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We consider the optimization problem of locating several new facilities on a tree network, with respect to existing
facilities, and to each other. The new facilities are not restricted to be at vertices of the network, but the locations are
subject to constraints. Each constraint function, and the objective function, is an arbitrary, nondecreasing function of
any finite collection of tree distances between new and existing facilities, and/or between distinct pairs of new facilities,
and represents some sort of transport or travel cost. The new facilities are to be located so as to minimize the objective
function subject to upper bounds on the constraint functions. We show that such problems are equivalent to mathematical
programming problems which, when each function is expressed using only maximization and summation operations on
nonnegatively weighted arguments, are linear programming problems of polynomial dimensions. The latter problems
. can be solved using duality theory with special purpose column generation and shortest path algorithms for column

pricing.

Network location problems occur when new facil-

ities must be located on a transport network of
some sort, such as an air, aisle, highway, river or sea
lane network. Existing facilities on the network have
locations that can be represented by vertices. Travel
between facilities results in costs of some sort. An
objective function to be minimized represents cost,
which 1is usually nondecreasing in the distances
between facilities.

The network location problems we consider are
continuous, in the sense that we allow new facilities
to be located at any points of the network—not just
at vertices. Similarly, our problems do not have fixed
costs. We wish to find optimal locations: ones that
minimize the objective function while satisfying cer-
tain constraints. These constraints may impose upper
bounds on distances between facilitiés or, more gen-
erally, on nondecreasing functions of distances
between facilities. In case the network is a tree, our
approach leads to an equivalent mathematical pro-
gramming problem which, for many cases of interest,

is a linear program with a polynomial number of
variables and constraints. For the nontree case, our
approach can be used to obtain upper and lower
bounding problems.

We are given a tree T, defined as in Dearing and
Francis (1974b) with positive arc lengths. The tree has
m vertices, v, ..., Um, €ach of which is the location
of some existing facility. We wish to locate n new
facilities on the tree 7, at locations denoted by
X1, ..., X», to be determined. With (nonnegative)
tree distances defined in the usual way, we have a
collection of distance functions; d(x;, v,) is the dis-
tance between new facility j and existing facility i,
while d(x;, x) is the distance between new facilities j
and k. Letting g denote the cardinality of the subset
of distance functions of interest, we note that

gsmn+ (n— n/2. (D)

With X = (x,, ..., x,) the vector of new facility
locations, we let D(X) denote a vector of all the
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distance functions of interest, where the g entries in
D(X) occur in some well defined order.

We have an objective function, as well as con-
straints, which depend upon the tree distances
between facilities. The problem of interest, denoted
by PM for the monotonic problem, is as follows.

Problem PM
Minimize f,(D(X))

subjectto fi(DX) < b, k=1,...,p.

We assume each (real-valued) function fi, k = 0, 1,
., D, is nondecreasing in each component of D(X).
We show that PM is equivalent to a mathematical

programming problem. When each monotonic func-
tion f; has a certain structure involving summation
and/or maximization operations, PM is equivalent to
alinéar programming problem which is tractable using
the revised simplex algorithm with special shortest
path algorithms for column pricing and column gen-
eration. We briefly summarize some computational
experience for a special linear case.

If we pose PM on a general, undirected and finite
graph G with positive arc lengths and shortest path
distances we get a difficult problem. Even without
constraints the objective function includes the n-
center problem, which is NP-hard (Hsu and Nemhau-
ser 1979, Kariv and Hakimi 1979a), and the n-median
problem, which is also NP-hard (Kariv and Hakimi
1979b). Results of Kolen (1982) imply that determin-
ing whether or not there exists a feasible solution (one
satisfying the constraints) is NP-hard; Kolen also
exhibits unconstrained “multimedian” and “multi-
center” location problems which are NP-hard. Hence
we concentrate on the case when G is a tree 7. Having
a tree allows us to formulate an equivalent linear
program for many cases of interest.

Many location problems (e.g., all the location theory
journal papers we reference except for the review
papers) involve costs that are nondecreasing in dis-
tance, so that our monotonicity assumption is often
quite reasonable. We observe, given any two nonde-
creasing functions, that the: 1) sum, 2) maximum,
3) minimum, and 4) composition of the two functions
(whenever it is defined) is also a nondecreasing func-
tion. Furthermore, if both functions are always non-
negative, and their product is well defined, then 5) the
product is also a nondecreasing function. Hence,
many operations with nondecreasing functions of dis-
tance yield nondecreasing functions of distance, so
that many tree network location problems can be put
into the above form.

The literature on discrete location theory problems,
which are solved by solving some linear programming
relaxation, is vast (Francis and Mirchandani 1989).
We emphasize that we are not studying such problems.
Rather, we are studying location problems which are
essentially continuous in nature, and we obtain equiv-
alent mathematical programs, nof relaxations.

While we know of no literature for the general
version of our problem, the literature for various
special cases is substantial. The literature that we know
of related to our problem is for the unconstrained case
when f; is linear, for the constrained case when n = 1,
and for certain minimax location problems which we
will discuss. Almost all the literature we cite considers
the case of a tree network.

For the case of no constraints, the problem where
the objective function is a sum of (weighted) distances
has been solved by Picard and Ratliff (1978) and
Kolen (1981, 1982); the “multicenter” problem where
the objective function is a maximum of (weighted)
distances has been solved by Francis, Lowe and Ratliff
(1978) (abbreviated henceforth as FLR).

The literature on network location problems with
distance constraints is not large, with the exception of
covering problems (see Kolen and Tamir 1989).
Halpern (1976, 1978, 1980) studied locating a single
new facility subject to upper bounds on its distance to
existing facilities, as did Handler (1985). Dearing,
Francis and Lowe (1976) formulated a number of
problems with distance constraints and proved they
are convex problems, but gave no algorithms except
for n = 1. FLR, who introduced the so-called separa-
tion conditions we exploit subsequently, studied
whether or not a solution exists for collections of
distance constraints, and applied their results to solve
a minimax problem (mentioned above); Tansel,
Francis and Lowe (1980) build on their work to
solve some multiobjective location problems. Tansel,
Francis, Lowe and Chen (1982) considered dis-
tance constraints between existing facilities and
closest new facilities for the p-center problem. Moon
and Chaudhry (1984) discuss applications of loca-
tion problems with distance constraints, suggest a
classification scheme for such problems, and re-
port experience with some integer programming
formulations.

There is some literature on a minimax multifacility
location problem with rectilinear distances solved by
Dearing and Francis (1974a) which includes distance
constraints. Often a location problem with rectilinear
distances can be interpreted as a sequence of location
problems on line segments. We can consider each line
segment to be a tree that is a path. Such problems on



paths often have equivalent linear programming for-
mulations which can be constructed quite directly
(Francis and White 1974). Dearing and Langford
(1975) showed that some tree network location prob-
lems could be converted to equivalent rectilinear dis-
tance location problems, which then could be solved
using linear programming.

