s �: s � 1, . . . , n2, t � 1, . . . , n1	

� � �Wt
1�x1 � c1

t �: t � 1, . . . , n1	 � � �Ws
2�x2 � c2

s �: s � 1, . . . , n2	

� g1�x1� � g2�x2�.

But then e( x1, x2) � f( x1, x2) � g( x1, x2) � f 1( x1) � f 2( x2) � g1( x1) � g2( x2) �
e1( x1) � e2( x2). That e( x1, x2) � 0 for all ( x1, x2) is a consequence of the Centroid
Aggregation Lemma applied independently to e1( x1) and e2( x2). (This lemma applies since, for
example, c1

t is the centroid of all demand points in column t.)

Because of the ARC Lemma, for fixed n2 and n1 an ARC aggregation that minimizes
maximum error over all possible ARC aggregations can be found by separately minimizing
max{e1( x1): x1} (with n1 centroids) and max{e2( x2): x2} (with n2 centroids). The next
subsection exploits the error separability stated in the lemma. The subsection is of theoretical
interest in itself, and also provides the basis for our planar aggregation approach.

3.2. Centroid Aggregation: One-Median Problem on the Line

In this section we develop a simple way to compute the maximum error, and characterize
where error is positive and zero. Whenever the error is zero, it is due to the self-cancellation
effect. We obtain an easily computed upper bound on the maximum error. Assuming equally
weighted demand points, we give a contiguity property for an optimal (minimizes maximum
error) aggregation on the line. We obtain an upper bound on the relative error for the location
problem on the line, and show it goes to zero quickly as the number of aggregate demand points
increases. Finally, we give two algorithms of low computational order for doing contiguous DP
aggregation on the line. One algorithm uses bisection search; the other uses dynamic program-
ming. The former is simpler to implement, but the latter has a lower order. See the Appendix
for the details of the latter.

3.2.1. Notation, General Partitions

For ease of exposition, we establish some notation unique to this section. All the results apply
with obvious modifications to the functions defined in Table 1. We use the function f to
represent either f 1 or f 2, and the function e to represent either e1 or e2. We also assume that
there are given n demand points (DPs), v1 � . . . � vn, on the real line, with positive (demand)
weights, w1, . . . , wn, respectively. Any of these weights may be the sum of several weights of
the (projected) original location model. Also DP coordinates have been renamed and put into
strictly increasing order.

The objective of the 1-median problem on the line is to find a point x on the line, minimizing
f( x) � ¥ {wj�x � vj�: j � 1, . . . , n}. It is well-known that an optimal solution coincides with
a weighted median of the DPs, and it can be found in O(n) time. In demand point aggregation
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we partition the above set of DPs into p, p � n, nonempty subsets, V1, V2, . . . , Vp. We
compute Wu � ¥ {wj: vj � Vu} for each subset Vu, and aggregate all the DPs of Vu, u �
1, . . . , p, to cu, the centroid of Vu, cu � ¥ {(wj/Wu)vj: vj � Vu}. For each subset Vu of V �
{v1, . . . , vn}, let CHu denote the convex hull of Vu, and let Lu be the length of the interval
defining CHu.

We approximate the original problem by a new 1-median problem. For each point x on the
line, we let f�( x) denote the sum of weighted distances of the above p centroids, c1, . . . , cp,
from x:

f��x� � � �Wu�x � cu�: u � 1, . . . , p	.

For each x, we define the (centroid) aggregation error at x, e( x) � f( x) � f�( x). We call the
ratio e( x)/f( x) the (centroid) relative error at x.

For each u � 1, . . . , p, define eu( x) to be the error with respect to the demand points in Vu,
i.e.,

eu�x� � � �wj�vj � x�: vj � Vu	 � � �wj�x � cu�: vj � Vu	

With the above notation we have e( x) � ¥ {eu( x): u � 1, . . . , p}.

THEOREM 1: For u � 1, . . . , p,

a. eu(x) is positive for any interior point of CHu, and is zero otherwise.
b. eu(x) � eu(cu) � ¥ {wj�vj � cu�: vj � Vu} � (1

2
)LuWu for all x.

PROOF: To prove part a, the nonnegativity of eu( x) follows directly from the Centroid
Aggregation Lemma, and uses the triangle inequality. From Minkowski’s inequality, (see
Hardy, Littlewood, and Polya [17]), we conclude that eu( x) � 0 if and only if either x � vj �
0, for all vj � Vu, or x � vj � 0, for all vj � Vu. Hence, eu( x) is positive if and only if x
is an interior point of CHu. The proof of part b appears in the Appendix.

We note that part a of the above theorem has been observed by Plastria [28]. Also note that
part b implies that the maximum error of eu( x) occurs at the centroid cu, and that there is an
easily computable upper bound on eu(cu). Furthermore, it can be shown that the upper bound
is tight iff the total demand weight in Vu is equally distributed between the two endpoints of Vu.

3.2.2. Contiguous Partition Properties

We call a subset Vu of V contiguous if there exist indices k and t, k � t such that Vu � {vk,
vk�1, . . . , vt}. We call a partition V1, V2, . . . , Vp of {v1, . . . , vn} contiguous if for any pair
of distinct indices s, t, 1 � s, t � p, the intersection of CHs and CHt is empty. Note that a
partition is contiguous if and only if each subset of the partition is contiguous. Theorem 1
implies the following corollary. The corollary states where the error is zero, where it is positive,
and that it is largest at some centroid, cu.

COROLLARY 2: Let V1, . . . , Vp be a contiguous partition of {v1, . . . , vn}. Then e( x) �
eu( x), for any x in CHu, u � 1, . . . , p; e( x) � 0 if x is not in the union of the intervals
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CH1, . . . , CHp, i.e., the error e( x) is zero between adjacent intervals of the partition. Also,
max{e( x): x} � max{eu(cu): u � 1, . . . , p}.

In the remainder of this section, we consider only contiguous partitions. In addition to the
practical aspects, the next theorem gives the main motivation for concentrating on contiguous
partitions. We show, for the equally weighted case, that the minimum value (over all possible
partitions of V) of the maximum error is attained when the partition is contiguous. To facilitate
the discussion we introduce the following notation. For each partition V1, . . . , Vp, we let E( x:
V1, . . . , Vp) denote the error function e( x) corresponding to the partition V1, . . . , Vp.

THEOREM 3: Suppose that v1 � v2 � . . . � vn, and for j � 1, . . . , n, the demand weight
wj that is associated with vj is equal to 1. With p fixed, over all partitions of V into p subsets,
E( x: V1, . . . , Vp) is minimized on a contiguous partition.

