Available online at www.sciencedirect.com

scnsucs@mnscr' Jou.rnal of
Algorithms

Journal of Algorithms 56 (2005) 50-75 J—
www.elsevier.com/locate/jalgor

Conditional location of path and tree shaped
facilities on trees

A. Tamir **, J. Puerto®, J.A. Mesa®, A.M. Rodriguez-Chia ¢

a School of Mathematical Sciences, Tel Aviv University, Israel
b Facultad de Matemdticas, Universidad de Sevilla, Spain
€ Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Spain
4 Facultad de Ciencias, Universidad de Cddiz, Spain

Received 22 September 2001
Available online 24 March 2005

Abstract

In this paper we deal with the location of extensive facilities on trees, both discrete and continuous,
under the condition that existing facilities are already located. We require that the selected new server
is a subtree, although we also specialize to the case of paths. We study the problem with the two
most widely used criteria in Location Analysis: center and median. Our main results under the center
criterion are nestedness properties of the solution and subquadratic algorithms for the location of
paths and subtrees. For the case of the median criterion we prove that unlike the case where there is
no existing facility, the continuous conditional median subtree problem is NP-hard and we develop a
corresponding fully polynomial approximation algorithm. We also present subquadratic algorithms
for almost all other models.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In a typical location problem there is a set of demand points embedded in some met-
ric space and the objective is to locate a specified number of servers optimizing some

* Corresponding author.
E-mail address: atamir @post.tau.ac.il (A. Tamir).

0196-6774/$ — see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j jalgor.2005.01.005

A. Tamir et al. / Journal of Algorithms 56 (2005) 50~75 51

criterion, which usually depends on the distances between the demand points and their
respective servers. The criteria mostly considered are the minimization of the average ser-
vice distance or the maximum distance. These criteria are referred to as the median and the
center problems respectively. In many practical situations we already have some servers
located in the underlying space and they provide service to the customers. These servers
can not be relocated. However, sometimes an increased budget is available for establishing
more servers (facilities) to improve service, e.g., decrease service distances. Minieka [18§]
has coined the term conditional location problem for situations where there already exists
a set of servers. (Models with these features already appeared in [21].) Minieka solved the
conditional median and center location problem on networks in the presence of only one
additional center (one point). Several papers dealing with conditional location models have
appeared since then. Most deal with the situation where there is only one existing facility
present. References discussing point-conditional location problems on networks are [4,7,
8,12]. There are also studies in the literature dealing with the point-conditional location
problem in the plane. (See for example, [5,6].)

The papers cited above focus on location problems where a server (facility) is repre-
sented by a point in the metric space. However, in recent years there has been a growing
interest in studying the location of connected structures, which cannot be represented by
(isolated) points in the space. These studies were motivated by concrete decision problems
related to routing and network design. For instance, in order to improve the mobility of the
population and reduce traffic congestion, many existing rapid transit networks are being
updated by extending or adding lines. These lines can be viewed as new facilities, and the
issue of deciding the place of the alignment and the location of stations on a new line, can
be categorized as a conditional extensive facility location problem. Moreover, since the
cost of constructing one unit of length and that of the stations can be estimated, a budget
constraint can be expressed in terms of the total length of the new facility (line). Other
potential applications appear in hierarchical network design such as the case where a high
power transmission or a cable communication network must be extended.

The first studies on location of connected structures (which we call extensive facilities)
appeared in the early eighties [3,13,19,20,22,28]. Hakimi et al. [11] focused on the com-
plexity of solving many versions of location problems of extensive facilities. The different
versions are derived by considering such elements as locating one or several facilities,
whether the facilities are paths or tree shaped, whether the underlying network is a tree or
a general graph, and the objective function used. Researchers have followed the suggested
classification, and improved the results for many of the models listed in [11]. For example
we cite, [1,15,23,24,30,32]. More relevant references are mentioned throughout the paper.

Almost all papers which focus on extensive facilities do not consider the case where
servers (facilities) may already exist. We are aware of only two references which take into
consideration existing facilities. The solution to the problem of locating a path minimizing
the median function in the presence of an existing point-facility not belonging to the path
was applied by Becker and Perl [3] to design an algorithm for the 2-core of a tree. (A 2-core
of a tree is a pair of paths minimizing the sum of the weighted distances from the nodes
of the graph to their respective closest path.) They solve their conditional model in O (n)
time, and find the 2-core in O(n?) time. An improved linear time algorithm for a 2-core of
a tree has been recently presented by Wang [33]. An O(nlogn) time algorithm was also

52 A. Tumir et al. / Journal of Algorithms 56 (2005) 50-75

obtained by Mesa [17] for the conditional path center problem in the pure topological case
(unweighted and equal edge lengths) of a tree. As mentioned above, conditional location
problems of extensive facilities pertain to a realistic class of location problems where a
given extensive facility is already located and one looks for the installation of a new exten-
sive facility without altering the position and shape of the existing one. We require the new
facility to be connected but the two facilities may be disconnected.

In this paper we study conditional location problems on trees where the new facility is
required to be connected. Topologically, the selected server has to be a subtree. We also
specialize to the important case where the connected structure is further restricted to be a
path of the network. We consider discrete and continuous versions of both the center and
the median objectives. Constraints are expressed in terms of total length of the extensive fa-
cility. Comparing our results with those known for the unconditional versions, we note that
our algorithms are more complex. Polynomial complexity is preserved for all models but
one. The continuous unconditional median subtree problem is linearly solvable [29], while
we prove that the respective conditional version is NP-hard. We provide a fully polynomial
time approximation scheme for this model. We also present subquadratic algorithms for
almost all other models.

The paper is organized as follows. In the next section we formally introduce the notation
and the models that we study in the paper. Section 3 is devoted to the conditional center
problem. We prove some nestedness results, showing that the solution to the conditional
model when the new facility is restricted to be a point, is contained in an optimal solution
to the problem of locating an extensive facility of positive length. We use this result to
design efficient algorithms for the latter problem. In Section 4 we study the median model.
We prove the above NP-hardness result and present the approximation algorithm. We also
provide efficient algorithms for the path models.

2. The conditional subtree/path problem under the size constraint

Let T = (V, E) be an undirected tree network with node set V = {vy,..., v,}. Sup-
pose that the tree T is rooted at some distinguished node, say v;. For each node v;,
J=2,3,...,n,let p(v;), the parent of v;, be the node v € V, closest to v}, v # v; on
P[vy, v;], the path connecting v; to v1. v; is a child of p(v;). We let ¢; be the edge con-
necting v; with its parent p(v;). Hence, the edge set is E = {e3, ..., en}. If v;, vy are the
two nodes of e, we will also use the notation e; = (v;, v¢). A node v; is a descendant of
v if vj ison Plv;, v1]. V; will denote the set of all descendants of v;.