Besides the literature on covering problems, there is
also some other literature on duality related to our
work. Specifically, see Dearing and Francis (1974b),
Chan and Francis (1976), Dearing (1977), Francis
(1977), FLR, Halpern (1980), Tansel et al. (1982),
and Kolen (1982).

In the next section, we show that problem PM is
equivalent to the following, where Z is a vector of real
variables:

minimize f,(Z)

subject to fi(Z)< by, k=1,...,p.

D(X) < Z.

In FLR, it was established that the constraints
D(X) < Z can be replaced by “separation conditions,”
a collection of equivalent linear inequalities 4 Z = d,
which, together with.Z = 0, gives a mathematical
programming problem. Given an optimal solution Z*
to the latter problem, an O(n(m + n)) algorithm they
call the sequential location procedure and term SLP,
then can be used to construct new facility locations
X* which satisfy D(X*) < Z* so that X* solves the
original problem, PM.

It is our reliance on the separation conditions that
requires the assumption that the network on which
the facilities are to be located is a tree. If the network
is not a tree, it is known that the separation conditions
are only necessary conditions for the constraints
D(X) < Z to be satisfied. Consequently, for a general
network the solution of the mathematical program-
ming problem we shall construct provides a lower
bound on the minimum objective function value of
the original problem. Even if this lower bound is
attained, it can be difficult to construct the corre-
sponding locations given the distances; Kolen (1982)
has proven that such a problem is NP-hard.

Suppose we formulate PM on a general network G
as, say, (PM: G), using shortest path distances, and
denote the minimum objective function value of
(PM: G) by f*(G). We can get an upper bound on
f¥(G) by solving PM on any spanning ¢ree for which
a feasible solution exists, using the approaches we shall
develop. Hence ways exist of computing both upper
and lower bounds on f3(G). In follow-on research to
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ours, Erkut, Francis and Lowe (1988) developed some
of these ideas, obtaining computational experience by
computing upper and lower bounds on minimum
objective function values for a number of “multime-
dian” problems; the average gap between the bounds
was approximately 4%.

It has been the case that most tree network location
problems were solved on an ad hoc basis, with a new
solution procedure being devised for each problem.
The advantage of our mathematical programming
model is that we obtain a unifying collection of theory
applicable to many problems. Due to the very large
body of mathematical programming research, the
opportunities for knowledge transfer appear quite sub-
stantial. For example, we shall use duality theory,
column generation, and the revised simplex method.
These are all well known linear programming tools
that have not been used previously for the location
problems we consider. Likewise, it will now be possible
to apply mathematical programming results on sensi-
tivity analysis and parametric programming to the
location problems we study. Furthermore, our model
is sufficiently general to include, as special cases, tree
network location models which have never been stud-
ied; in Section 2 we give an example of one such
model. We believe it will be possible to use our
approach as a means of obtaining insight into prob-
lems previously too complicated to consider. Once
such insight is obtained we suspect it will then be
possible to devise algorithms which improve upon our
approach; certainly previous study of combinatorial
problems with equivalent linear programming for-
mulations (see, for example, Grotschel, Lovasz and
Schrijver 1981) suggests that such should be the case.

In a survey paper, Tansel, Francis and Lowe (1983)
raise the question of why tree network location prob-
lems are more tractable than location problems on
general networks, and point out that convexity results
(Dearing, Francis and Lowe) constitute a partial expla-
nation. One can also point to NP-completeness results
for general networks of Hsu and Nembhauser (1979),
Kariv and Hakimi (1979a, b), Kolen (1982), to
equivalent linear programming formulations of cov-
ering location problems on tree networks (Kolen and
Tamir 1989), and to graph theory (Kolen 1982).
We think our obtaining equivalent mathematical
programming problems is a further explanation.
Many well solved tree network location problems
have equivalent formulations as linear programming
problems.

We now give an overview of the remainder of this
paper. In Section 1 we obtain an equivalent mathe-
matical programming problem. All results in Section
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1 apply to problem PM, but those of Sections 2 and
3 require additional “convexity” assumptions. In Sec-
tions 2 and 3 we concentrate on equivalent linear
programming problems; in this case, the f, functions
are linear or “isotone polyhedral convex” (defined in
Section 2). For this case, the dual problem can be
solved using the revised simplex method with column
generation and special shortest path algorithms for
column pricing. At the end of Section 3, we outline
the computational experience for a special case of our
problem which we call the multimedian problem,
denoted as follows.

Problem PMM
Minimize c¢” D(X)

subjectto D(X)<b, XET"

(T" 1s the n-fold Cartesian product of 7" with itself, as
defined by Dearing, Francis and Lowe) where b is a
given vector with positive entries and ¢ has nonnega-
tive entries. In Section 4 we give a numerical example
of the multimedian problem. We recommend periodic
reference to Section 4 to see the various ideas of
Sections 1, 2 and 3 illustrated.

1. An Equivalent Mathematical Programming
Problem

In this section, we obtain two mathematical program-
ming problems that are equivalent to PM. In order to
be precise, we first define an isotone function (see
Reinboldt 1970; More and Reinboldt 1973). Let E;
denote the nonnegative orthant of E, (Euclidean r-
space), and f be a function from E; into E,. We say
that f'is isotone if for any U, V € E], U < V implies
f(U) < f(V). Here inequalities are component-wise
inequalities. Note that we do not require s = 1.

A fundamental result that we shall use is the follow-
ing well known, easily proven lemma.

Monotonicity Lemma. Let [ be an isotone function
from E} into E,. For any b € E, and D € E], the
Jollowing are equivalent.

(a) We have f(D) < b.
(b) There exists Z € E] suchthat D < Z, f(Z) < b.

That (a) implies (b) is trivial, while (b) implies (a)
uses the isotonicity of f.

From this point on we assume that each function f;
isisotone, k=0, 1,. .., p. Then, an equivalent version

of PM is clearly as follows:
minimize b,

subject to

f(DX) < b, k=0,1,...,p.

The Monotonicity Lemma thus gives the following
equivalent constraints:

f(Z)< b, k=0,1,...,p;
D(X) < Z.

If there is an optimal solution to this problem then
there exists an optimal solution, say X*, Z* with
Z* = D(X*). Essentially, we shall make a change of
variables in order to work with real variables instead
of tree distances; monotonicity allows us to relax the
constraints Z = D(X) to D(X) < Z.