PROOF: See the Appendix.

Theorem 3 is valid also for weighted problems, provided that for j � 1, . . . , n, the demand wj

at a point vj can be split between (at most) two adjacent subsets of the partition. The following
example shows that the theorem is not true when weights are unequal and splitting is not
allowed.

Demand points 1–4 are located on the line at 0, 10, 10.99, and 12, and have respective
weights of 1000, 100, 1, and 100. The following table shows the maximum error for the optimal
grouping and the three possible contiguous groupings. It can be seen that the only optimal
partition into two nonempty subsets is obtained by the noncontiguous grouping, 1 & 3 and 2 &
4. The reason that a noncontiguous partition is optimal in this example is that the weight at 0
is very large relative to the other weights, in particular the weight at 10.99. Thus the centroid
of the group 1 & 3 is very close (located at 0.011) to 0 and so the maximum error over the group
1 & 3 [e(0.011) � 22.97] is small compared to the maximum error (�200) over the group 2
& 4. However, when grouping the demand at 0 with the demand at 10, the centroid will not be
as close to 0, and so the maximum error over the group 1, 2 will exceed 200.

Groupings 1 & 3; 2 & 4 1; 2 & 3 & 4 1 & 2; 3 & 4 1 & 2 & 3; 4

Max. error 200.000000 200.009950 1818.181818 1836.494096

Lemma 4 states an upper bound on the error that holds for all x.

LEMMA 4: Let V1, . . . , Vp be a contiguous partition. For u � 1, . . . , p, let Wu � ¥ {wj:
vj � Vu}. Then

e�x� � Max�eu�x�: u � 1, . . . , p	 � �1
2
�Max�WuLu: u � 1, . . . , p	, for all x.

PROOF: The result follows from Theorem 1 and Corollary 2.

In order to help obtain an upper bound on the relative error, we now give a lower bound on
f( x) for all x. In what follows, let b and B be the values of the smallest and largest elements in
{Lu: u � 1, . . . , p}. Similarly let � and � be the smallest and largest elements in {Wu: u �
1, . . . , p}.
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LEMMA 5: Let V1, . . . , Vp, be a contiguous partition. Then for any real x and for any p �
3, f( x) � �(b/4)( p � 1)2 if p is odd, and f( x) � �(b/4) p( p � 2) if p is even.

PROOF: See the Appendix.

The next corollary follows directly from Lemmas 4 and 5.

COROLLARY 6: Let V1, . . . , Vp be a contiguous partition. For each real x, the relative
error, e( x)/f( x), satisfies

e�x�/f�x� � �2B��/�b�p�p � 2��.

PROOF: From Lemma 4 and the definition of B and �, e( x) �
1
2

max{WuLu: u � 1, . . . ,
p} �

1
2

B�. From Lemma 5, f( x) � �(b/4)min{ p( p � 2), ( p � 1)2}. Since p( p � 2) �
( p � 1)2, the result follows.

In the case of a uniform discrete demand distribution, where the set of demand points is
partitioned into p intervals of equal length, i.e., � � � and b � B, the upper bound on the
relative error is asymptotically tight (in the parameter p).

Next, we wish to find a contiguous partition into p subsets which minimizes the maximum
aggregation error, i.e., minimizes max{eu(cu): u � 1, . . . , p}. To introduce the solution
procedures, we first introduce a unifying formulation for min–max contiguous partitioning
problems defined on the set {v1, . . . , vn}. A contiguous partition can be defined by a set of p �
1 dividers, indices separating consecutive subsets. A contiguous subset Vu is defined by a pair
of indices, say k, t, such that Vu � {vk, vk�1, . . . , vt}. We assume that, for each such pair
k � t, there is a nonnegative real number a[k, t], called the value of Vu. For example, for our
problem of minimizing the maximum error, we define

a
k, t� � � �wj�vj � cu�: j � k, k � 1, . . . , t	,

where cu � ¥ {wjvj: j � k, . . . , t}/¥ {wj: j � k, . . . , t} is the centroid of Vu. Since with
centroid aggregation, f�(cu) � 0, we note that eu(cu) � a[k, t], when Vu � {vk, vk�1, . . . ,
vt}. We first observe that for our problem of minimizing the maximum error of the median
model, after an O(n) preprocessing, a[k, t] can be computed for any k � t in O(log n) time.
To show this, let c[k, t] be the centroid of the contiguous set vk, . . . , vt. Also, define �t � ¥
{wj: j � 1, . . . , t}, the sum of all weights from 1 to t, and �t � ¥ {wjvj: j � 1, . . . , t}.
Note that it takes O(n) time to compute all �t and �t, t � 1, . . . , n, since they can be computed
recursively. But then for any k � t note that

c
k, t� � ��t � �k�1�/��t � �k�1�.

For fixed k and t, let j� be the largest j such that vj � c[k, t]. Then we have

a
k, t� � ��j� � �k�1�c
k, t� � ��j� � �k�1� � ��t � �j�� � ��t � �j��c
k, t�.

Finding j� takes O(log n) effort, but c[k, t] and a[k, t] can be computed in constant time.
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3.2.3. Algorithms for Contiguous Partitions

We now give a Bisection Method for solving our model. This method, as well as the dynamic
programming approach given in the Appendix, depends on the following Monotonicity Property
of the a[k, t]. The proof of this property appears in the Appendix.

Monotonicity Property. Suppose that v1 � v2 � . . . � vn, and wj 
 0, for j � 1, . . . ,
n. Then a[k � 1, t] � a[k, t] � a[k, t � 1], for 1 � k � t � n.

Bisection Method. We describe a general bisection approach. This approach is similar to the
scheme given in Megiddo and Tamir [24] and Manne and Sorevik [22]. To solve the model, we
use binary search on a parameter r.

Given r, let p(r) be the minimum number of consecutive subintervals in the partition, such
that the value of each subinterval is at most r. Clearly, the optimal solution to our minmax
problem is the smallest value of r such that p(r) � p. The function p(r) is nonincreasing with
r, so we can use a binary search to find the smallest value of r, such that p(r) � p. Note that
we can either do (a) exact binary search on the set {a[k, t]}, 1 � k � t � n, since the optimal
value is one of the O(n2) values, or (b) view r as a real parameter and use bisection until the
length of the remaining interval containing the optimal value is smaller than some prespecified
precision level �. In (a) we apply exact binary search on the set {a[k, t]}, we compute p(r) for
O(log n) values in {a[k, t]}. In (b), the search over values of r, we compute p(r) for O(log
(M/�)) times, where M � a[1, n], the largest possible value.