Each edge e;, j =2,3,...,n, has a positive length /;, and is assumed to be rectifiable.
In particular, an edge ¢; is identified as an interval of length /; so that we can refer to its
interior points. We assume that 7 is embedded in the Euclidean plane. Let A(T) denote
the continuum set of points on the edges of 7. We view A(T) as a connected and closed
set which is the union of n — | intervals. Let P[v;, v;] denote the unique simple path in
A(T) connecting v; and v;.

We refer to interior points on an edge by their Euclidean distances along the edge from
the two nodes of the edge. The edge lengths induce a distance function on A(T). For any
pair of points x, y € A(T), we let d(x, y) denote the length of P[x, y], the unique simple

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 53

path in A(T) connecting x and y. If x and y belong to the same edge we will refer to
Plx, y] as a subedge or a partial edge. A(T) is a metric space with respect to the above
distance function.

The path P[x, y] can also be viewed as a collection of edges and at most two subedges
(partial edges). P(x,y) will denote the open path obtained from P[x, y] by deleting the
points x, y, and P(x, y] will denote the half open path obtained from P[x, y] by deleting
the point x. Also, for any subset ¥ C A(T), and x in A(T) we define d(x,Y)=d(¥Y,x) =
infld(x,y): ye Y} (If Y is empty, we set d(x,Y) = oc.) A subset Y C A(T) is called a
subtree if it is closed and connected. Y is also viewed as a finite connected collection of
partial edges (closed subintervals), such that the intersection of any pair of distinct partial
edges is empty or is a point in V. We call a subtree discrete if all its (relative) boundary
points are nodes of 7. We call a subtree almost discrete if at most one of its (relative)
boundary points is not a node of 7. If ¥ is a subtree we define the length or size of Y,
L(Y), to be the sum of the lengths of its complete and partial edges.

In our model the nodes of the tree are viewed as demand points (customers), and each
node v; € V is associated with a nonnegative weight w;. The set of potential servers con-
sists of subtrees. Specifically, let C be a collection of subtrees with the property that each
point x € A(T) is at least in one element of C. For example, C can be the set of all subtrees
(paths).

Let D be a collection of discrete subtrees with the property that each node v; € V is at
least in one element of D.

We assume that there is a subset of nodes S, where centers (servers) are already estab-
lished. For example, S may represent the node set of an existing facility, which by itself
can be a subtree or even a forest. In our models the goal is to minimize some specific
monotone functions of the service distances of the customers to their respective nearest
centers. We establish only one server, a subtree Y in C (D), with L(Y) < L. Hence, the
service distance of node v; is min[d (v;, ¥), d(v;, S)]. When the subtree is selected from C
we refer to the model as the conditional continuous model, and if it is chosen from D, it is
called the conditional discrete model. If S is empty we call the model unconditional. We
focus in this paper on two specific objective functions; the two most common in location
theory.

In the conditional (w-weighted) center problem the objective is to minimize

,,,,,

In the conditional (w-weighted) median problem the objective is to minimize

n
Fu(Y)=) w;min[d(v;, ¥),d(v;, S)].
i=1
If w; =1 for each v; € V, the above models are called unweighted.

The main goal of this paper is to study conditional extensive location problems. For
comparison purposes we summarize in Tables 1-4 the best known results for the uncon-
ditional and conditional cases, as well as our own results for these models, which are
identified by bold letters. We note that all the algorithmic and complexity results in the
paper refer to the cases where C and D, defined above, are either the collections of all
relevant subtrees or the collections of all relevant paths, depending on the case.

54

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

Table |
Unconditional subtree
Discrete Continuous
Complexity Ref. Complexity Ref.
Median (nestedness property) Weighted NP-hard [11] 0 (n) [29]
[19,20,31] Unweighted NP-hard [11] 0(n) [29]
Center (nestedness property) Weighted O(nlogn) O(nlogn) [31]
[19,20,31] Unweighted o(n) [27] 0(n) [27]
Bold letters indicate new results in the paper.
Table 2
Conditional subtree
Discrete Continuous
Medjan Weighted NP-hard [11]* NP-hard
Unweighted NP-hard [11}* NP-hard
Center Weighted O(nlogn) O(nlogn)
Unweighted O (nlogn) O (nlogn)
Bold letters indicate new results in the paper.
* 1t follows from the unconditional case.
Table 3
Unconditional path
Discrete Continuous
Complexity ~ Ref. Complexity Ref.
Median (no nestedness Unweighted Length O(nlogn) [1] O(nlogna(n)) 1]
property) [19,20] No length 0 (n) [22] O(n) [22]
Weighted Length O(nlogn) [O(nlogna(n)) m
No length O(n) 2] O(n) [2]
Center (nestedness Unweighted Length 0(n) [32,34] 0(n) [32]
property) [19,20] No length O(n) [13] O(n) [13]
Weighted Length O (nlogn) O(nlogn)
No length O (nlogn) O (nlogn)
Bold letters indicate new results in the paper.
Table 4
Conditional path
Discrete Continuous
Weighted median Length O(n log2 n) [(nz)
(no nestedness property) No length O(n log2 n) O(n logz n)
Weighted center Length O(nlogn) O(nlogn)
(nestedness property) No length O(nlogn) O(nlogn)

Bold fetters indicate new results in the paper.

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 55

3. The conditional center subtree/path problem
3.1. Unconditional center problems

3.1.1. Nestedness results for subtree and path center problems on trees
Let L be a nonnegative real number. The unconditional center problem on C (D) is to
find a subtree Y in C (D), with L(Y) < L, minimizing the objective

max w;d(v;, Y).
i=1,...,n
We assume without loss of generality that at least two of the node weights are positive.

Lemma 3.1. Let x* be the unique solution to the continuous weighted |-center problem
onT. Thenforeach L > 0, Y*(L), an optimal solution to the unconditional center problem
on C, contains x*.

Proof. The proof follows from the result in [31] for the more general centdian model. (The
centdian objective function is a convex combination of the sum (median) and maximum
(center) functions.) A simple direct proof for the center problem is as follows.

Let | be the optimal solution value to the 1-center problem, i.e., the solution value for
the case when L = 0. Then, there exist a pair of nodes, v;, v;, such that w;d(v;, x*) =
w;d(v;,x*) =ry, and x* is on Plv;, v;]. Let Y € C satisfy L(¥) < L. Since Y is con-
nected, it follows that if x* is not in Y, then

max[wid(vi, ¥), wjd(vj, Y)] > max[w;d(vi, x*), w;d(vj, x*)] =r1.

Hence Y is not an optimal solution. 0O

Lemma 3.2. Let vy be a solution to the discrete weighted 1-center problem on T. Then
foreach L > 0, there exists an optimal solution to the unconditional center problem on D
which contains vy,

Proof. If x*, defined in Lemma 3.1, is a node the result follows from Lemma 3.1. Oth-
erwise, there exists a node v,, such that x* is in the interior of the edge (v, v;). Let r{
(r1) denote the optimal value for the discrete (continuous) weighted 1-center problem. We
clearly have r; < r{. Note that if vy is not a unique solution, then the only other solution
is v;.

