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AN EFFICIENT ONE DIMENSIONAL SEARCH PROCEDURE*

R. L. FOX,t L. S. LASDON,§ ARIE TAMIRY ano MARGERY RATNER}

Many nonlinear programming algorithms utilize a one-dimensional search along
directions generated by the algorithm. This paper describes a method for performing
this search. The method finds 3 points which bracket the minimum, fits a quadratic
through them to yield a fourth point, then fits successive cubics through 4 points,
discarding one each time, until certain stop criteria are met. No gradient evaluations are
required. Detailed flow charts of this procedure are given, and its performance is
compared with that of 2 other algorithms. Eight test problems are used in this
comparison, each solved using both exterior and interior penalty functions. The Davidon-
Fletcher-Powell method is used to generate the search directions. Results show that the
proposed procedure requires about 14 to 34 the computer time of its nearest competitor,
a procedure designed to be especially efficient when applied to penalty functions, and
about 14 the time of the other competitor, the 2 point cubic search using derivatives.

1. Introduction

Most efficient methods for unconstrained minimization utilize a one-dimensional
search along directions generated by the method. If P is the function to be minimized,
X the current vector of decision variables, and S the search direction, then the one-
dimensional search problem is to choose « > 0 yielding the first local minimum of
P(X + a8). A significant portion of the total computational effort is expended in this
search. The problem can be particularly difficult when P is an interior penalty func-
tion. This is a situation of great practical importance because penalty functions are
widely used.

The most popular one-dimensional search procedures for use in unconstrained
minimization utilize quadratic [37], [7] or 2 point cubic [2], [3], [4] interpolation of
P(X + a8). When applied to penalty functions these interpolation approaches have
serious deficiencies. Quadratic interpolation has the drawback that its order of con-
vergence is approximately 1.3, significantly less than that of 2 point cubic interpola-
tion, which is 2 [9]. The 2-point cubic, however, requires the computation of VP.
This is usually time consuming and is often difficult to code. In some cases VP may
not be available analytically.

In [5] a special purpose one-dimensional search procedure for interior penalty func-
tions is described whose performance is superior to that of quadratic and 2-point cubic
interpolation. The procedure is based on substituting interpolations of the objective
and constraint functions into the penalty function and then minimizing this approxi-
mation of P along the current search direction.

This paper describes a one-dimensional search based on quadratic and cubic inter-
polations. These are obtained using function values only. Computational results on
interior and exterior penalty functions show that the method is considerably faster
than any of the above mentioned techniques.
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2. Description of the Algorithm

We assume initially that S is a direction of descent 1.e. STVP(X) < 0. This as-
sumption is relaxed later.

The procedure starts with a search for three points, A, B, and C along the direction
X + a8 which satisfy

XA =X+A4-S, XB=X+ B-5,
XC=X-+0CS 0S4<B<C,

where P(X4) > P(XB) and P(XC) > P(XB).

The program logic for doing this is diagrammed in Figure 1. In block 1 there is a
requirement for an initial step size, T, . With the Davidon Fletcher Powell (DFP)
method [4] or other Variable Metric Methods, 7' is equal to the optimal « value from
the previous search except when the DFP method is started or restarted. Then 7' is

P
(2.1) To = 0.1 max | z; |/max 6——] .
T

The theoretical basis for this is that, as a Variable Metric Method converges, the
optimal a values should converge to 1, the optimal step for Newton’s Method. Hence
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Frgure 1. Minimum Bracketing and Quadratic Interpolation.
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Figure 2. Cubic Interpolation.

the previous optimal step is a good approximation of the current one. When restarting,
with S equal to — VP, an optimal step much smaller than unity is generally taken.
Relation (2.1) assumes a scaling of the variables such that a change of 0.1 max | z; |
in any variable causes a small but significant change in the function being minimized.

The normal exit from the loop 2-3-4-5 is to 6 with a point B such that FB < FA.
Block 3 also permits this exit if FB is slightly larger than FA, to allow for numerical
error in evaluating P. The current value of ¢ is 10~7. Block 5, which uses € equal to
101/ (max | s; |), provides an error stop which is useful when there are errors or dis-
continuities in the function or its gradient. The test in block 7 is false only if the step
size has been halved at least once in 2-3-4-5 in which case K1 is the function value cor-
responding to C. The test in block 8 is to prevent the situation shown in Figure 3
which is not well interpolated by a quadratic. If, in block 8, K1 is not “too large” we
proceed directly to quadratic interpolation. The test for ‘“too large” should be an
upper bound on theratio (FC — FB)/| FA — FB | although in our working program a
slightly different form was used. If K1 is too large then block 9 generates a new C
point 1/3 of the distance from B to C. The loop 9-10-11-12 is traversed until FC is
not too large.