Computation of p(r). Finally, the computation of p(r) [determining if p(r) � p] for a given
value of r is done as follows:

We assume that the values {a[k, t]} are given, or can be computed in constant time, after
some preprocessing. Consider the sequence of DPs v1, v2, . . . , vn.

Step 0.
Set p(r) � 0, and i � 1.

Step 1.
Using binary search on the index set {i, . . . , n}, let û� the largest j such that a[i, j] � r.
Add 1 to p(r).
If p(r) 
 p, stop, the optimal value is bigger than r.
If û� � n, stop, p(r) � p, and the optimal value is at most r.

Step 2.
Otherwise, set i � û� � 1, and return to Step 1.

The validity of the above procedure to determine whether p(r) � p follows directly from the
monotonicity property of {a[k, t]}. In the description given above the procedure terminates
after p steps. At each step we perform a binary search where we need to compute the values of
O(log n) terms of the sequence {a[i, j]}, j � 1, . . . , r. Hence, if any such term can be computed
in time T, the total complexity is O( pT log n). We have shown above that for our median
problem T � O(log n), and therefore the complexity is O( p log2 n). We also note in passing
that if we replace the binary search of Step 1 by a successive evaluation of a[i, i � 1], a[i, i �
2], . . . , a[i, û� ], the overall complexity will be O(n). This observation follows from the fact

625Francis, Lowe, Rayco, and Tamir: Rectilinear Median Location Problems



that all the centroids c[i, i � 1], c[i, i � 2], . . . , c[i, û� ] and all the terms a[i, i � 1], a[i,
i � 2], . . . , a[i, û� ] can be computed in O(�û� � i�) time, by using the compact expressions for
c[k, t] and a[k, t], given above. Binary search calls the above procedure repeatedly, doing
bisection search on r to determine whether the optimal value, say ERR, is bigger than or equal
to r. Since ERR is one of the terms in the set {a[k, t]}, we can utilize the monotonicity property
to search efficiently over this set. In particular, if we apply the procedure in Megiddo et al. [25]
[recalling that T � O(log n)], we can find ERR in O(n log2 n) time.

Alternatively, we can implement the idea behind the search routine in Megiddo and Tamir
[24], used originally to solve the p-center problem on the line. For the sake of completeness we
briefly describe this idea. There are p stages. In the first stage we search for ERR in the sequence
a[1, 1], a[1, 2], . . . , a[1, n], using the above O( p log2 n) procedure to determine if p(r) �
p. In O(log n) trials we identify an index, say j, such that a[1, j] � ERR � a[1, j � 1]. If
ERR is strictly less than a[1, j � 1], then the first set of an optimal partition must consist of
the points {v1, . . . , vj}. Thus, in O( p log3 n) time we identify the index j, and can proceed
to the second stage where we now search over the sequence a[ j � 1, j � 1], . . . , a[ j � 1,
n], etc. Altogether there will be p stages, and therefore the total complexity [including the initial
O(n) preprocessing time] is O(n � p2 log3 n). Thus, if n log2 n � n � p2 log3 n, the search
procedure of Megiddo et al. [25] should be used. Otherwise, the procedure of Megiddo and
Tamir [24] is preferred. We summarize our results as follows.

THEOREM 7: Suppose we are given a set of n demand points on the real line, and a positive
integer p. Let ERR denote the minimum value of the maximum error of a centroid decompo-
sition for the 1-median problem, over the set of all centroid decompositions defined by partitions
into p contiguous subsets of demand points. For any positive �, the bisection algorithm
computes, in O(n log[a[1, n]/�]) time, a partition into p contiguous subsets with a maximum
centroid decomposition error that is bounded above by ERR � �. The exact bisection algorithm
computes an optimal partition in O(min[n log2 n; n � p2 log3 n]) time. On the other hand, the
dynamic programming algorithm (see Appendix) computes ERR and an optimal centroid
decomposition of maximum error value ERR in O(n log n) time.

The above algorithms find a best centroid decomposition over the set of all such decompo-
sitions defined by partitions into contiguous subsets of demand points. The example following
Theorem 3 shows that if demand weights are not identical and unsplittable, then an optimal
centroid decomposition is not necessarily defined by a partition into contiguous subsets. (As far
as we know, the complexity of finding an optimal centroid decomposition among the set of all,
not necessarily contiguous, decompositions is still open for this weighted, unsplittable case.) As
noted above, when demand weights are splittable there is an optimal decomposition defined by
a partition into contiguous subsets. Indeed, if we assume that the demand weights are integer and
splittable into integral parts, an optimal centroid decomposition can be obtained by a modified
version of the above bisection algorithm. Specifically, if we let wmax � max{wj : j � 1, . . . ,
n}, then an optimal centroid decomposition into p subsets in the splittable case can be found in
O(n � p2 log n log2(nwmax)). For the sake of brevity we omit the details.

4. ERROR FOR THE PLANAR PROBLEM WITH RECTILINEAR DISTANCES

We now give a centroid row–column aggregation (CRC) algorithm that is shown to generate
an error no larger than the error which would result by using aggregation points specified by
ARC. Given the cells (intersections of rows and columns) provided by ARC, the individual cell
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centroids and weights redefine the approximating problem. We also establish a bound on the
relative error. This bound leads to a decreasing returns to scale error phenomenon we consider
practically important.

LEMMA 8: Given an ARC aggregation, for each Rows and Colt with demand points in their
intersection having total weight Wst, define

�c1
st, c2

st� � � ��wi/Wst��p1
i , p2

i �: �p1
i , p2

i � in Rows and Colt	.

(a) For all x1, we have

Wt
1�x1 � c1

t � � � �Wst�x1 � c1
st�: s � 1, . . . , n2	.

(b) For all x2, we have

Ws
2�x2 � c2

s � � � �Wst�x2 � c2
st�: t � 1, . . . , n1	.

PROOF: It is enough to prove part (a). Note that c1
t is the centroid of the {c1

st}, s � 1, . . . ,
n2. Thus the result follows from the Centroid Aggregation Lemma.

LEMMA 9: Given an ARC aggregation, let g( x1, x2) be the approximating function defined
by Table 1:

g�x1, x2� � � �Wst��x1 � c1
t � � �x2 � c2

s ��: s � 1, . . . , n2, t � 1, . . . , n1	.