Let Vi; (V; 1) be the node set of the connected component containing vy (v;), obtained
from T by removing the edge (vg, v;).

Let v; satisfy r| = w;d(vg, v;). Since ry < r{, it follows that v; € V; ¢. (Otherwise it
would yield the contradiction r{ = w;d(v;, vr) < wid(vy, x*) <ry.)

Since vy is optimal there must be a node v; € Vi, such that w;d(v;, v,) = r{. (Oth-
erwise, it would follow that for each node v, € Vi ;, wyd(v,, v;) < r{, and for each node
vs € Vi with wy > 0, wed(vs, vy) < wed(vy, vg) < r{; implying that v, is a better solution
than vg.)

Consider now an optimal solution Y of length L > 0 in D. Without loss of generality
suppose that its objective value is smaller than r{. This implies that ¥ cannot be contained

56 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

in Vi, since it would imply w;d (v;, ¥Y) 2 w;d (v, vg) = r{. Also, Y cannot be contained
in V} ¢, since it would imply w;d(v;, Y) > w;d(v;, v;) > r|. Hence, since Y is a discrete
subtree, it must contain the entire edge (vg, v;). O

3.1.2. Algorithms for unconditional center problems

From the above nestedness results we conclude that to solve unconditional, continu-
ous/discrete, subtree/path, weighted center problems with a length constraint on trees,
it is sufficient to solve the rooted versions, where the subtree/path must contain some
distinguished point. For convenience, we suppose without loss of generality that this dis-
tinguished point is vy, the root of T,

The main ingredient in algorithms solving center problems is a feasibility test. Given
a real number r, determine whether there exists a subtree/path, rooted at v;, of length
not exceeding L, such that the weighted distance of each node from the subtree/path is at
most r. We now show how to perform this test in linear time.

The feasibility test

For each v; € V define r; = r/w;. If d(v;, v1) > r;, define x; to be the point on P[v;, v1]
satisfying d(x;, v;) = r;. Otherwise, set x; = v1. Also, define y; to be the closest node to
x;on Plu;, x;]. Let X' ={x;: v; € V}and Y’ = {y;: v; € V}. Define the subsets of least
elements X" = {x; € X": Axj #x;,xi € Plxj,vi]),and Y/ ={y; € Y By; #yi, 3 €
Plyj, vil).

It is clear that the test is positive for the continuous subtree (path) problem if and only
if the length of the subtree (path) induced by X" and the root v; is at most L. Similarly,
the test is positive for the discrete subtree (path) problem if and only if the length of the
subtree (path) induced by Y” and the root v; is at most L. (Note that in the case of a path, if
|X"| > 2 (|Y"| > 2), the respective test is negative.) Therefore to obtain an O (r) feasibility
test it is sufficient to show how to generate X" and Y” in linear time.

We describe an O (n) procedure for finding X”. Initially, X" is empty.

Select an arbitrary node v; of the rooted tree such that all its children are leaves. Let
S(v;) be the set of children of v;. If d(v;, v;) < r; for each child v; € S(v;), replace r;
by min[r, minvieg(vj)[ri —d(v;, vj)]]. Delete all the edges (v;, v;), v; € S(v;). Proceed
inductively. Otherwise, let v;, a child of v; with d(v;, v;) > r,. Augment the point x; to X"
Let T1,..., T; be the collection of connected components obtained from T by removing
all edges on P{v;, v1]. (Each component Ty, is a subtree rooted at some node, say v) On
P[v;, v1].) Recursively, find the respective subsets of least elements X7, ..., X ;’ of these
components. Then

X" = U {X] = {va U U{X] = (vjp}}-

It is clear that the total complexity is linear. The above procedure can easily be modified to
construct Y”. (Replace x; by y;,and XY, ..., Xgby Y[',..., ¥/)

We are now ready to present O(nlogn) time algorithms for the different versions of
the unconditional center models. The general approach is to identify a set containing the
optimal solution value, and then use the feasibility test to search for the optimal value in
that set.

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 57

1. For the continuous subtree model we already have an O(nlogn) time algorithm
in [31]. (It works for the more general centdian problem.)
2. A set containing the optimal value for the continuous path model: The optimal value
is an element in the set R = Ry U R> where
Ry = {wid(vi, v;): vj € Plo, v, i, = 1,...,n}
={wi[d@i,v1) —d(vj,v)]: i, j=1,...,n},
Ry = {[wiw;/(wi + wj)][d(v;, vi) +d(vj,v)) = L]: i, j=1,...,n}.

Indeed, if r ¢ Ry then there must exist a balance between two nodes v;, v;. Assume
that the closest nodes to each side of the optimal path P (L(P) = L) are v and v, and
the distances d(P, vg) = y, d(P, v;) = x. Then, the following two linear equations
must hold:

wi(d (i, ve) +y) = w;(d(j, v) +x), ()
L+x+y=d(g,v). (2)

The admissible radii are of the form r = w; (d(v;, v¢) + y). If we substitute (1) and (2)
into this equation we get:

r=uw; (d(v,-,) + wi(d (v, vj) — LY —w;d(v;, Uk))

w; + w;
B (d v, v (s + w)) + w; (d vk, v)) — L) — wid vy, vp)
= ———(d;, vp)(w; + w;) + w;(d(vg,v;) — L) — wid(v;, v
w; + w; i kAW J NG Yk, Vj 1d (Vi Vi
Wi
= ———(d(v;,v;)— L).
wi+wj((vi,vj) = L)
3. For the continuous path model we get an O(nlogn) algorithm by searching over the
set R above. The search over the set R, is described in [31]. The search over the set
R is even simpler, and it is described in [16].
4. For the discrete subtree and path models the optimal value is definitely an element in
the set R;, defined above. Therefore these models are also solvable in O (nlogn) time.

3.2. Conditional center problems

3.2.1. Nestedness results for subtree and path center problems on trees

We will next prove nestedness results, similar to Lemmas 3.1 and 3.2, for the condi-
tional models. Unlike the unconditional case, as illustrated by the next example, for the
conditional model, the nestedness property holds for some solution to the problem with
L =0, but not necessarily for all such solutions.

Example 3.1. Consider 4 points (nodes) on the real line: (vy, v, v3, v4) = (0, 1,3.1,4.1).
Suppose that § = {vy, va}, and w; = 1, fori =1, 2, 3, 4. Any point on P[vy, vs] is optimal
for the case L = 0. However, no point in P[vy, v2] or P[vs, va] will satisfy the nestedness
property of Lemma 3.3 when 0.1 < L < 1. The property is satisfied at y* =2.05.

58 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

Vi Ug (353 V4
® e . ®

Fig. 1. lMustration of Example 3.1. Big dots represent the conditional set S.

Lemma 3.3. There exists a solution, y* € A(T), to the conditional continuous weighted
center problem on C with L = O, such that for any L 2 0, there is an optimal solution,
Y*(L), to the conditional center problem on C with L(Y*(L)) < L, and y* € Y*(L).