We formulate the latter problem as an equivalent
mathematical programming problem by replacing
D(X) < Z by an equivalent set of linear inequalities.
We construct an undirected network N(Z) as follows.
(Figure 1 illustrates N(Z) for m =4, n= 3.) Let N(Z)
have nodes E,, . . ., E,, corresponding to the existing
facilities, as well as nodes N,, ..., N, corresponding
to the new facilities. Include an arc (E;, N;) corre-
sponding to each distance function d(x;, v;) in D(X);
the arc length is the entry in Z corresponding to this
distance. Include an arc (N;, N,) corresponding to
each distance function d(x;, xx) in D(X); the arc length
is the entry in Z corresponding to this distance. We
assume N(Z) is connected, otherwise PM decomposes
into independent problems corresponding to the com-
ponents of N(Z). Similarly, we assume that the sub-
network of N(Z) induced by the N nodes is connected.
Let L’(E,, E;: Z) denote the length of a shortest

Figure 1. The network N(Z) for the example of
Section 4.



(simple) path between any two nodes E, and E, of
N(Z). FLR proved that the constraints D(X) < Z are
equivalent to the following inequalities, which they
call the separation conditions:

L,(Eh’ Ei: Z) = d(U/‘H UI')’

Also, FLR gave SLP, an O(n(m + n)) algorithm which,
given Z, either finds an X for which D(X) < Z, or else
determines that no such X exists. Because the order
of SLP is the same as that of the data, it is known,
given reasonable assumptions (Tansel, Francis and
Lowe 1980) that SLP is a lowest order (worst case)
algorithm for the problem it solves.

We call a path in N(Z) between E, and E, direct if
it is simple and contains exactly two E nodes, E, and
E.. Tansel, Francis and Lowe (1980) proved that an
equivalent version of the separation conditions is
obtained if we replace the left-hand side of (2) by
L(E,, E;: Z), defined to be the length of a shortest
direct path in N(Z) between E, and E;, | < & <
I < m. Henceforth, we refer to the collection of
inequalities involving shortest direct paths as the sep-
aration conditions.

Let A be a zero-one path-arc incidence matrix such
that each row of 4 corresponds to some direct path in
N(Z), and each column corresponds to an arc of
N(Z). The ones in a row of 4 thus identify the arcs of
N(Z) in some direct path. Let d be a vector with each
entry some tree distance, say d(v,, v;). A and d have
the same number of rows; for any row of 4 corre-
sponding to a direct path between some E, and E;, the
corresponding entry in d is d(v,, v;). An equivalent
version of the separation conditions (2) is that the
length of every direct path between E;, and E, (a linear
function in Z) is at least d(v,, v;). Hence, an equiva-
lent form of the separation conditions, which we call
the (direct) path constraints, is

AZ=d, Z=0. 3)

Thus, given Z = 0, there exists X € T” such that
D(X)< Zifand only if AZ = d.

Consequently, PM is equivalent to the following
mathematical programming problem, which we
denote by PMP1.

lsh<ism )

Problem PMP1

Minimize f(Z)

subject to

S(ZYy<s b, k=1,...,p,
AZ = d,

Z=0.
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Given an optimal solution to PMP1, say Z*, we
can apply SLP to the network N(Z*) to construct a
corresponding optimal solution, X*, the locations of
the new facilities, to PM.

The price we pay to obtain PMP1 is that we have
a real variable corresponding to every distance func-
tion in D(X), as well as the extra linear inequalities
AZ = d. Fortunately, the linear inequalities can be
replaced by a smaller collection of linear inequalities,
as our theorem of this section will establish.

When each function f; is convex as well as isotone,
then PMP1 is a convex programming problem having
mostly linear constraints, for which there exist well
known optimality conditions and duality relations.
For the (equivalent) problem (PM), we know of no
such results. Beginning with Section 2, we shall con-
centrate on problems having equivalent linear pro-
gramming formulations. We reserve equivalent
convex programs for future study.

PMP1 may not appear too tractable, since there is
arow of 4 for every direct path in N(Z), and it is easy
to show there can be as many as

Cm.Z 2 ]' Cn‘j
J=1

direct paths (here C, , denotes all combinations of »
things taken j at a time). However, there is a column
of A for every arc of N(Z), and there are exactly ¢
arcs, with g satisfying (1). Hence, it will usually be the
case that 4 has many more rows than columns, a fact
we exploit in our computational work.

Noting that the matrix 4 has O (m?n!) rows, we give
a result that justifies the replacement of the system
AZ = d by a system of inequalities with the same
number of variables, but where the number of ine-
qualities is polynomial in m and n.

Without loss of generality we assume (1) holds with
equality, so that the network N(Z) has every possible
arc length, that is

z(E;, N)), i=
Z(]vj7 Nk)’

lI,...,m andj=1,...,n;

l<sj<ksn
Also we define

z(N;, E;) = z(E,, N)),
i=1,....,myj=1,...,n

Z(Ni, Ny =z(N;, N,), I <j<k=<sn

These are not extra variables, but simply alternative

names for Z entries which we find convenient to use.
We say the vector Z satisfies the type-EN triangle
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inequality conditions if

Z(En, Ni) + z(Nk, N;) — z(Es, N}) = 0,

l<sh<sm;, Ilsj<ksn

Likewise, we say that the vector Z satisfies the type-
NN triangle inequality conditions if

z(N;, N,) + z(N,, Ni) — z(N;, Ni) = 0,
Il<sj<ksn;, Ilspsn p#jk

We say Z satisfies the triangle inequality conditions if
Z satisfies both the type-EN and type-NN conditions.
Note that the total number of type-EN triangle
inequality conditions is mn(n — 1)/2, while if
n = 2 the total number of type-NN conditions is
n(n — 1)(n —2)/2.

Given any nodes E, and E, in N(Z), let
S(E,, E;: Z) denote the length of a shortest direct path
between E, and E; that uses exactly one N node; that
is, S(Es, Ei: Z) = min{z(E,, N)) + z(N;, E)): j= 1,
..., h}.

We can now give our result.

Theorem. There exists Z = 0 satisfying the separation
conditions

LE, E:Z)=dw,,v) forl<sh<ism 4)

if and only if there exists Z*, 0 < Z* < Z, which
satisfies the triangle inequality conditions and

SE,LE:ZY=d,,v) forlsh<ism. 5

Proof. (=) Define Z* as follows: for each 1 < j <
k < n, let z¥(N,, N,) be the shortest path length
between N, and N, on the subnetwork of N(Z) in-
duced by the N nodes. For each E,, N;, | < h < m,
1 < j < n, define z*%E,, N,) to be the length of a
shortest path in N(Z) between E, and N,, over
all paths connecting E, and N, and using no E node
but E,.

It is verified easily that Z* satisfies the triangle
inequality conditions. Also, 0 < Z* =< Z follows
directly from the definition. Finally, observe that

SELE:ZN=LE,E:2Z) forlsh<ism
and thus (5) follows from (4).