Suppose another approximating function f� is defined by

f��x1, x2� � � �Wst��x1 � c1
st� � �x2 � c2

st��: s � 1, . . . , n2, t � 1, . . . , n1	.

For all ( x1, x2) we have g( x1, x2) � f�( x1, x2) � f( x1, x2). Therefore, the error in using f�
is never more than the error in using g.

PROOF: Lemma 8 establishes g( x1, x2) � f�( x1, x2). By the Centroid Aggregation Lemma,
f�( x1, x2) � f( x1, x2).

We now describe CRC. For a given choice of n1 and n2, we use the methodology of Section 3
to do independent demand point aggregation on the x1 and x2 axes, resulting in row spacings and
column spacings. Centroids of the individual cells are used as aggregation points.

CRC Algorithm

Input: P � {( p1
i , p2

i ): i � 1, . . . , m}, {wi: i � 1, . . . , m}

1. Choose positive integers n1 and n2.
2. Set up the functions f 1 and f 2 defined in Table 1. Rank the demand point x1 and
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x2 coordinates in increasing order; add weights of demand points on the line with
the same coordinate.

3. Find optimal contiguous partitions (see Section 3) of the x1 coordinate demand
points and x2 coordinate demand points into n1 and n2 subsets respectively. Denote
these two resulting minimal maximum errors by er1 and er2 respectively.

4. Define the approximating model f�(X) by using the centroid of each cell having
demand points as the aggregate demand point for all points in the cell (see Lemma
9). The weight of the centroid of each cell is the total weight of all demand points
in the cell.

Output. An ARC aggregation and approximating location model f�(X) with error at most er1 �
er2.

Step 2 of the algorithm can be done in O(m log m). Step 4 is O(n2 n1 � m); in the worst case,
each cell and each demand point must be considered. Note n2 and n1 are typically small
compared to m. Most of the effort occurs in step 3, and depends on which algorithm (Section
3 and the Appendix) is used.

Consider now the relative error e( x1, x2)/f( x1, x2) generated by the function g( x1, x2)
defined in the ARC algorithm. Since e( x1, x2) � e1( x1) � e2( x2) and f( x1, x2) � f 1( x1) �
f 2( x2) (see Table 1), we have e( x1, x2)/f( x1, x2) � e1( x1)/f 1( x1) � e2( x2)/f 2( x2), the sum
of the relative errors for x1 and x2, respectively. If we have no other information about x1 and
x2, we can use Corollary 6 to bound this relative error. With reference to the definition of an
ARC aggregation, for every s and t, let Lt

1 and Ls
2 denote the width and height of Colt and Rows,

respectively, with total weights Wt
1 and Ws

2 respectively. Define

b1 �
B1 �
�1 �
�1 �

min�Lt
1: t � 1, . . . , n1	 	 0,

max�Lt
1: t � 1, . . . , n1	,

min�Wt
1: t � 1, . . . , n1	 	 0,

max�Wt
1: t � 1, . . . , n1	,

b2 �
B2 �
�2 �
�2 �

min�Ls
2: s � 1, . . . , n2	 	 0,

max�Ls
2: s � 1, . . . , n2	,

min�Ws
2: s � 1, . . . , n2	 	 0,

max�Ws
2: s � 1, . . . , n2	.

It now follows from Corollary 6, for any ARC aggregation with n1, n2 � 3, that

e�x1, x2�/f�x1, x2� � �2B1�1�/
b1�1n1�n1 � 2�� � �2B2�2�/
b2�2n2�n2 � 2��, for all �x1, x2�.

Due to Lemma 9, this inequality is also true for any CRC aggregation with n1, n2 � 3. The
latter displayed inequality suggests that the relative error decreases at a decreasing rate as n1 and
n2 increase. This phenomenon has been noted in other related work (for example, see Francis
et al. [11]) and is practically important.

For purposes of insight into this decreasing returns to scale error phenomenon, consider the
idealized case where the demand points are continuously and uniformly distributed over a
rectangle B. Denote the x1 and x2 dimensions of B by L1 and L2, respectively. If we have n2

rows and n1 columns, then it can be shown that the rows and columns generated by the ARC
algorithm will have, respectively, widths of L1/n1 and heights of L2/n2. Note that each Wt

1 �
1/n1, and each Ws

2 � 1/n2. We know the maximum x1 error is the largest of the f 1( x1)
restricted to the demand points in some Colt and evaluated at the x1-coordinate centroid of Colt
(which is the midpoint of Colt). The maximum x1 error turns out to be L1/(4n1

2). Likewise, the
maximum x2 error is L2/(4n2

2). Thus the maximum error is L1/(4n1
2) � L2/(4n2

2). Assuming
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A � L1L2, and q � n1n2 is a constant, if we relax the integrality conditions on n1 and n2, we
can find the values of n1 and of n2 that minimize this upper bound. We find that n*1 �
(L2/L1)1/4q1/ 2, n*2 � (L1/L2)1/4q1/ 2 and the bound, for these values of n1 and n2, becomes
(0.5�( A))/q. Thus, the maximum error is proportional to �A and inversely proportional to q,
so the error decreases at a decreasing rate as q increases. Computational experience indicates
that this k/q phenomenon is robust.

Next, we consider the relative error for the case of uniformly distributed demand. From
Corollary 6, using � � �, b � B � L1/n1 or L2/n2, we conclude that an upper bound on the
relative error is 2/(n1(n1 � 2)) � 2/(n2(n2 � 2)). Clearly this upper bound goes to zero
quickly as n1 and n2 increase. For example, if n1 � n2 � 5, 10 or 20, then the upper bound
is 0.2 (20%), 0.05 (5%), and 0.0111 (1.11%), respectively. Note these bounds are independent
of L1 and L2.

FLR consider a case similar to the one above. They obtain an approximate expression for an
error bound (on the maximum error). Their error bound is L1/(4n1) � L2/(4n2). By compar-
ison, we have a bound on the maximum error of L1/(4n1

2) � L2/(4n2
2). Certainly, this is an

indicator of a much smaller bound. Note that if q � n1 � n2 and n1 � n2, then these error
measures are proportional to 1/�q, and 1/q, respectively. Our computational experience is
consistent with these measures.

Consider another insight of interest. We can think of the partition of demand points provided
by CRC as being a collection of city blocks, with cells corresponding to blocks. Then, using
Corollary 2, we can conclude that if centroid aggregation is used at the city block level, the error
is zero at each street intersection. In this case, there would be many places of interest for which
there is no error.