Proof. For each node v; let r; = w;d(v;,). Define r' = max;_;, .., r}. Suppose without
loss of generality that r' > 0. Let x* € A(T) be an optimal solution to the conditional
continuous weighted center problem on C with L = 0, and let * be the optimal solution
value.

Suppose first that r* = r’. Consider the set V’, consisting of all nodes in V such that
r{ =r'. We clearly have |V'| > 2. Then without loss of generality x* is the optimal solution
for the (unconditional) weighted 1-center problem for the nodes in V’. In particular, there is
a pair of nodes v;, v; in V' such that x* is on Plv;, vjl, and wid(v;, x*) = w;d(vj, x*) >
r’. From the argument used in the proof of Lemma 3.1, we conclude that the result holds
for y* = x*.

Suppose now that r* < r’. Without loss of generality assume that 7* > 0, otherwise, the
result clearly holds. Define the following subsets of V.

V_= {vi: wid (v, §) < r*},
V- = {vi: w,-d(v,',S)=r*},
Vi ={vi: wid(vi, §) > r*}.

From the fact that #* < r’, it follows that V. is nonempty. Moreover, the nodes in V. are
served by x*. Let " = maxy,cy, wid(v;, x*). If r’ =r*, then r” > 0. We can now assume
without loss of generality that x* is the solution to the weighted 1-center problem for the
nodes in V4. Again, from the argument used in the proof of Lemma 3.1, we conclude that
the result holds for y* = x*. Hence, it is sufficient to consider the case where O < r" < r*.

Define r; = r*/w;, fori =1,...,n. Let

T"={x € A(T): d(x,v;) <ri, Yv; € Vi }.

Note that since r” < r*, T" is a (neighborhood) subtree with nonempty interior. Moreover,
each boundary point of T”, which is not a leaf of A(T) is at a distance of #; from some
node v; € V..

Assume without loss of generality that V- = {v, ..., »}. Fort =1, ...k, let

T, ={x € A(T): d(x,v;) <11}

If the intersection of 7y and T” is empty, then there is a boundary point y*
of T”, and a node v; € V4, such that y* is on P[v, v;], and w;d(v, y*) = r* =
w) min[d (v, ¥*),d(vy, S)]. Therefore, for any L > O, there is an optimal solution to the
conditional center problem on C, with value smaller than »*, only if this solution con-
tains interior points on the subpaths P[v;, y*] and P[v;, y*]. Hence the boundary point

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 59

y* satisfies the nestedness property in the lemma. The same argument applies when the

intersection of Ty and T” is a single point (which must be a boundary point of T7”). If the
intersection has a nonempty interior, we augment vy to V4, and update 7" respectively.
We then proceed by considering the intersection of 7> with 7", etc.

We claim that we must reach a step where the intersection of 7; with the (updated)
neighborhood subtree T” is either empty or a singleton. (From the above argument this
would conclude the proof.) If this were not the case we would conclude that the intersec-
tion of all neighborhood subtrees 7; = {x € A(T): d(x,v;) <r;}, v; € VL, UV_ has a
nonempty interior. In particular, there is a point x € A(T') such that w;d(v;, x) < r*, for
all v; € V4 U V_, contradicting the optimality of r*. O

Remark 3.2.1. The above proof suggests an O(n logn) algorithm for finding y*. The com-
plexity of the algorithm is determined by the effort to intersect O(n) neighborhoods of a
tree. Each intersection can be performed in O (logn) time, by implementing the formula for
intersection in [9]. The intersection of two neighborhoods is by itself a neighborhood sub-
tree. Its radius can be obtained from the radii of the two given neighborhoods in constant
time. Its center is on the path connecting the centers of the two neighborhoods. Therefore,
it can be found in O (logn) time by using the data structure in [16].

Lemma 3.4. There exists a solution, y* € V, to the conditional discrete weighted center
problem on D with L =0, such that for any L 2 0, there is an optimal solution, Y*(L), to
the conditional discrete center problem on D with L(Y*(L)) < L, and y* € Y*(L).

Proof. We modify the proof of Lemma 3.3 for the discrete case.

For each node v; let r/ = w;d(v;, S). Define r’ = max;—y ..., r/. Suppose without loss
of generality that ' > 0. Let x* € V be an optimal solution to the conditional discrete
weighted center problem on D with L =0, and let »* be the optimal solution value.

Suppose first that r* = r’. Consider the set V’, consisting of all nodes in V such that
ri =r'. We clearly have |V’| > 2. Then without loss of generality x* is an optimal solution
for the discrete weighted 1-center problem for the nodes in V', From the argument used in
the proof of Lemma 3.2, we conclude that there is a pair of nodes v;, v; € V’, such that x*
ison Plvi,vjl, and r’ < wid(vi, x*), wid(v;, x*) > w;d(v;, x*). Moreover, if for some
L > 0, the optimal solution value is smaller than ' = r*, then every optimal solution must
contain an edge on P[v;, v;] which is incident to x*. Thus, we conclude that the result
holds for y* = x*.

Suppose now that r* < r’. Without loss of generality assume that r* > 0, otherwise, the
result clearly holds. Define the following subsets of V.

Vo= {vi: wid(vi, §) <r*},
Vo= {vi: w;d(v;, §) =r*},
Vi ={vi: wid(v;, $) > r*}.
From the fact that r* < ¢/, it follows that V, is nonempty. Moreover, the nodes in V,

are served by x*. Let r” = maxy;ey, wid (v, x*). If ¥’ = r*, then r” > 0. We can now
assume without loss of generality that x* is the solution to the discrete weighted 1-center

60 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

problem for the nodes in V. Again, from the argument used in the proof of Lemma 3.2,
we conclude that the result holds for y* = x*. Hence, it is sufficient to consider the case
where 0 < r” < r*.

Define r; =r*/w;, fori=1,...,n.Let

T" ={x € A(T): d(x,v;) <ri, Yv; € Vi)

Note that since 7" < r*, T” is a (neighborhood) subtree with nonempty interior. Moreover,
each boundary point of 7", which is not a leaf of A(T) is at a distance of r; from some
node v; € V. (Note that the boundary points of T” are not necessarily nodes. However,
T” contains the node x* in its interior.)

Assume without loss of generality that V— = {vy, ..., v} Fort =1,...,k, let

T, = {x € A(T): d(x,v) £ r,}.

If the intersection of 77 and T” is empty, then there is a boundary point z*
of T”, and a node v; € Vg, such that z* is on Plvi,v;), and w;d(v;,7*) = r* =
wy min[d (v, 2*),d(vy, S)). (Note that z* is not necessarily in V.) Let y* be the clos-
est node to z* on P[v;, z*]. It is now easy to check that for any L > 0, there is an optimal
solution to the conditional center problem on C, with value smaller than »*, only if this
solution contains the node y*. The same argument applies when the intersection of 77 and
T" is a single point (which must be some boundary point, z* of T”).

If T” N T} has a nonempty interior, we distinguish between two cases.