(<) It suffices to show that L(E,, E;: Z*) = d(v,, v;)
forlsh<i<sm.

Consider some shortest direct path on N(Z*) con-
necting E, and E,. Let the path be characterized
by the following ordered sequence of nodes: E,,
Ny, - -5 Njw, E;; that is, the path consists of Ey,

E; and the k intermediate N nodes. Thus
L(E,, E;: Z*)
= z%En Niwy) + 2*WNj), Ni)
+ o+ 2 Ny, Niw) + 2¥(Njw, E)).
If k = 1, then j(1) = ji(k) and
L(E,, E: Z*) = S(E,, E;: Z*) = d(vs, v)).

Thus consider the case of k = 2; using the type-NN
conditions repeatedly we get

L(E,, E;: Z¥)
= zXEs, Njwy) + z*(Njy, Njw) + 2*(Njw, E)).

In order to use the type-EN conditions we must dis-
tinguish two cases: j(1) < j(k); j(1) > j(k). If j(1) <
Jj(k), then

Z¥(Niys Niw) + 2*¥(Njw, Ei) = 2*(Nj), E)).
Thus
L(E,, E: Z%)
= z*E\, Ny) + z¥(Njwy, E)
= S(Es, Ei: Z%) = d(vs, v)).
If j(1) > j(k) then
Z¥En, Niy) + z*(Njay, Njw) = z*Es, Niw)-
Thus
L(E,, E;: Z¥%)
= zXEx, Njw) + z2¥(Njwy, E))
= S(E,, E:: Z*) = d(vs, v)).
This completes the proof.
Let us denote by
aZ =6

the triangle inequality constraints together with the
path constraints

z(En, Nj) + z(N}, E)) = d(vs, v))
lsh<ism 1<sj<n
Each entry in « is —1, +1, or 0; each entry in 4 is O or

a distance between two tree vertices. We now have the
following corollary.

Corollary. For the problem PMP1, because each func-
tion f. is isotone, we can replace the linear system
AZ=dbyaZ= 35 and get an equivalent problem
that we denote by PMP2.



Thus (for n = 2) we replace a factorial number of
constraints by

nn— 1)(n—2)/2
+ mnn-—1/2+mim— 1)n/2
=nn-—1)(n—-2)/2+mnim+n-—2)/2

constraints. In reducing the number of constraints we
have not altered the number of variables. This number
of constraints, while polynomial in m and », can still
be large; for example, if m = 50 and n = 10, we get
14,860 constraints.

Finally, we consider the applicability of ellipsoidal
algorithms (Bland, Goldfarb and Todd 1981). For the
formulation PMP1, if the function f; is linear for k =
0,1, ..., p, then PMP1 is a linear program with a
nonpolynomial number of constraints. However, due
to the existence of SLP, given a vector Z, we can test
in (strongly) polynomial time whether Z is feasible, or
else produce a violating constraint. Using the poly-
nomial equivalence between strong separation and
strong linear optimization (e.g., Lovasz 1986), we
conclude that the linear version of PMP1 is solvable
in polynomial time by ellipsoidal algorithms. If the
functions f,, k=0, 1, ..., p are convex and given by
certain “oracles,” then ellipsoidal algorithms can give
an e-approximation solution in time that is polynom-
ial in terms of |log ¢| and the “complexity” of the
oracles (Lovasz).

Turning to the formulation PMP2 and assuming
that all functions are linear, we obtain a linear pro-
gram of polynomial dimensions. In this case, in ad-
dition to ellipsoidal algorithms, we also can apply the
(polynomial) projective methods pioneered by
Karmarkar (1984). Unlike ellipsoidal algorithms, the
latter methods seem to perform quite reasonably when
compared with classical simplex type procedures.

2. The Linear Case: Polyhedral Convex Functions

In the spirit of Halpern’s work (1976, 1978, 1980) on
the cent-dian problem, consider the following gener-
alized cent-dian problem, where u > 0, D,(X) denotes
entry A4 of D(X), and the w, and w;, are known non-
negative constants, “weights.” The objective function
is equivalent to a convex combination of a minisum
and a minimax objective function.

Minimize

> wiDy(X) + p max {w,Di(X)}

h /

subject to D(X) < b.
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The Monotonicity Lemma implies that the problem
is equivalent to

2 W,Zp + 23 m/ax {wllzll}
h !

subject to D(X) < Z < b.

minimize

Since ¢ > 0 we have, also equivalently,

minimize 2, w,zj, + py
I

subject to  w,z, <y forall h, DX)< Z < b.

Replacing the inequalities D(X) < Z by either AZ =
dor aZ = §, gives an equivalent linear programming
problem solvable by the approach we shall develop.

When n = 1 (one new facility) the “max” term in
the objective function is a “center” type term (n = 1
is the problem studied by Halpern). When »n = 2, the
max term is not equivalent to an “n-center” type term,
but to a “multicenter” n-facility minimax problem
with mutual communication (FLR). For reasons ex-
plained later, our approach will not handle “center-
type” problems with more than one center.

We wish to generalize from this example. We ob-
serve that the objective function can be written as the
composition of two isotone functions, say f(Z) =
2:(g0(2)), where Z = D(X), go(Z) is a vector with two
entries, y, = Z{w,z,: A} and y, = max{w,z,: h}, and
g(Y) =y + py.

Thus consider the function f, where f(Z) = g.(. ..
£1(g(2)) ...) is the composition of s + 1 functions,
and is defined for Z = 0. Each function g is a mapping
from E,, into E, ., for some n(k), n(k + 1), with
n(s + 1) = 1. In this section, we consider the case
where each entry i in g.(Z,) is of the form

max {a,, Zi + biu}
J

where the maximum is over a finite number of terms
(possibly only one, in which case entry i of g.(Z) is
a linear function), each term a;, is a constant vector
of the same dimension as Z,, and the b, are known
real numbers. The functions g.(Z,) of the above form
are the polyhedral convex functions (PC functions)
studied extensively by Rockafellar (1970). Since the
maximum or sum of two PC functions is a PC func-
tion (Rockafellar, Section 19) it follows that fis a PC
function.

Our particular interest is the case where Z; = 0 and
each component function of g(Z;), k=0, 1, ..., s
is an isotone function. We will call this class of func-
tions f the isotone polyhedral convex (IPC) functions.
A sufficient condition for a PC function to be an IPC
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function is that every vector @, has all nonnegative
entries. In particular, for the special case when fis a
linear function with nonnegative coefficients, f is an
IPC function. If each function f, of PM is an IPC
function we shall see that PM is equivalent to a linear
programming problem.

Note that f(D(X)) is a convex function, in the sense
of Dearing, Francis and Lowe, if fis an IPC function.