5. COMPUTATIONAL EXPERIENCE

Much of the theory of CRC has been developed for the rectilinear distance 1-median problem.
However, the aggregate demand points it provides can be used to define an approximating
problem for the NP-hard rectilinear distance n-median problem. To test how well CRC worked
for n-median problems, we used computational experimentation. All runs were made on a Unix
Sun sparc station (OS 5.6); the program was coded in C��. The exact bisection method was
used; execution times were relatively small. The elapsed time for the largest problem we solved
(a real data set from Palm Beach County, Florida) was about 20 s. For this problem we used
CRC with 30 rows and columns. Memory requirements are reasonable; these are basically
linearly proportional to m, the number of demand points.

We used much the same computational testing method as in FLR. This approach facilitated
making comparisons between our approach and theirs. Much of the following description of the
method is taken from FLR. Our objectives were to study various error values and determine their
dependence on the number of aggregate demand points, and to develop qualitative insights.
Further, we wished to compare our approach with the previous row–column approach. In all our
experimentation, we took every demand point weight to be 1/m, with m the number of demand
points (equivalent to taking every weight to be 1).

We studied a computer-generated problem we call the “central tendency” (CT) problem that
defined the distribution of the demand points. Each marginal demand point density function of
this distribution is a symmetric triangular distribution with a value of zero at endpoints of its
interval of definition. This problem simulates demand point locations in an urban area with the
highest population concentration in the middle of the area. The box B on which the distribution
was defined had dimensions of 1000 by 1000.
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We now describe our central tendency experiments. We varied m in increments of 5000
between 5000 and 25,000, and considered 1, 3, and 5 as values of n. For each given m and n
value we took n1 � n2 and varied n1 in increments of 5 between 5 and 30, resulting in values
of q ranging between 25 and 900. For given m, n, n1, and n2, we created and solved 20 central
tendency problems generated with the Monte Carlo method. Define a sample to be a collection
of choices, X, of n new facility locations. For each given problem, we randomly generated 100
samples. We sampled only from coordinates of demand points. For each X we computed the
n-median function value f(X), and the approximating n-median value f�(X) using the aggregate
demand points provided by CRC. From these function values for the sample we computed the
absolute errors. Then, using all 100 samples, we computed the sample average error (sae) and
sample maximum error (sme). Likewise, we computed the sample average relative error (sare)
and sample maximum relative error (smre). The error value provided by CRC for each problem
was averaged over 20 problems to give what we call the average maximum error (ame).
Similarly, the sae, sme, sare, and smre values computed as above for each sample were then
averaged over all 20 problems. Table 2 illustrates results of our experimentation for n � 5. In
the table, each entry represents an average over 100 samples (of X) and 20 sets of demand
points. Since demand points are randomly generated, it is possible that some cells may have no
demand points. In such cases, we adjusted q accordingly and averaged over all 20 values of q
to give the average q value reported. Such a case occurred as is illustrated below where one cell
in one of the 30 by 30 problems was empty.

Table 2 clearly illustrates how the error measures rapidly decrease as n2 � n1 increases. For
example, note that the smre value is less than 1% for n2 � n1 � 15. For the data of Table 2,
Figure 1 shows a graph of how the sare and smre values from CRC vary versus (the average
value of) q. In addition to plotting the sare and smre data, Figure 1 shows the result of using the
Power Curve Fitting option in Excel to fit a power curve of the form aqb to the smre graph, with
an R2 � 1. We shall sometimes refer to a power curve as aqb and sometimes as a/qb (with b
changed accordingly), depending on which form is more convenient.

We have fitted such power curves for most of our experimentation. Much of the motivation
for trying power curves comes from the formula (1

2
�A)q�1 for uniformly distributed demand

points discussed in Section 4. These power curves have R2 values so close to 1.00 that they
provide a very useful way of summarizing all the error graphs. Data on the power curves appears
in the upper part of Table 3.

We compared CRC with the previous (FLR) row–column method (abbreviated as MRC to
denote that cells were determined via a row–column procedure and that medians of demand
points in each cell were used as aggregate points). The lower part of Table 3 reports on the
results of our experimentation with MRC with central tendency distributed data and n � 5.
(Results for n � 1 and 3 are available from the authors and were quite similar.) As with CRC,
the numbers in the table corresponding to MRC are averages over 100 samples and 20 demand

Table 2. CRC computational experimentation with 25,000 demand points, based on the Central Ten-
dency distribution, for 5-median problems.

n2 � n1 ame sae sme sare smre avg. q

5 16.827 6.534 20.574 2.90% 9.62% 25
10 4.327 1.632 4.842 0.72% 2.20% 100
15 1.94 0.707 2.188 0.31% 1.00% 225
20 1.098 0.416 1.24 0.19% 0.56% 400
25 0.703 0.253 0.785 0.11% 0.35% 625
30 0.49 0.171 0.518 0.08% 0.24% 899.95
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point sets. The n2 � n1 values were the same as for the CRC runs. MRC uses an error bound,
an upper bound on the maximum error, which is valid for all n. It finds a row–column
aggregation to minimize (heuristically) the error bound over a certain class of such aggregations.
This bound is the sum of weighted distances between each demand point and the aggregate
demand point that replaces it. We abbreviate the error bound as meb. We abbreviate the average
of these error bounds over all the data sets as ameb.

We can see from Table 3 that each of the error measures for CRC is essentially of the form
aCRC/q, for some positive constant aCRC. By contrast, the error bound measure (ameb) for MRC
is approximately of the form aMRC/�q (see discussion at the end of Section 4). Each of the
other measures for MRC is roughly of the form aMRC/q0.9. Comparing the corresponding values
in Table 3 it is clear that CRC does a better job than MRC. In our experiments we found that
as n increases, error measures mostly increase with n and MRC becomes more competitive with
CRC. With n � 1 we found that the fitted formula for ame was 405.48/q0.9871. Note that the
formula (0.5�( A))/q would predict a maximum error of 500/q (although the demand points

Figure 1. CRC sare and smre Values vs. q, n � 5, m � 25,000.

Table 3. Error power curve fits, aqb, with central tendency demand point data for both CRC and MRC,
with m � 25,000 demand points, for n � 5.