Case L. T” N 77 contains no node in its interior.
In this case v is not in 7”. Define z* to be the closest (boundary) point to v; in 7”, and
proceed as above.

Case II. T” N T; contains a node in its interior.

In this case 7" N T contains a node, say v; such that d(v;, v;) < ry, for each v; €
V4, and also d(vy, vj) < r;. We augment v; to V,, and update T"” respectively. We then
proceed by considering the intersection of 7> with T, etc.

We claim that we must reach a step where the intersection of 7; with the (updated)
neighborhood subtree 7" contains no node in its interior. (From the above argument this
would conclude the proof.) If this were not the case we would conclude that the intersection
of all neighborhood subtrees 7; = {x € A(T): d(x, v;) <r;}, v; € Vi U V_, contains a
node, say v, such that w;d(v;, v;) < r*, forall v; € V, U V_, contradicting the optimality
ofr*. DO

Remark 3.2.2. Note that Remark 3.2.1 is also applicable here, so that the point conditional
discrete weighted center problem with a nestedness property can be found in Q(nlogn)
time.

3.2.2. Algorithms for conditional center problems
Based on the above nestedness results for the conditional center problems, we conclude
that to solve conditional, continuous/discrete, subtree/path, weighted center problems with

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 61

a length constraint on trees, it is sufficient to consider the rooted versions, where the sub-
tree/path must contain some distinguished point. For convenience, suppose without loss of
generality that this point is vy, the root of T'.

It is easy to modify the feasibility test so that it will correctly resolve the test for the
conditional models. Also, note that sets containing the optimal solution values for the con-
ditional models are obtained by augmenting the set R’ = {w;d(v;, S): v; € V} to the sets
of the respective unconditional models. For example, a set containing the optimal solution
value for the conditional continuous path center problem is Ry U Ro U R'.

In the preprocessing phase we compute R’ = {w;d(v;, S): v; € V} in O(n) time as
follows. Starting from the leaves of the rooted tree, and proceeding recursively to the
root, in linear time we can find, for each node v;, its distance, say d;, to the clos-
est node of S in V;. At the end of this phase we already have d(vy, S). In the second
phase we start at the root and proceed recursively to the leaves, computing d(v;, S) from
d; and d(p(v;), S) in constant time. (Recall that p(v;) is the parent of v;, and there-
fore d(vj, §) = min[d}, d(p(v;), §) + d(v}, p(v;))].) Hence, in O(n) time we compute
d(v;, S) for all the nodes.

With the above information we can now mimic the solution approach for the uncon-
ditional models and solve the continuous and discrete conditional models in O (nlogn)
time.

An alternative solution strategy for a conditional model is to reduce it to a respective
unconditional problem in O (nlogn) time.

Using the above notation let r* denote the optimal value of the conditional model. Let
I =(r{,ry,...,ry) be the sorted list of the elements in R’. Our first task is to identify a
pair of consecutive elements in 7, say r, and r;/, | such that r;/ < r* < r{'y1- We perform
a binary search on R’. Select in linear time r, a median element of R'. Let V' = {v; €
V: wid(v;, S) < r)}. Then r* < r//, if and only if there is a subtree (path), whose length
is at most L, such that the weighted distance of each node in V — V’ from the subtree
(path) is at most r;’. We can use the above feasibility test (for the unconditional model) on
the nodes in V — V’ to resolve this query. We then continue the binary search, on R’, and

after O(logn) steps we identify (in O (nlogn) time), the pair r;’, r}’, |, for the conditional

1+1°
continuous (discrete) center problem. To solve the conditional model it is now sufficient
to solve the respective unconditional model only for customers in {v; € V: w;d(v;, S) =

r/’.\}. The total effort is clearly O(nlogn).

4. The conditional median subtree/path problem

As we see in Table 1, unconditional median subtree problems (with a length constraint)
are NP-hard for the discrete model and linearly solvable in the continuous case. More-
over, fully polynomial time approximation schemes (FPTAS) for the discrete case are given
in [29]. In this section we show that the conditional subtree median problem is NP-hard
even for the continuous case. We then demonstrate that both the discrete and the con-
tinuous conditional median subtree problems have FPTAS. These algorithms are simple
modifications of the scheme given in [29] for the unconditional discrete case.

62 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

The unconditional and the conditional discrete median path problems are clearly poly-
nomially solvable, since there is only a quadratic number of paths to be considered. Hence,
O(n?) time algorithms are trivially available for all discrete problems. For the uncondi-
tional case (see Table 3), linear time algorithms are known when the size of the path is
unrestricted. For the case when the length is bounded, a subquadratic algorithm is known
only for the case where all edges have unit length and the node weights are identical [23].
We present subquadratic algorithms for all but one of the median path models.

Before we start the detailed discussion we observe that the continuous conditional me-
dian subtree and path problems are actually “almost” discrete. (See Section 2 for a formal
definition.) Consider an edge (v;, v;), and let x be a point on the edge. Then for each node
vx the function min[d (vg, x), d(v, S)] is clearly a concave function on the edge (v;, v}).
Let P[x, y] be a path of length L connecting a point x on (v;, v;) with a point y on (vy, v;).
Suppose that v; and v; are on Plx, y]. (To simplify the notation suppose without loss of
generality that x = d(x, v;) and y = d(y, vy).) Next consider the problem of finding the
continuous path P, of length L, which has one endpoint in (v;, v;), the other in (v;, v;), and
it minimizes)y _, wx min[d(vg, P), d(vg, S)]. From the above this problem reduces to a
minimization of a concave function of the two variables x and y, subject to the constraint
that each one of them is restricted to an interval and their sum (total length) is constant.
Therefore, we conclude that there is an optimal continuous path where one of its endpoints
is a node. A similar observation clearly holds for an optimal continuous median subtree,
since we can apply the above to any maximal subpath of a given subtree.

The next lemma summarizes the above.

Lemma 4.1. For each L 2 0O there is an optimal continuous conditional median subtree
(path) of length L which is almost discrete.

4.1. The conditional median subtree problem

As defined in the introduction above, the conditional (w-weighted) median subtree
problem under the size constraint consists of locating a subtree, ¥ € A(T) such that
L(Y) < L where there exist already servers at the subset of nodes §. The demand points
(nodes) are allocated to the closest server, either ¥ or § minimizing the weighted sum of
the distances. The problem can be formulated as follows:

n
YénAi?T) Fn(Y):= 21: w; min[d(v;,), d(v;, S)],
=

st. L(Y) <L. (CMS)

Imposing that a given node, say vy must belong to Y, this problem admits the following
reformulation
n

mi ;min|z;, d (v,)|,
Yg/:?T)i—Iu)l in[z;, d(v;, S)]

n
s.t. lex]‘ <L,
j=2

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 63

™ (253 (253 U4

—® — @ —

Fig. 2. Illustration of Example 4.1. Big dots are the nodes in the conditional set §.

xj(l=xj)=0 ifvi=p)), j=2,....n, (3)
Z hl=xp) =gz, i=2,...,n, 4)
vke Plug, vl

0<x; <1, j=2,...,n.