Informally, we can consider an IPC function fto be
one with each entry in each of its component functions
a real-valued function of r real variables, expressed
using a finite number of max and sum operators, and
only these operators. Each operator can be weighted
in the sense that each element operated on can be
multiplied by a nonnegative number. Many location
problems are of a “minimax” or “minisum” nature,
so that our subsequent results will be applicable to
many location problems. When each f function in
PM is an IPC function, we denote problem PM by
PIPC. PIPC does not include, as a special case, the n-
median or n-center problem for n = 2, since these
problems involve the use of the min-operator, due to
the assumption of service of each customer by a
nearest facility.

Our intent in studying PIPC is to convert it to an
equivalent linear program. The way we treat max-
operators is well known in the context of converting
minimax problems into equivalent constrained prob-
lems but, so far as we know, our treatment of general
IPC functions in a network location context is new.

We caution that our approach for obtaining equiv-
alent linear programs may not be best for specific
problem structures obtainable as special cases. Partic-
ularly for minimax problems, our introduction of a z
variable corresponding to every tree distance may be
an extravagant use of variables. For example, the
approach we develop, as applied to the 1-center prob-
lem, yields an equivalent linear program with m + 1
variables and m + m(m — 1)/2 constraints, whereas
the approach of Dearing or Francis yields a linear
program with 1 variable and m(m — 1)/2 constraints;
all three approaches use the separation conditions, but
the latter two approaches better exploit the minimax
structure of the problem. Finding “best” equivalent
formulations for the problems studied, in terms of
computational effort, is a topic for future research.

In the Appendix, we demonstrate how to transform
PIPC into an equivalent linear program. We state this
linear program, denoted by PMinLP, as follows.

Problem PMinLP

Minimize ¢’V

subject to QZ — PV < 3,
FZ < b,
AZ = d,
Z, V=0

We will briefly describe the structure of PMinLP;
more detail appears in the Appendix. Recall that PIPC
is the special case of PM when the functions f;, f;,
..., f, are IPC functions. In addition, let us suppose
that £, ..., f, are linear functions. To represent the
linear constraint functions in matrix form, let ¥ be a
matrix with rows f,.,, ..., f,, and b be a vector with
entries b,.,, ..., b,. Since the functions fy, . . ., f, are
IPC, the vectors ¢ and 3, and the matrices Q and P,
reflect the composition ideas described earlier in this
section. As we show in the Appendix, Q and P are
block-diagonal, with each block in P having a staircase
structure. Furthermore, each entry in ¢, Q and F is
nonnegative. Finally, AZ = d represents the separation
conditions. Qur principal conclusion of this section is
that PIPC and PMinLP are equivalent. In the next
section, we explore solving PMinLP by solving its
dual.

Certainly if a direct solution approach, such as the
primal simplex method, is to be used, we recommend
the use of «Z = 6 in place of AZ = d in PMinLP.
However, for purposes of exposition, we retain the
above formulation. We reserve computational expe-
rience with the o Z = § formulation for future research.

3. Algorithmic Considerations

We develop a means of solving PMinLP, as well as
the version of PMinLP we obtain by replacing 4 and
d by a and §, respectively, by solving the correspond-
ing dual problem. Our second solution approach is
built upon the first, and shares with it common ideas;
also, our computational experience is with the first
approach.

The dual of PMinLP, denoted by PMaxLP, is as
follows.

Problem PMaxLP
Maximize — B87Y, — b'Y, + d"Y;
subjectto —Q7Y, ~ F'Y2+A"Y; +5§, =0,
P7Y1 + SZ =C,
Yla Yz, YS, Sl, 82?0.

Let us explore the application of the revised simplex
method (Dantzig 1963) to this problem. Note that the
dimension of the basis matrix is now g (g is the number



of arcs in the network N(Z)) plus the number of rows
in the matrix P”. Observing that PMaxLP has an
initial basic feasible solution with an identity matrix
as a basis matrix, let us suppose we have some given
arbitrary basic feasible solution and the corresponding
basis inverse matrix, with (Z, V) the corresponding
vector of simplex multipliers. Note that Z and V are
the vectors of reduced costs for S, and S,, respectively.
We list below the column vectors of reduced costs
corresponding to Y,, Y,, and Y;:

Y.: 83— Q0Z + PV,
Y):b— FZ; Y;: —d+ AZ.

It should be clear that the critical issue is to deter-
mine how to do pricing for the columns of 47, each
of which corresponds to a direct path of N(Z). We
employ a recommendation of Ford and Fulkerson
(1958) who encountered a multicommodity flow
problem with a similar mathematical structure.

Note that nonnegativity of the reduced costs for Y;
is equivalent to the separation conditions. If we apply
Dijkstra’s (1959) algorithm to N(Z), in the worst case,
we may need to compute a shortest direct path from
each E node to every other E node, giving an O(mn(m
+ n)) effort for pricing. This order is derived as follows:
for every E;, let N,(Z) be the subgraph of N(Z) which
includes all N nodes and the node E,. Applying Dijk-
stra’s algorithm to N:(Z), we find the shortest path
from E; to every N node in an 0(n?) effort, since N(Z)
has n + 1 nodes. Repeating the above for every E node
gives an O(mn?) effort to find the shortest path from
every E node to every N node. But then, to find a
shortest direct path between any of the 0(m?) pairs of
E nodes, we must consider every N node to “match
up” the shortest paths, giving 0(m °n) additional effort.
This approach allows the pricing of all columns of 47,
whereas SLP only prices out all columns when no
violated path exists.

While it does not allow the pricing of all columns
of A” (unless no violated path exists), SLP, which
works directly with the tree 7, can either find a
violated path or conclude that none exists in a worst
case effort of 0(mn + n?) (achieved when an optimal
solution is found). Note that this effort is /inear in m,
as opposed to a quadratic effort (in m) for the other
approach; furthermore, we would expect to have m
substantially larger than n due to the nature of the
location problems being studied. Hence, there seems
to be a good reason to study the use of SLP for pricing
columns of A7, We observe that the use of SLP for
column pricing is analogous to common computa-
tional strategies, as discussed by Chvatal (1983), of
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pricing out only a limited number of columns to find
one to enter the basis.

SLP discovers that no feasible solution exists by
discovering a violated path. At some point SLP places
a new facility, say NF, at location Xx;, in the tree T for
which there exists some other facility, say F,, at loca-
tion y, in T, with

d(x;, yi) > zp (7
that is,
d(x;, yi) — zw > 0. 8)

Here z; is the upper bound on the distance between
NF; and F,, and is the length of the arc (NF;, F;) in
N(Z) joining nodes NF; and F,, so that

I(NFJ‘, F: Z) = Zjk. (9)

In this case, it is known (FLR) that there exist some
E nodes, say E, and E; (possibly F, = E,) and paths
P(E,, NF,) and P(F,, E,), where

P(Eh’ EI) = P(Eh, NF])’ (NF)’ Fk)a P(F/\': El) (10)
satisfies
IP(E,, E;: Z) < d(vy, v)). (11)

Thus a separation condition is violated, so no feasible
solution to the distance constraints exists.