CRC Central Tendency Error Function Power Fits, aqb

n � 5 ame sae sme sare smre

a 405.71 171.35 540.44 0.7589 2.5834
b �0.9872 �1.0119 �1.018 �1.0116 �1.027
R2 1.0000 0.9997 0.9997 0.9997 0.9998

MRC Central Tendency Error Function Power Fits, aqb

n � 5 ameb sae sme sare smre

a 419.67 202.8 538.52 0.9012 2.6784
b �0.4978 �0.8917 �0.9428 �0.891 �0.9565
R2 0.9997 0.9988 0.9997 0.9989 0.9999
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are not uniformly distributed). All the above discussion is for m � 25,000, but results with
smaller m values were much the same.

We also did some testing of problems we call the Gainesville (Gvl) and Palm Beach County
(PBCo) problems. The experimental approach was the same as for the central tendency
problems with the same n2 � n1 values, except that we used a sample size of 1000. We used
n � 3, and had only one data set for each problem. These problems had m values of 11,993,
and 69,960 respectively. The former problem is a computer-generated problem based on a map
of Gainesville, Florida; it spaces hypothetical demand points equally along the major streets. For
the PBCo problem, about 96% of the demand points are in the eastern third of the county, and
all fall on the street network of the county. A more detailed description of these two problems
can be found in FLR, as well as figures for each showing the demand points and an example of
an (old) row–column aggregation. Detailed results of the experiments are available from the
authors.

Many of the conclusions made for the central tendency runs apply to the Gvl and PBCo runs.
The most notable difference is that error graphs now appear to be more of the form a/qb with
b in the range 1.06–1.14 for PBCo, and 1.27–1.42 for Gvl, whereas b � 1 for the CT runs. It
is interesting to note also that the exponents for sae and sare were almost identical, as were those
for the sme and smre curve fits. The ratio of the first to the second error curve is essentially
constant. We found that CRC always outperformed MRC with respect to sae, sme, sare, and
smre, although for large q values there was not much difference.

The formula (0.5�( A))/q would predict 17.397/q and 128237.65/q for Gvl and PBCo,
respectively. The CRC curve fits for ame were 31.73/q1.1823 and 111561/q1.1699, respectively.
For 28 � q � 74, each prediction exceeds the corresponding fit, while for 75 � q � 1000,
each prediction improves as q increases. The Gainesville prediction is the better of the two.

We found that CRC gave smre values less than 1% for both Gvl (0.819%) and PBCo
(0.466%) with n2 � n1 � 15 and 20 respectively (q � 225 and 400, respectively). The PBCo
problem has almost six times as many demand points as the Gvl problem. Assuming integer
values of q, the use of the formulas 0.00819 � 3.3792/q1.1049 and 0.00466 � 7.3014/
q1.3345 would give q � 233 and q � 248, respectively. The use of the formulas 0.01 �
3.3792/q1.1049 and 0.01 � 7.3014/q1.3345 would give q � 50 and q � 140, respectively, to
achieve an error of 1%. In general, it seems striking how few aggregate demand points, as
compared to actual demand points, are needed in order to achieve quite small errors.

6. CONCLUSIONS

While the theory of CRC is based on the 1-median problem, we believe CRC can be quite
effective for doing n-median problem demand point aggregation, n � 2. Our computational
testing found CRC to be uniformly better than the row–column method of FLR, which was
specifically designed for n-median model aggregation. For example, with n2 � n1 � 15 or 20,
we found the sample maximum relative error to be no more than 1% for problems with as many
as 70,000 demand points. All the error measures we examined for CRC could be very well
modeled by a power function in q of the form a/qb, with b � 1. This power function nicely
captured how the errors varied with q (the number of aggregate demand points). We found that
q can be small, compared to m, and CRC will still provide a very good aggregation.

Assuming error behavior in q can be well modeled by an error power function, say er(q) �
a/qb, with b � 1, it is interesting to investigate some of the implications. Since er(q) is strictly
decreasing and continuous, it has an inverse function, denoted by er�1(t). With b� � 1/b, a�
� (1/a)b�, we have er�1(t) � a�/tb�. We interpret er�1(t) as the number of aggregate demand
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points we need to obtain an error of t. If we want a value of q so that the error is at most t,
er(q) � t, we need q � er�1(t). Further, because the inverse function is a power function that
decreases at a decreasing rate, to achieve a very small error, we may need a relatively large
number of aggregate demand points. Allowing only a slightly larger error might significantly
decrease the number of aggregate demand points needed.

Francis and Lowe [8] speculated that a model like an economic order quantity model could
be used to find a number of aggregate demand points to minimize the total cost of an
aggregation. The cost might be the sum of an error cost, say 
/q, and an aggregation cost, say
�/q. If the power function expression for error proves to be robust, such a model may be
possible, with perhaps the error costs and aggregation costs modeled somewhat more generally.
Finally, note that if the error function is of the form a/qb, it would only be necessary to make
runs for two different q values in order to fit the function. The following question now becomes
interesting. For what class of demand point distributions will the error curves be of this form?
There appear to be promising opportunities for further research on this question.

While the question of how to use CRC with shortest-path network distances in a GIS context
remains open, we are optimistic that an approach similar to that used by Andersson et al. [1] can
be used. They adapted the (different) row–column approach of [10] for use with shortest-path
network distances. Basically, their approach was to extract the subnetwork spanning each cell
in the row–column aggregation, and then solve a location problem on the subnetwork to find an
aggregate demand point for the cell. They found this approach worked well for n-median
problems.

APPENDIX

We first show, as was asserted in Section 3.1, that, for any centroid aggregation, the maximum error and maximum
relative error for the rectilinear 1-median occur at some grid point defined by the q2 cross-products of all centroid
coordinates.

LEMMA 10: Given a centroid aggregation for the rectilinear 1-median problem, with a partition of the demand set
into q subsets, let {Cu � (c1

u, c2
u): u � 1, . . . , q} denote the respective set of centroids. Consider the cell partition

of the plane into closed rectangular cells, defined by the q vertical lines {( x1, x2): x1 � c1
u}, u � 1, . . . , q, and the

q horizontal lines {( x1, x2): x2 � c2
u}, u � 1, . . . , q. Then on each cell of the partition, the function f�( x1, x2) is

linear, the error function e( x1, x2) � f( x1, x2) � f�( x1, x2) is convex, and the relative error function e( x1, x2)/f( x1,
x2) is quasiconvex.