(Notice that since S is known then the terms {d(v;, S)} can be obtained in a preprocessing
phase and hence can be considered as data. We have already shown in the previous sections
that the effort needed to compute these terms for all nodes is O (n).) In the unconditional
model S is empty, and the objective is replaced by Y 7_; w;z;. It is shown in [29] that for
the unconditional case constraint (3) can be removed from the formulation. Moreover, this
leads to a linear time algorithm. As illustrated by Example 4.1, this constraint cannot be
removed in the conditional case. (The solution to the relaxed problem does not induce a
connected set of A(T).)

Another desirable property that holds for the unconditional median subtree problem is
nestedness [18,19]: There exists an optimum subtree of any positive length in the uncon-
ditional version of the problem which contains an optimal point solution. Example 4.2
illustrates that this may not hold for the conditional subtree/path model.

Example 4.1. Let T = (V, E) be a tree, where the set of nodes and edges are givenby V =
{vi, v2, v3,v4} and E = {(v1, v2), (v2, v3), (v3, v4)}. The nodes are points on the real line
with (vy, vz, v3, v4) = (0,5, 10,15) and w; =1 for i =1, 2, 3, 4. We assume that servers
are already located at S = {v2, v3} (see Fig. 2). Let L = 10 be the upper bound of the
length of Y. For any tree of length 10, the minimum objective value that we can obtain
is 5. However, we see that if we select the (disconnected) set Y = {(v1, v2), (v3, v4)}, then
the value of the objective function is 0. Thus, connectivity (constraint (3)), must be imposed
in the formulation.

Example 4.2. Consider a tree T = (V, E) where V = {vy, v, v3, Vs, Vs, Ug, 7} and E =
{(v1, v2), (v2, v3), (V2,W4), (v2, v5), (Us, V6), (vs, v7)}. The embedding of the nodes in the
plane is given by v; = (0,0), v = (5,0), v3 = (5,5), v4 = (5, —6), vs = (25,0), vg =
(30,0), v7=(35,0). Let w; =1 fori =1,...,7. We assume that servers are already
located at S = {va, vs} (see Fig. 3). Let L = 16 be the upper bound of the length of Y.
The optimal (conditional on §) median point solution consists of locating the facility at
any point of the edge (v, v7). However, the optimum subtree Y verifying that L(Y) <
16 is the tree spanned by the set of nodes to Vy = {vy, va, v3, v4}. The example can be
easily modified for the case of path facility location. For that case just consider the set
S = {v1, v2, vs}.

In general, problem (CMS) is NP-hard.

64 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

(]
(51 U2 Us Vg Ur
V4

Fig. 3. Illustration of Example 4.2. Big dots are the nodes in the conditional set S.

Theorem 4.1. The conditional continuous subtree median problem is NP-hard even for
star graphs with all node weights being equal to 1.

Proof. The following partition problem can be reduced to the conditional continuous

subtree model: Given integers ay, ..., a,, is there a subset of them with sum equal to
A/2, where A is the sum of all elements. Consider a star tree T = (V, E) with V =
{vo,v1,..., vy} and E = {(vg, v1), ..., (vo, vy)}. The length of (vg, v;) is 2g;. Insert an

extra node, u;, at the middle of each edge (vg, v;). The modified star will have 2n + 1
nodes, with vy as the center of the star. The existing facility (subtree) will consist of the
edges (vo, u;), ie., S = {vo, u1, ..., u,}. Now let the length of the new tree be A.

It is now clear that there is an optimal solution to the location problem with value A /2
if and only if there is a solution to the above NP-hard partition problem. O

4.2. The (1 + &)-approximation algorithm

From Table 1 we see that the unconditional median subtree problem is NP-hard for
the discrete model and linearly solvable in the continuous case. Moreover, for the discrete
case Tamir [29] presents an (1 + £)-approximation algorithm. From the above results we
know that in the conditional case even the continuous median subtree problem is NP-hard.
Nevertheless, the fully polynomial approximation scheme in [29] can easily be modified
for both, the discrete and continuous conditional median subtree model versions of problem
(CMS). For the sake of brevity we give only a short description of the modification needed
to obtain such an algorithm for the conditional discrete median subtree problem.

Given an instance of the problem and a positive ¢, the algorithm generates in O (n3/¢)
time, a subtree ¥ such that L(Y) < L and F(Y) < (1 + &) F°P' where F°P! is the op-
timal solution of problem (CMS). The approach uses the interval partitioning method
of [25]. First of all, we describe a pseudopolynomial time algorithm to solve the origi-
nal problem. This is done using an adaptation of the Left-Right Dynamic Programming
algorithm (L-R algorithm) described in [29] for solving the unconditional discrete prob-
lem. To apply this algorithm to our problem we must replace the distances d(v;, ¥) by
min[d(v;, Y), d(v;, S)].

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 65

To implement this efficiently, we start with the preprocessing, where for each node v;
we compute

n
Ai=> wjmin[d(v;, v)),d(v}, S)].
j=l
We define the following terms. If (v;, v;) is an edge, let V; ; be the set of all nodes v such
that v; is on the path connecting v to v;. Define

a;j= Z Wi min[d(vi, vk), d (v, S)].

UkEVj‘,'

It is then clear that

A,‘ = Z aj,j.

vj: (vi,vj)EE

We next show how to compute all these terms in O (n log2 n) time. (We note that in the
unconditional case all these terms are computable in O (n) time [15]).

4.2.1. An O(nlog?n) algorithm to compute {a; j: (vi,v;) € E}

The algorithm has two phases. In the first phase we compute, in O (nlogn) total time,
all the terms a;, ;, where v; is a child of v;.

In the second phase we compute, in O (n log? n) time, all the terms A;, v; € V. With the
information from the first phase we can then also derive all the terms q; ;, where v; is the
parent of v;, in additional linear effort.

Phase I. In the previous section we showed how to compute in linear time {d(v;, S):
v; € V}. For each node vy, if d(vj, S) = d(vj, v1), define x; = vy, otherwise, define x; to
be the unique point on P[v}, vi] such that d(v;, x;) = d(v;, §). It is shown in {15], that
these points can be located in O (nlogn) total time. We now use a bottom-up algorithm,
starting at the leaves, to compute g; ; when v; is a child of v;.

Suppose that v; is the parent of v;. Define U; = {vy € V;: xx € Plyg, v5]}, and U; ; =
{ve € Vi x € P(vj, v;]}. Let

/
W;= Z wr and Wj= Z Wg.
weV; vel;
It is clear that the total effort to compute the terms {W;} and {Wj’.} is linear. Then

ajj= Z ajr+ Z wk(d(vk,S)—d(vk,vj))

U;ES(UJ') UkEU,"j
+d(uj,u,-)(wj—w;— > wk).
vel; j

From the above equation we conclude that the effort to calculate g; ; is proportional to
(IS(w;)I + |U; ;1). Therefore, in addition to the effort to locate the points {x;} we need
O (n) time to complete Phase [.