When P is an interior penalty function a value of P = 10% is returned when the trial
point Y is infeasible. Hence the loop 9-10-11-12 has the effect of finding a feasible point
fairly rapidly.

With D = 0 (which occurs if and only if a K1 or FC which was too large has never
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been generated) the loop 11-15 transforms the points A, B, C in Figure 4(a) into
those shown in Figure 4 (b). The step size is doubled each time until the points A, B, C
bracket the minimum. If FC ever becomes too large D is set to 1 (block 10). Then
11-15 transforms points as shown in Figures 5(a) thru 5(c). Instead of doubling the
step, a constant increment, B-4, is added.!

The error stop in block 14 protects against a runaway condition where P has de-
creased indefinitely along the search direction. Currently ¢ = 10,

The quadratic interpolation in block 16 yields a 4th point, D, with function value
FM, somewhere between A and C. In blocks 17 and 18 a cubic polynomial is passed
through the four points, FA, FB, FC, FM with its minimum at the point E. The
optimality tests in 19 and 20 are passed if the percentage difference between: (a) the
P values at the current and previous interpolated points and (b) the values of P and
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FiGure 5. Seeking a “Good” Interpolation Set.

1 This scheme was originally suggested by Professor K. D. Willmert of Clarkson College.
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Frgure 6. The Cubic Interpolation. Figure 7. Non-Unimodality.

the cubic at E are sufficiently small. Currently ¢, = 10~4 The tests in blocks 21 and
22 are true only rarely and prevent too many interpolations from being performed.

In block 23 the usual situation is as shown in Figures 6 (a) and 6 (b). Removal of an
end point leaves 4 points which bracket the minimum and these are used in the next
cubic fit. If a bracket cannot be formed by removal of an end point the highest end
point is discarded and a new cubic fit is performed. As an example, Figure 7 shows the
graph of the function being approximated. The minimum of the cubic is at E, no
bracket can be formed, and point C is discarded.

3. Computational Results

Eight test problems were solved to test this one-dimensional search procedure.
These are all nonlinear programs with inequality constraints. Each has the form

minimize f(z), subjecttog;(z) 20, i=1,...,m.
Each was solved by a sequence of minimizations of the interior penalty function
3.1) Pz, 7) =f(2) +7 2%, 1/g:(x)
and by a sequence of minimizations of the exterior penalty function
3.2) G(z,r) =f(@) +k 27, (min(0, g:(x)))>

The first four of these are test problems 3 through 6 of [5], while the last four arise
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from engineering design. Problem characteristics are displayed in Figure 8 below:

Problem 1 2 3 4 5 6 7 8

No. of Vars. 4 5 9 15 8 7 8 18
No. of Constr. 3 6 13 5 29 26 516 516
No. of Bounds 2 10 1 15 6 7 8 18
Nature of Quad- | Quad- | Quad- | Cubic Linear Linear | Linear | Linear
Objective ratic ratic ratic

Nature of Quad- | Quad- | Quad- | Quad- Ratio of See See See
Constraints ratic ratic ratic ratic | Polynomials | below | below | below

Figure 8. Problem Characteristics.

Test problem 5 arises from the design of a pair of concentric helical compression
springs for minimal spring stiffness. The nonlinear constraint functions were all ratios
of polynomials with numerous cross product terms and exponents as high as 6. Test
problems 6-8 arise from the design of statically indeterminate structures consisting of
straight members connected by hinged joints (i.e. trusses). A linear stress-strain re-
lation was used. This implies that the deflections, y, of the joints of the structure
satisfy

(3.3) [A@) 1y =b.

The elements of the square nonsingular matrix A are linear functions of the design
vector x, whose components are the cross-sectional areas of the members, and b is a
fixed load vector. The stresses in the members o are given by ¢ = Ry where R is a
known matrix. The constraints are

3.4) 0<z!=2z; and
(3.5) yit Sy Sy
(3.6) o' £ 0; S o,

where the » and [ superscripts denote given upper and lower bounds.

Since y is a nonlinear function of z through (3.1), the constraints (3.5) and (3.6)
are nonlinear. The large numbers of constraints in problems 7 and 8 arose from the
presence of multiple load conditions (several b vectors) each of which generates a set
of o and y vectors. Problem 7 had certain symmetries which implied that the optimal
solution would have several members with equal areas. In problem 7 these areas were
denoted by the same x; variables. Problem 8 differed from 7 only in that different
variables were assigned to some areas. Optimal solutions to both problems are the
same.