The interest in FLR was in constructing a feasible
solution to the distance constraints or in discovering
that no feasible solution exists. There was no reason
at that time to actually construct a violated path; it
was enough to know of the existence of such a path.
However, in our case, we need to be able to construct
violated paths in order to find columns to make basic.
Hence, we augment SLP by developing a procedure
to construct violated paths. The basic idea of the
procedure is as follows. Each time the location of
some new facility, say NF;, causes a distance con-
straint to be tight, a record is made of the other facility,
say F;, defining the tight distance constraint. (When
more than one distance constraint is tight, we arbi-
trarily choose one of the F; which are involved in a
tight constraint.) We call NF, and F; stopped and
stopping facilities, respectively. In effect, NF, is labeled
from F,.

When no feasible solution exists to the distance
constraints, it is known that all locations made by
SLP cause tight distance constraints, and hence cause
labeling to occur. Suppose SLP places NF; at x;, and
some facility F, at location y, causes (7) to be satisfied.
In this case we have a violated path, and no feasible
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solution exists. We can then use the labeling infor-
mation to trace a sequence of stopping facilities from

NF, until we find a stopping facility which is an’

existing facility, say E,; the sequence of facilities de-
fines a path, say P(E,, NF,), in N(Z). Likewise, we
use the labels to construct a path P(F,, E;) in N(Z).
Consider the path P defined by (10). Essentially the
same approach as in Lemma 5.2 of FLR guarantees

[P(E,, NF;: Z) = d(vs, x;) (12)
IP(Fy, Ei: Z) = d(yx, vi). (13)
On adding (9), (12), and (13) we get

[P(Es, Ei: Z) = d(vs, X;) + zix + d(Yi, Ui). (14)

Furthermore, essentially the same approach as in
Property 5.2 of FLR guarantees

d(vy, v;)

= d(v,, x;) + d(x;, ye) + d(yi, v)). (15)
Subtracting (15) from (14) gives
[P(E,, Ei: Z) — d(vs, v))

= zj = d(x;, Vo). (16)

We call the right side of (16) the gap for the constraint
d(x;, yr) < zu. Thus, the reduced cost of the path P is
the gap for the constraint causing P to be a violated
path. Also, (8) and (16) give (11), so we conclude that
a path defined by (10) is in fact a violated path.

While it is not a part of the formal SLP algorithm,
for computational implementations it may be useful
to note that we can also explicitly price out other
direct paths containing P(E,, NF;) which have nega-
tive reduced costs in the following way. We check
each distance constraint involving new facility j and
the existing facilities, as well as each distance con-
straint involving new facility j and previously located
new facilities, for a gap. Each negative gap leads (as
above) to a corresponding violated path with a nega-
tive reduced cost. Among these violated direct paths
we can choose one with a most negative reduced cost
to make basic.

Of course, it should be clear that SLP also does
implicit column pricing because as it begins to locate
new facilities it begins to satisfy distance constraints,
so that separation conditions begin to be satisfied.
Satisfied separation conditions correspond to columns
with nonnegative reduced costs. When all separation
conditions are satisfied, then all reduced costs for Y3
are nonnegative.

If necessary, cycling can be avoided by using the

conventional means of avoiding cycling (Dantzig) for
the revised simplex method.

Assume (1) holds as an equality. If P7 has ¢ rows,
the size of the basis is g + ¢, so transforming the basis
inverse takes 0((¢ + o)?) effort, as compared to 0(q)
effort to price out columns of 47 using SLP. The effort
to price out one column of (—Q, P)” is 0(g + o).
Thus, the total effort per iteration depends greatly
upon the number of columns of (—Q, P)7 which are
priced out. In this regard, it may be useful to exploit
the sparsity of this matrix. Because ¢ is quadratic in
n, it is important to realize that the effort to transform
the basis inverse is a fourth degree polynomial in ».
Hence this approach may not be a practical one for
large n.

For the problem PMM, its dual is to maximize
—b"Y, + d"Yssubjectto — Y, + ATY;+ S =¢, Y5,
Y3, S, = 0. In this case, the effort to price out columns
corresponding to entries in Y is just g, so (using SLP)
the effort to do all column pricing is order g, and it is
the effort to transform the inverse of the basis which
is the predominant effort per iteration.

While our computational experience has not kept
pace with our algorithm development, we do have
some computational experience for PMM. We have
developed codes that solve PMM using the Floyd-
Warshall algorithm (Floyd 1962, Warshall 1962), a
rudimentary implementation of Dijkstra’s algorithm
of 0(m(m + n)?), and SLP. Our experience can be
summarized as follows. Column pricing with SLP was
the most successful of the three approaches we tried.
SLP was comparable, in terms of the number of
iterations, to complete column pricing using the
Floyd-Warshall algorithm, and about ten times faster
than either the Dijkstra or the Floyd-Warshall algo-
rithm for column pricing. Regression experience with
SLP indicates that the number of iterations grows at
a rate that is less than quadratic in basis size.

For the largest problems we solved, of size (n, m) =
(10, 50), the average sparsity of the basis inverse
exceeded 99%. This sparsity makes the problems we
solved behave like much smaller problems in terms of
memory requirements and run time. We exploited
this sparsity to develop a Pascal code which runs on
PC-compatible machines. The average times this code
took to solve problems of size (8, 50), (9, 50) and
(10, 50) were 37.3, 70, and 450 minutes, respectively;
each time is based on a sample size of 10 randomly
generated problems, and includes the time needed to
maintain a frequency distribution of basis inverse
values, as well as to make periodic corrections of the
basis inverse.

To summarize, our computational experience



indicates that column generation with SLP is an ade-
quate means of solving PMM for the problems we
considered. More information on computational test-
ing is available upon request.

We now consider solving problem PMinLP in a
way that exploits the theorem of Section 1. For sim-
plicity, we denote PMinLP by P, and PMaxLP by D.
We denote by P’ the problem obtained by replacing
AZ = din P by a Z = . Likewise, we denote by D’
the problem obtained by replacing 4 and d in D by «
and 6, respectively. Of course, D’ is the dual of P’.
We know, by the theorem of Section 1 and its corol-
lary, that P and P’ have the same optimal solutions
and objective function values.

We can solve P’ by solving D’ in essentially the
same way we solve P by solving D, except by using an
algorithm SLPT in place of the algorithm SLP. SLPT
uses SLP to seek a violated path, and then checks for
violated triangle inequalities using the nodes in the
violated path. The algorithm SLPT works as follows.