66 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

Phase II. In this phase we compute all the terms {A;} defined above in O(n log2 n) time.
(Note that when A; is known we can compute a; ;, for the case when v; is a child of v, in
O(]S(v;)]) time by the expression a; ; = A; — Zu,es(v;) aiy.)

The approach is very similar to the one described in Section 2.3.1 in [15]. It is based on
divide and conquer. First we find in linear time a centroid of the tree, say v;. From [16],
we know that T = (V, E) can be decomposed into two subtrees T = (L, EYand T? =
(V2 E?), such that VU V2=V, VI nVZ={v}, E'UE?’=E, and n, = |V?| <
2n+4+1)/3,p=1,2.

For each node v, define

Bl = Z w, min[d (v, v), d(vr,)],
vev!
Bf=) wmin[d(v, v), d(v;, S)],

vieV?

cl= Z w; min[d (v, ve), d(vy, S)],

v,eVl—{vj}

ci= Z w; min[d (v,), d(v;, S)].

v,eVz—{vj}

Then, for each v; € V! (v € V2) we have Ay = B} + C? (Ay = B} + C}). Due to the
symmetry between V! and V2, we show only how to compute the terms {A) for all nodes
[S Vl.

We start by computing Cz forall vy e V. Let Ul = (Vi(1)s . - .» Vi(n,)) be the ordering
of the nodes in V! by their distances from the centroid vj. (Vi) = vj.) Also define

V= {vr e V2 d(vr,v)) >d(v;, S)} and ci= Z wd(vy, S).

veV?

For each v; € V2 — V*2 define ¢; = d(v;, §) —d(v;, v;), and let

W2 = (vq(l), ey Uq(n’z))

be the ordering of the nodes in V2 — V2 — {v;} by the keys {¢;}. (n} =V? — V2 — {v;}].)
The total effort needed to generate U' and W? is clearly dominated by the sorting, and
therefore it is O(nlogn).

From the definition of U!, we clearly have monotonicity, Cl.z1 < s G) More-
over, to compute Cizs), fors =1,...,n;, we only need to find the largest index m = m(s),
such that d(vgm), Vi) = d(vg(m), §). (Note that the latter inequality is equivalent to
d(vj, Vis)) 2 cq(m). Therefore, m(s) is monotone in s.) We have

Cloy=CI+ Y wand(vge),)+ > wend g, Vigs))-

r<m(s) r>m(s)

2

From the monotonicity of m(s) it follows that the additional time needed to compute
Ciz(x) forall s = 1,...,n, is O(n). We conclude that the total time to compute C? for

all nodes v, € V! is O(n logn). To compute Ay = B,i + le for all nodes v, € V! it is

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 67

now sufficient to compute B,l for v; € V1. The latter step is done recursively on the tree
T' = (v!, EY). (A symmetric procedure is applied to compute A for all vz € V2.)

To evaluate the total effort needed let C(n) denote the effort to compute the terms (A}
in a tree with n nodes. From the above discussion we obtain

C(n) <cnlogn+ C(n1) + C(n2),

where ni +np=n+1,n <2(n+ 1)/3 and ny < 2(n + 1)/3. We conclude that the total
complexity is C(n) = O (nlog? n).

4.2.2. The approximation algorithm

We now briefly describe the pseudopolynomial time algorithm.

Since vy is the root of T = (V, E), we let vy, v2, .. ., v, be a depth-first ordering of the
nodes in V. Let D’ be some known precomputed upper bound for the objective value of
the problem (CMS). For each pair [/, #], let T'[j, ¢] be the subtree of T induced by all the
nodes with indices lower than v; plus the node vj, the first ¢ children of v; (in order of
index) and all the descendants of these ¢ children.

We consider first the rooted version of problem (CMS), where the selected (discrete)
subtree must contain the root v{. The L-R algorithm maintains a sorted list G[j, #] of pairs
(glj.t.11,1) where g[j, t,1] is the optimal solution of the problem in 7'[j,] with length
! < L and g[j,t,1] < D’. (Since g is a nonincreasing function of / the ordering is well
defined). The list only contains nondominated pairs, thus its order is O(min[L, D’]). The
optimal value of problem (CMS) is given by the smallest first (g) component of a pair in
the list G[n, 0].

In [29], it is proved that the time to compute a list G[/,¢] from a list G[j,r — 1] is
O (min[L, D). (For this update step we need to add the term a; (), computed in the pre-
processing, to the first coordinate of each pair in the list G[j,1 — 1]. vj() is the ¢th child
of v;.) Therefore, the total time to solve the problem by this algorithm is O (nmin[L, D']).
From the results in Section 3.2.2 we can compute, in O(nlogn) time, a value of D’ that
is at most n times the optimal value of problem (CMS). Indeed, let Y be the optimal
solution to the conditional center subtree problem, i.e., the solution to the minimax prob-
lem. Therefore, Fas (YY) is clearly an n-approximation for the respective median model,
which is problem (CMS). We have proved above that this n-approximation solution can
be found in O(nlogn) time. Thus, problem (CMS) can be solved in O(n min[L, n FoP'])
time, where F°P! is the optimal value of problem (CMS).

We now sketch the fully polynomial time algorithm. Let FO:= Fa (YY) be the n-ap-
proximation given by the minimax solution, i.e., FO < nFopt,

Given a positive &, we partition the interval [0, FO] into [#%/¢] consecutive intervals,
each but possibly the last of length [& FO/n?].

The approximation algorithm follows the steps of the L-R algorithm. For each pair [/, 7]
it produces a list H[j, t] of at most [n? /] subtrees. Each subtree ¥ will be recorded by the
pair (F(Y), L(Y)). The algorithm terminates with the final list H [#, O] that corresponds to
the leaf node v,,.

The claim is that if (F*, L*), associated with the subtree Y*, belongs to the list H[x, 0]
and is such that F* is the smallest F' coordinate (the first coordinate of the pairs (F,[)),
then Y* is a (1 + &)-approximation solution, i.e., F* < (1 + &) F°P,

68 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

Considering the (exact) pseudopolynomial algorithm, we note that there are only O (n)
subproblems [/, ¢] and lists G[j, ¢t]. Tamir [29] proved that if a list G[J, ¢] is processed
in the kth step of the algorithm and (F(Y), L(Y)) is one of the entrees of the list which
is relevant for the optimal solution, then it is represented by some pair (F,!) in the list
HI[j,t] where |F(Y) — F| <keF%/n® and L(Y) < I. (At each step of the algorithm an
additive error term £ F9/n? is introduced.)

Therefore, for any pair (F, 1) in the list H[n, 0] we have |F — F°P!| < neF%/n?. Since
FO < nFO we conclude that F < FOPY(1 + ¢).