PROOF: The linearity of f�( x1, x2) over any cell follows directly from the definition of the cell partition. The function
f( x1, x2) is convex over the entire plane. Therefore, the error function e( x1, x2) is convex over any cell. To prove the
quasiconvexity of the relative error function on a given cell CE, we note that rel(X) � e(X)/f(X) � 1 � (�f�(X)/f(X)).
But this is a constant term plus a nonpositive linear function divided by a nonzero convex function. This is sufficient
(Avriel [2], page 156) to establish quasiconvexity. �

THEOREM 11: Consider a centroid aggregation for the rectilinear 1-median model, with a partition of the demand
set into q subsets. Let {Cu � (c1

u, c2
u): u � 1, . . . , q} denote the respective set of centroids. Then the maximum error

and the maximum relative error occur at a pair of points with the property that their x1 coordinates are in the set {c1
u:

u � 1, . . . , q}, and their x2 coordinates are in the set {c2
u: u � 1, . . . , q}.

PROOF: From Lemma 10, we know that both the error and the relative error functions are quasiconvex over each cell.
Therefore, the maximum error and the maximum relative error over any bounded cell CE are attained at one of the four
extreme points of CE (see Mangasarian [21]). Clearly each such corner point has the property stated.

Consider any unbounded cell CE. We note that, for the rectilinear median problem, starting at a corner point of CE,
the error function is monotone nonincreasing along each infinite edge incident to the corner point, and the relative error
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tends to zero along this edge. The supremum of a quasiconvex function over CE is equal to its supremum over the
boundary of CE. Thus, we conclude from the above that the maximum error, and the maximum relative error, over CE
occurs at one of the (at most) two corner points of CE. This completes the proof.

We now provide proofs of several results in Section 3.2. First, we consider Theorem 1, part b.

PROOF OF THEOREM 1, PART b: The first inequality follows directly from the triangle inequality, �vj � x� � �x �
cu� � �vj � cu�. To prove the second inequality, suppose that Vu � {vj(1), . . . , vj(t)}, where vj(1) � vj � vj(t), for
all vj in Vu. Then Lu � vj(t) � vj(1). Define the function

g�h1, . . . , ht� � � �wj�s��hs � h��: s � 1, . . . , t	

where

h� � � �wj�s�hs: s � 1, . . . , t	�� �wj�s�: s � 1, . . . , t	.

Note that

� �wj�vj � cu�: vj � Vu	 � g�vj�1�, . . . , vj�t��.

Now g(h1, . . . , ht) is a convex function, and therefore its maximum over the box defined by the constraints, vj(1) �

hs � vj(t), s � 1, . . . , t, is attained when hs � {vj(1), vj(t)}, for all s � 1, . . . , t. Let (h*1, . . . , h*t) be a maximum
point, and let I � {s: h*s � vj(1)}, and J � {s: h*s � vj(t)}. Define W(I) � ¥ {wj(s): s � I}, W( J) � ¥ {wj(s):
s � J}, and Wu � ¥ {wj(s): s � 1, . . . , t}. Then the maximum value of g in the above box is given by
2W(I)W( J)(vj(t) � vj(1))/Wu. Since W(I) � W( J) � Wu, an upper bound on the maximum value of g is obtained
when we set W(I) � W( J) � Wu/ 2. This proves the second inequality of the theorem.

PROOF OF THEOREM 3: To prove the theorem, let V1, . . . , Vp be a noncontiguous partition of V � {v1, . . . , vn}.
It is sufficient to show that there exists a contiguous partition V�1, . . . , V�p, such that �Vu� � �V�u�, u � 1, . . . , p, and
E( x: V1, . . . , Vp) � E( x: V�1, . . . , V�p) for every real x.

Let {c1, . . . , cp} be the set of centroids corresponding to the subsets of the partition V1, . . . , Vp. Without loss of
generality, suppose that c1 � c2 � . . . � cp. Due to the additivity of the error function, it is sufficient to prove the
result under the assumption that the subset V1 is not contiguous of the form {v1, v2, . . . , vm}, where m � �V1�.
(Otherwise, set V�1 � V1 and consider the partition of {vm�1, . . . , vn} defined by V2, . . . , Vp.)

We will show that we can perform a sequence of interchanges of elements of the subset V1, and obtain a subset V�1 �
{v1, . . . , vm} while maintaining the above properties of the new partition.

Let vt be the largest element in V1. Since V1 is not contiguous, there is a point vs, which is not in V1, and vs � vt.
Suppose that vs is in Vr. Consider the partition V �1, . . . , V �p, obtained from V1, . . . , Vp, by interchanging vt with vs,
i.e.,

V �u � Vu, for u � 1, r, V�1 � �V1 � �vt		 � �vs	, V�r � �Vr � �vs		 � �vt	,

so that �Vu� � �V �u� for u � 1, . . . , p. Define z � vt � vs. Since vt 
 vs, z is positive and so

c �1 � c1 � z/�V1� 
 c1 and c�r � cr � z/�Vr� 	 cr.

In particular, it follows that c �1 is smaller than or equal to the centroids of all subsets V �u, u � 1, . . . , p. We then obtain,
�( x) � E( x: V1, . . . , Vp) � E( x: V �1, . . . , V �p) � �V1� �x � c �1� � �Vr��x � c �r� � �V1� �x � c1� � �Vr� �x � cr�.
The above difference, �( x), is a continuous piecewise linear function with breakpoints at {c1, cr, c �1, c �r}. The function
�( x) is easily observed to be constant and zero outside the convex hull of {c1, cr, c �1, c �r}. It is straightforward to show
that �( x) is nonnegative at its four breakpoints, and thus it follows that �( x) is nonnegative everywhere. This completes
the proof of the theorem.

We now establish Lemma 5.

PROOF OF LEMMA 5: The minimum of f( x) is attained at a weighted median of the set V � {v1, . . . , vn}. Due
to convexity of f( x) it is sufficient to assume that x is in the interval [v1, vn]. Consider the case where x is a point in
the kth interval, CHk, and without loss of generality let 1 � k � ( p � 1)/ 2. Let [A, B] denote the kth interval, and
for simplicity let x be a real number between 0 and b� � B � A, where x � 0 refers to A, and x � b� refers to B.
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Now, for each interval j, j � k � 1, the sum of weighted distances from the DPs in the interval to x is bounded below
by �[b(k � j � 1) � x].

For each interval j, j � k � 1, the respective lower bound is �[b( j � k) � x]. (Recall that b� � b, by definition
of b.) Summing over all values of j, we get the following lower bound for the sum of weighted distances of all DPs
from x:

��b/2�
�k � 1��k � 2� � �p � k � 1��p � k�� � �x
�k � 1� � �p � k��.