A more complete description of problem 6 can be found in [2] and problems 7 and
8 are described in [10].

Figure 9 displays the results of solving the 8 test problems by both interior and
exterior penalty methods using 3 one-dimensional search procedures. The first of
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Exterior Penalty Function Interior Penalty Function
method
Special 4 point 2 point Special 4 point 2 point
problem Purpose Cubic Cubic Purpose Cubic Cubic
1 2 3 4 5 6

Function Calls 575 390 — 199 320 672
1

Time (Sec) 0.9 0.7 0.8 0.6 0.7

Function Calls 306 | 406 682 635 1665
2 —_

Time 1.0 0.7 2.0 1.1 1.7

Function Calls " 1851 406 286 347 1653
3 —_

Time 1.8 1.3 1.4 0.9 1.4

Function Calls 5761 2715 3123 2974 10969
4 —

Time 6.2 4.8 10.1 6.4 10.4

Function Calls 3320 3208 12151
5 FAILED | FAILED | FAILED

Time 16.7 9.5 36.0

Function Calls 2552 1528 3472 2461 1966 6982
6

Time 46.0 28.2 60.7 46.2 36.6 113.9

Funetion Calls 3249 1795 3690 1427 993 3029
7

Time 330.0 183.0 357.0 203.5 106.6 316.5

Function Calls 3952 1904 394 347 989
8 -

Time 339.0 194.0 54.2 36.5 99.5

Total Function Calls 18,246 9,144 — 8,572 7,582 | 25,959

Total Time 725 412 — 318 189 544

Ficure 9. Computational Results—3 One-Dimensional Search Algorithms.

these, the ‘“special purpose’” method, is designed to exploit the special structure of
penalty functions. Its application to interior penalty functions is described in [5].
The adaption to exterior functions is straightforward, and is described in [6]. The
second algorithm studied is the authors’ version of the popular 2 point cubic inter-
polation procedure ([1],[5],[7]). A flow chart of thisis given in [5]. The third method
is the 4 point cubic search described previously.

The upper number in each box of Figure 9 gives the equivalent function evalu-
ations—function calls plus (number of variables) X (gradient calls). The lower number
is the execution time in seconds. All programs were coded in FORTRAN V and run on
a Univac 1108. The results in the first three columns were obtained by sequential
minimization of the exterior penalty function (3.1). This function was minimized
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using Goldfarb’s algorithm [4]. All upper and lower bounds were incorporated directly
by this algorithm, and were not included in the penalty function. The interior penalty
functions in columns 4 through 6 were minimized using the DFP method, with the H
matrix reset every n + 1 iterations (n = number of variables). For each test problem,
except for number 8, the penalty function was minimized for several values of the
penalty parameter. In problem 8, only one value of the penalty parameter was used.

It is evident that the 4 point cubic search is the best of the 3, for both interior and
exterior penalty functions. On the larger problems (5 through 8) its run times and
function evaluations are both 1/2 to 3/4 those of its nearest competitor, the special
purpose search. The two point cubic search is far worse. This became evident while
minimizing the interior penalty functions, and it was applied to only 3 exterior penalty
problems. We found these results initially surprising, since the special purpose searches
are designed to exploit the structure of the penalty functions. Superiority of the 4
point cubic search is due in large part to (1) the fact that it uses no derivatives; these
often take much time to compute, and (2) the high “overhead” of the special purpose
method—in each of 2 or more stages, it interpolates each constraint function, then
minimizes an approximating function using Newton’s method. The logic by which
points are selected for the quadratic and cubic fits is also an important factor in the
efficiency of the 4 point cubic method. The logic of Figures 1 and 2 has evolved from
earlier quadratic and cubic interpolation routines.

5. Conclusion

A one-dimensional search procedure has been presented whose performance on 8
test problems involving penalty functions is significantly better than that of competing
methods. The algorithm does not require derivatives, so it may be used with un-
constrained minimizers such as Powell’s method [9]. In this case, one must provide
for the case o < 0, since the search directions need not be downhill. This may be done
by introducing a variable K., similar to K; in Figure 1, and by adding steps to blocks
2-3-4-5-6 to check — B in addition to +B. The method incorporates safeguards to
eliminate unbounded solutions and to detect directions in which no improvement can
be made. It is currently used in a number of interactive and batch penalty function
codes at CWRU, and all experience with it thus far has been good. Its use in con-
junction with a variety of unconstrained minimizers is recommended.
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