Use SLP to check D(X) < Z. Either SLP constructs
X such that D(X) < Z, or else finds a violated path,

say P = (E,, Ny, ..., Ny, E) in N(Z) of length
[P(E,, E;: Z) such that
[P(E,, Ei: Z) < d(uvs, v)). 17

1. If there is a single N node in P, (17) defines a
violated path constraint in « Z = § and we stop.

ii. If there are exactly two N nodes in P, then (17)
becomes

z(En, Nmy) + z(Nyy, Nzp)

+ z(Npy, E) < d(us, v;). (18)
If [1] < [2] then we check
z(E;, Nuy) < z(Ei, Npy) + z(Npy, Npy) (19)
and if (19) holds we conclude
z(Ex, Npy) + z(NVyy, E) < d(vs, v:). (20)

Equation 20 defines a violated path constraint in
a Z = 6 and we stop; if (19) fails, then we have
a violated triangle inequality and we stop. In case
[2] < [1] we check

z(E;, Npy) < z(Es, Nyy) + z(V, Nizy) (21)
and if (21) holds we conclude that
Z(Es, Ng)) + z(Np), E) < d(uvs, v)). (22)

Equation 22 now defines a violated path constraint in
o Z = & and we stop; if (21) fails, then we have a
violated triangle inequality and stop.
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iii. In case there are at least three N nodes in P,
then we check the following p — 2 (< n — 2) triangle
inequalities

z(Nuy, Niyy) < z(Ny, Nyj—ip) + 2(N-n, Nyy)
forj=3,...,p. (23)

(The choice of triangle inequalities to check is not the
only choice.) If at least one of the type-NN inequalities
in (23) fails, then we have identified a violated con-
straint in « Z = § and stop. Otherwise, we use (23)
with (17) to conclude

z(Ey, Nip) + z(Npy, Ny + z2(Nipy, E) < d(va, v)).

We proceed as in ii above, checking a type-EN ine-
quality; if it fails we have a violated triangle inequality
in o Z = 6 and stop; otherwise we conclude z(E,, N,)
+ z(Ny, E)) < d(vs, v;) for k = [1] or k = [p] and
proceed as in i above.

SLPT outputs either the X it finds such that
D(X) =< Z or else the violated inequality in o Z = § it
identifies. As concerns the order of SLPT, it takes
O(n(m + n)) effort with SLP to find a violated path,
and then it takes O(n) effort to find a violated
inequality in « Z = 6. Thus, in O(n(m + n) + n) =
O(n(m + n)) effort, SLPT either constructs X such
that D(X) < Z or finds at least one violated inequality
inaZ=6.

Let us now relate the above to solving P’. We solve
P’ by solving D’ in the same manner that we solve P
by solving D, except that SLPT is used for column
generation with D’ in the exactly analogous manner
that SLP is used for column generation with D. Given
Z = 0, we use SLPT for pricing columns of «”, either
identifying a column of a” to make basic, or else
concluding there exists X € 7" such that
D(X) < Z. Proceeding in this way, at some iteration
(assuming no cycling) we conclude that all reduced
costs, disregarding those associated with the columns
of «”, are nonnegative, and that there exists X € T”
such that D(X) < Z; in this case, we have the following
conclusion.

Lemma. Suppose we have a basic feasible solution to
D’ with all reduced costs nonnegative corresponding
to the variables Y,, Y,, S,, and S, of D'. Let (Z, V)
denote the vector of simplex multipliers for this basic
feasible solution.

Ifthere exists X € T" for which D(X) < Z, then with
Z* = D(X), (Z*, V) is an optimal solution to P’. Thus
‘X is an optimal solution to PIPC.

Proof. Let 6 denote the objective function value of
the basic feasible solution to D’; the formula that
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expresses ¢ in terms of the basis cost vector, the basis
inverse, and the right side of the constraints of D’,
together with the definition of the multipliers, implies

=07, CT)<IZ/) = cTV,

Our assumptions about the nonnegativity of the
reduced costs give

Zz20, V=0, QZ-PV<p, FZ<b.

Next we observe that each entry in the Q matrix and
in the F matrix of P’ is nonnegative. Since 0 < Z* <
Z, it follows that

QZ* - PV<QZ-PV<pB, FZ*<FZ<h.

Also since Z* = D(X) and Z* < Z, and since tree
distances obey the triangle inequalities, we conclude
that « Z* = 6. Of course Z*, V' = 0 also, and thus we
conclude that (Z*, V) is a feasible solution to P’. But
the objective function value of (Z*, V) is just ¢’V
and ¢”V = ¢, thus, the weak duality theorem of linear
programming implies (Z*, V) is an optimal solution
to P’.

Since P’ is equivalent to PIPC, it follows that X is
an optimal solution to PIPC.

The attraction of SLPT is that it avoids checking
explicitly all the triangle inequality conditions, instead
checking at most O(n) of them, and substituting the
conclusion that there exists X such that D(X) < Z for
the conclusion that o Z = 4. Thus, we get a means of
solving the problem which exploits the theorem of
Section 1.

To summarize, it is pricing the columns of A7 and
a” that is not done in the conventional way. To do
this pricing we check the separation conditions. In
order to check the separation conditions we need Z =
0, which can be assured by continuing to make cor-
responding slack variables basic whenever an entry in
Z becomes negative.

4. An Example

Consider the following example of the multimedian
problem, PMM. Since our computational experience
is for the version of PMM with AZ = d, we use AZ =
d in our example also.

Let T be a tree with vertices v,, vy, v; and v,, and
arcs [vi, vs], [va, va], and [vs, v4], each of unit length.
We wish to locate three new facilities, at locations
denoted by (x;, x,, x3), to be determined. For i = 1,

2, 3, 4 let E; correspond to the existing facility i, and
forj =1, 2, 3 let N, represent new facility ;.

Let all 15 components of the distance bounds vector
b be equal to 2 with the exception of the entries
b(N,, N,), b(N,, N;) and b(N,, N;), which are each
set to 1. Also let every component of the cost vector ¢
be 0, with the exception of the entries ¢(E,, N,),
¢(E,, N,) and ¢(Es, N;), which are each equal to 1.

We shall see that the (unique) solution to this ex-
ample is to select x;, j = 1, 2, 3 to be the midpoint of
the (unit length) arc [v;, v.] of the tree.

We use the above example to illustrate some of the
general results and algorithms presented above. First
note that the network N(Z) has a total of 7 nodes and
15 arcs, since m = 4 and n = 3. Figure 1 shows a
sketch of N(Z). The total number of direct paths
connecting pairs of E nodes is 90. Thus, in the
formulation

minimize c¢’Z
subjectto AZ=d, 0<Z<b

the separation constraints, AZ = d, involve 15 vari-
ables and 90 constraints. The compact formulation
with AZ = d replaced by o« Z = §, based on the
theorem, has the same set of variables but only 33
constraints.