By assumption, k � ( p � 1)/ 2, and so [(k � 1) � ( p � k)] � 0. But then the minimum of the above expression
over all values of x, 0 � x � b, is attained at x � b. Substituting x � b, we get the lower bound

g�k� � ��b/2�
k�k � 1� � �p � k��p � k � 1��.

This bound obviously depends on k, the index of the interval assumed to contain the one-median, x.
To find a lower bound on f( x) for all x, we want the integer minimizer of g(k) in the range k � ( p � 1)/ 2. The

real minimizer is k� � p/ 2. Thus, if p is even, p/ 2 is the minimum integer point, and the optimal value of g is
�(b/4) p( p � 2). If p is odd, by the convexity of g(k) the integer minimum is found either at k � ( p � 1)/ 2 or k �
( p � 1)/ 2. Both of these values give g(k) � �(b/4)( p � 1)2, and so the result follows.

We next provide a proof of the Monotonicity Property (see Section 3.2) of the set {a[k, t]}.

PROOF OF MONOTONICITY PROPERTY: Due to symmetry, it is sufficient to prove that for our median model
a[1, t] � a[1, t � 1], for t � 2, . . . , n � 1. Let j� be the largest index j such that vj � c[1, t], and let j� be the
largest index j such that vj � c[1, t � 1]. Clearly, c[1, t] � c[1, t � 1], and 1 � j� � j� � t. From the definition
of j� and j� we now have a[1, t � 1] � a[1, t] � (¥ {wj: j � 1, . . . , j�})(c[1, t � 1] � c[1, t]) � (¥ {wj: j �
j� � 1, . . . , t})(c[1, t � 1] � c[1, t]) � wt�1(vt�1 � c[1, t � 1]) � (¥ {wj(c[1, t � 1] � vj): j � j� � 1, . . . ,
j�}) � (¥ {wj(vj � c[1, t]): j � j� � 1, . . . , j�}), where if j� � j�; the last two terms in the sum are absent.

For j � j�, c[1, t � 1] � vj � 0, and therefore the third sum on the right-hand side of the above equation is
nonnegative. Moreover, since vj � c[1, t � 1] for j � j�, the fourth sum on the right-hand side of the above equation
is greater than or equal to �(¥ {wj: j � j� � 1, . . . , j�})(c[1, t � 1] � c[1, t]). Thus a[1, t � 1] � a[1, t] �

(¥ {wj: j � 1, . . . , j�})(c[1, t � 1] � c[1, t]) � (¥ {wj: j � j� � 1, . . . , t})(c[1, t � 1] � c[1, t]) � (¥
{wj: j � j� � 1, . . . , j�})(c[1, t � 1] � c[1, t]) � wt�1(vt�1 � c[1, t � 1]) � (¥ {wj: j � 1, . . . , j�})(c[1,
t � 1] � c[1, t]) � (¥ {wj: j � j� � 1, . . . , t})(c[1, t � 1] � c[1, t]) � wt�1(vt�1 � c[1, t � 1]) � 2(¥
{wj: j � 1, . . . , j�})(c[1, t � 1] � c[1, t]) � (¥ {wj: j � 1, . . . , t})(c[1, t � 1] � c[1, t]) � wt�1(vt�1 �
c[1, t � 1]) � 2(¥ {wj: j � 1, . . . , j�})(c[1, t � 1] � c[1, t]) � (¥ {wj: j � 1, . . . , t � 1})c[1, t � 1] �
(¥ {wj: j � 1, . . . , t})c[1, t] � wt�1vt�1. Finally, from the definition of c[1, t] and c[1, t � 1] we have (¥ {wj:
j � 1, . . . , t � 1})c[1, t � 1] � ¥ {wjvj: j � 1, . . . , t} � wt�1vt�1 � (¥ {wj: j � 1, . . . , t})c[1, t] �
wt�1vt�1. Thus we conclude that a[1, t � 1] � a[1, t] � 2(¥ {wj: j � 1, . . . , j�})(c[1, t � 1] � c[1, t])

 0.

Finally, we give a dynamic programming method to solve the model given in Section 3.2.

Dynamic Programming Method. This method has been discussed in the literature extensively in other location
contexts (see Hassin and Tamir [18]). For each index i, i � 1, . . . , n, and integer q, q � 1, . . . , min(n � i � 1,
p), let h(i, q) be the minimum of the maximum value of a subset in an optimal partitioning of the set of points Vi �
{vi, . . . , vn} into q nonempty consecutive (contiguous) subsets.

From the definition we have

h�i, 1� � a
i, n�, and for q � 2, . . . , min�n � i � 1, p�,

h�i, q� � min�max�a
i, k�, h�k � 1, q � 1��: k � i, . . . , n � q � 1	.

The optimal solution value to the above partition problem is then given by h(1, p).
Olstad and Manne [27] give an O( pn) algorithm to solve the above model, under the following assumptions on the

set of values {a[k, t]}:
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i. a[k, t] is positive for all k � t.
ii. a[k � 1, t] � a[k, t] � a[k, t � 1], k � t.

iii. a[k, k] can be computed in constant time.
iv. Given a[k, t], we can calculate a[k � 1, t], a[k � 1, t], a[k, t � 1] and a[k, t � 1] in constant time.

Frederickson [14, 15] gives an O(n) algorithm under i–iii. above as well as

v. a[k, t] is computable in constant time for any pair k � t, after an O(n) preprocessing algorithm.

Megiddo and Tamir [24] present an O( p2 log2 n) algorithm, assuming that a[k, t] is computable in constant time for
any pair k � t. (This sublinear bound is valid, for example, for the unweighted p-center problem on the line, where a[k,
t] � vt � vk.) Manne and Sorevik [22] describe a bisection method based on a simple O(n) feasibility test for finding
an approximate solution which runs in O(n log(a[1, n]/�)), where � is the desired precision.

As shown in Section 3.2 for our problem, after the initial O(n) preprocessing a[k, t] can be computed in O(log n)
time for any pair, k � t. Due to the Monotonicity Property as well as the discussion in Section 3.2 of computing the
a[k, t], the set of values {a[k, t]} clearly satisfy i–iii. Thus, in this case, an O(n log n) algorithm will follow from
Frederickson’s scheme. The algorithm of Megiddo and Tamir [24] will run in O(n � p2 log3 n) time, and will therefore
dominate Frederickson’s algorithm when p is relatively smaller than n, e.g., p � O(�n/log n). The algorithm of Olstad
and Manne [27] will take O( pn log n) time.
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