We now illustrate the column pricing procedure of
Section 3, used to solve the dual of PMM, namely

maximize —-b7Y, + d’Y;
subject to —Y, + A7Y; + S, = ¢,
Y;, Y5, 8 = 0.

The dimension of a (dual) basis is 15. If we start
with the basis corresponding to the slacks S, the
vector of simplex multipliers, Z, is identically zero.
Thus the separation conditions AZ — d = 0 (i.e., the
nonnegativity requirement of the reduced costs for
Y3) are all violated. Therefore, each path of N(Z) is a
violated path.

Recall that columns of 4 ™ correspond to direct paths
in N(Z) between pairs of E nodes. Likewise, rows of
A7, and thus the dual equality constraints, correspond
to arcs of N(Z). To demonstrate the pricing mecha-
nism on a nontrivial basis, consider the feasible (dual)
basis B defined by the column of A" associated with
the single component (path) of Y5 connecting E, and
E, via N, only. This column, which we take to be the
first column of B, is augmented to a full basis as
follows. Let the first four rows of B correspond



respectively to the following arcs of N(Z): (E,;, N,),
(E2, N,), (E5, N3), and (E,, N;). Choose as columns
2 and 3 of B the columns associated with components
of S, corresponding to arcs (E,, N,) and (E;, N;),
respectively. Let the fourth column be associated with
the component of Y, corresponding to (E,, N,). Fi-
nally, let the last eleven columns be associated with
the components of Y, corresponding to the arcs not
represented above. Permute columns (and rows) 5
through 15 so that column i is —e,, i = 5, ..., 15.
Therefore, the basis matrix appears as

1 ]

1

- —1 -l

The basis matrix is equal to its inverse. Using the
appropriate objective coefficients, it is easily verified
that Z, the vector of multipliers associated with this
basis, is given by z(E;, N;) = z(E,, N,) =
z(Es, N3) =0, z(N,, N2) = z(N,, N3) = z(N,, N;) =
1; the other nine components are all equal to 2.

To find a violated path (equivalently, to find the
reduced costs for Y3) we test the separation conditions
with SLP, which works directly on the original tree.
Note that the input to SLP consists of the above vector
Z, which expresses the upper bounds on the distances
between the facilities. The separation conditions are
not satisfied. In particular, z(E,, N,) = z(E,, N,) =0
imply x;, = v, and x, = v,. But then d(x,, x;) =
d(v,, vy) = 2, contradicting z(N,, N,) = 1. Thus,
(E;, N;, N1, E;) is a (direct) violated path of N(Z).
This path has length0 + 1 + 0 <2 = d(v,, v,), and a
gapof2 — 1= 1.

This first basis example also applies for PMM
with « Z = 6, since the only column of 47 in the basis
corresponds to a column with a single N node.

As another illustration of the pricing procedure,
consider the following (optimal) dual basis for the
above example. Let rows 1, 2 and 3 correspond re-
spectively to the arcs (E,, N,), (Ez, N,), and (E;, N3).
There are three columns of A7 in the basis; columns
1-3 correspond to the following paths on N(Z): P, =
(Ez, N2, N3, E;); P, = (E,, N|, N3, E3); P =(E(, Ny,
N, E;). Let columns 4-15 be associated with the
components of Y, corresponding to all arcs of N(Z)
but (E;, N;), i = 1, 2, 3. Of these, columns (and rows)
4, 5 and 6 correspond to (N, N;), (N;, N;) and
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(N,, N,), respectively. Permute columns (and rows)
7-15 so that column i is —e;, i = 7, ..., 15. Thus
the basis matrix is given by

0 11
1 0 1
1 10
_|1 -1
B 1 -1 ’
1 -1
b —'1_‘

It can be verified that the vector of multipliers,
Z, associated with this basis is given by z(E,, N,) =
z(E;, No) = z(E;, N3) = Y2, z(N,, N;) =
z(N,, N3) = z(N,, N;) = 1, and the other nine
components are all equal to 2. Applying SLP with the
above bounds indicates that there are no violated
paths, i.e., the separation conditions are satisfied, and
thus all reduced costs are nonnegative. The only fea-
sible solution for the separation conditions with the
above bounds is to select x;, the location of new facility
J,J =1, 2, 3, as the midpoint of the arc [v;, v,] of the
tree. Consequently, we get a unique optimal solution
to our example problem.

Appendix

We demonstrate here how to transform PIPC into an
equivalent linear program. With f an IPC function
defined by f(Z) = g,( --- (8&(&(Z)) ---), repeated
use of the Monotonicity Lemma implies the inequality
f(D(X)) < bis equivalent to D(X), < Z, and

&(Z) — R, <0,
&(R) ~ R <0,
(24)
g&-1(Ri-) — R, <0,
g(R;) <b.
Z=20;, Re=0, k=1,...,s.h (25)

It should be clear that there exist matrices M, ...,
M Ny, ..., Ns;vectors u, ..., u; and a vector b,
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so that the inequalities (24) are also equivalent to the
linear inequalities

MoZ — N, R, < f,
MR, — M,R, < o,
| (26)
M,_\R,-, — NR, <up,,
MR, < b

For example, M, has a row for each term inside every
max-operator in go(Z) as does u,; entries in u, are
the negatives of the additive constants inside the
max-operators. N, has rows that are unit vectors,
with unit vectors repeated for each term in every
max-operator in go(Z). Entries in b* repeat cor-
responding entries of / for each term in every max-
operator in g,(R,). Note that all the M matrices are
nonnegative, and the N matrices have entries of 0
and 1. Furthermore, the M and N matrices can have
more rows than columns due to the occurrence of a
max-operator.

Equivalent to (26), we also have matrices P* and
Q*, and vectors V and 8, giving (27) as

Q*2 - P*¥V<g 27

where Vis the column vector with (partitioned) entries
R, through R,

" N, 0 0
—Ml N2 O
pro | 0 M 0
0 0 N,
(Mo M)
0 M2
o*=| 0| s=|"
0 Ky
L 0 b*

Consider PIPC when the objective function, and
the first r constraint functions, are IPC functions. Let
the remaining constraint functions of PIPC be linear
functions, i.e., fT Z< b, i=r+ 1, ..., p. Using the
results above, we can write our problem as the follow-
ing, denoted by PMinLP,, where ¢, is a nonnegative
vector.

Problem PMinLP,

Minimize c¢g Vo

subject to

QZ-PV,<g, i=0,1,...,r,
fiZz<b, i=r+1,...,p,
DX) < Z,

Z=20; Vi=0, i=0,1,...,r

Making use of the path constraints, we write PMinLP,
equivalently as PMinLP, given at the end of
Section 2.
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