The above approach gives an O(n3 /&) time algorithm to obtain a (14 &)-approximation
solution to problem (CMS), where the selected subtree is rooted at vy. This implies that
the naive implementation to solve the unrooted version should solve n rooted subproblems.
The total complexity would be O (n*/e).

Again, following [29] there is a better implementation following a divide and conquer
approach. Suppose without loss of generality that v is a centroid of 7. If v is not included
in the optimal subtree, it is included in a component having at most #/2 nodes. Hence, it
is sufficient to approximate the problem where the optimal subtree must include vy, and
then make recursive calls to problems of size at most n/2 + 1. This analysis implies that
the overall effort of obtaining a (1 + ¢)-approximation for the unrooted version of problem
(CMS) is again 0(n3/e).

4.3. The conditional median path problem

Table 3 summarizes the best known results for unconditional median path problems. For
the problems with a constraint on the length of the path, Alstrup et al. [1] give subquadratic
algorithms. We will next give alternative short descriptions of slightly inferior algorithms
for the sake of completeness. These algorithms use some preprocessing presenting in ear-
lier sections. Then, we extend the algorithms to the conditional cases.

4.3.1. An O(nlogn) algorithm for the discrete unconditional median path with a length
constraint

We use a divide and conquer approach. First we find, in linear time, a centroid of the
tree, say v;. From [16], we know that T = (V, E) can be decomposed into two subtrees
T!= (V! EYand T? = (V% E?),such that VIUV? =V, VINnV2 = {v;}, E'UE? = E,
and np, =|\V?| <2(n+1)/3, p=1,2.

If an optimal path does not contain the centroid v, then it must be included either in T'!
or in T2. Therefore, we can use a divide and conquer scheme. Find the best path containing
nodes in both V! — {v;} and V2 — {v;}. Then, recursively find the best path contained in
T! and the best path contained in 7.

We start with a preprocessing phase described in [16], and modified by Frederickson
and Johnson [10]. In this phase we find a centroid decomposition of the tree into a nested
sequence of subtrees. For each subtree 7’ in this decomposition we compute recursively
and sort the distances from its centroid, say v’ to all other nodes of 7’. The total time
needed for this phase is O(nlogn).

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 69

Suppose now that v; is a centroid of the original tree. Our task is to find the best path
containing nodes in both yl— {v;} and vZ_ {v;}. For each node vy € vy e Vz) let

A,1(= Z wtd(v,,P[vj,vk]) (A%: Z w,d(v,,P[vj,vk])>.

vev! veV?

Note, that A ,1((Az) is the sum of the weighted distances of all the nodes in V! (V?) from
the path P{v;, vx], connecting the centroid v; with vy. In linear time we compute {A ,i} and
{A,%}, using the following equations.

If v, is a node adjacent to v; on the path connecting the centroid v; to v; in V! then,

1 1
A[= Ak —di: -+ A[—at k.

Similarly, if vt is a node adjacent to v, on the path connecting the centroid v; to v; in y?
then,

2 2
A[= Ak — Akt -+ A[— s k.

Let U = (vi¢1y, - -+, Vi(ny)) be the ordering of the nodes in V! by their distances from the
centroid v;. Let U2 = (vg(1), - .-, Ug(ny)) be the ordering of the nodes in V2 by their dis-
tances from the centroid v;. In particular vj(1y = vq(1) = vj. We are now ready to compute
the best discrete path of length not exceeding L which contains nodes in both V! — {v i)
and V2 — (v i}

It is sufficient to find, for each node v in U!, the best path, whose length is at most L
which has v as one of its endpoints. We start with v; . If d(vj, vi(n,)) > L, there is no
such path. Otherwise, find the largest index ¢ = #(n), such that d(v,¢), vi(n;)) < L, and
d(Wg+1), Vi(ay)) > L. Set

®i(ny) = l(n[) + mll}("l) AZ(.T)’
where o;(,,) is the value of the best path which has v;(,,) as one of its endpoints. Next we
proceed with v;(,,—1), and find the largest index f = ¢ (n1 — 1) such that d(vg (), vi(n,—1)) <
L, and d(vg¢41), Vigny—1y) > L. It is clear that t(ny) <t(n; — 1). We then set

i ~1) = Ail(nl—l) + lewf{‘}g‘l_l) Af;(s)-
Continuing with vi(,—2) etc., in linear time we compute all the terms o), for r =
1,...,n. We conclude that the objective value of the best discrete path of length
not exceeding L which contains nodes in both V! — {v ;1 and V2 — (v ;} is given by
min,— 1,. 1al(r)

In the recursive step we now have to find the best path contalned in 7' (T?). (Due
to symmetry we show only how to compute the path contained in T1.) Consider a node
v, € V2. If P is some path contained in T!, then w,d(v;, P) = w,d(v,, v;) +wid(vy, P).
Therefore, in order to solve the problem where the path is restricted to T'!, it is sufficient
to replace the weight of v; by ZU ev2 Wi, Temove all the nodes in V* — (v ;} from T,
and solve the problem on the remaining subtree, i.e., T'!. (Of course, we need to add the
constant ZU cv2 wed (vy, v;) to the objective value of the restricted problem, to get the best
objective value amongst all discrete paths contained in T'1.)

70 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

To evaluate the total effort needed to solve the problem recursively, let C(n) denote the
effort to compute the unconditional discrete median path of length not exceeding L in a
tree with n nodes. We obtain

Cny<en+Clny)+Cny),

where nj +np =n+1,n) <2(n+ 1)/3 and ny < 2(n + 1)/3. We conclude that the total
complexity is C(n) = O(nlogn).

4.3.2. An O(nlog? n) algorithm for the continuous unconditional median path with a
length constraint

To solve the continuous median path problem we first recall that there is an optimal
path such that one of its endpoints is a node. Using this property we can apply the same
approach used for the discrete path. Given the notation of the previous section, we only
need to show how to find the best path of length not exceeding L which contains a node in
vi— {vj} (V2 — {v;}), and some point which is not v; in T2 (T!). Due to symmetry we
will consider only the paths which have a node in V! as one of their endpoints.

Consider the set {Aém}, s =1,...,n5. Let P be a path with an endpoint at some node
vr € V1, Its other endpoint is at a point x; ,, on an edge (v;, vp) in 72. (Suppose that v; is
on the path connecting vy, to the centroid v;.) It is easy to see that the objective value of
the path P is

Allc + Ai2 - (Atz - A,Zn)(d(v,-,x,»,,,,)/d(v,-, vm))~

Hence, the objective value of P varies linearly with the location of its endpoint x; ,, on
(vi, vm). Moreover, consider a path P[v;, v;] connecting the centroid v; with some leaf
node v, in V2. If yj.: is a point on this path, and P is a path with v € V! and y;, as
its two endpoints, the objective value of P is a monotone piecewise linear convex func-
tion of the location of y;; on this path. The breakpoints of this function are the nodes
of P[v;, v;]. Specifically, there is a piecewise linear function f;,(y), of a real parame-
ter y, 0 < y < d(v;,v;) such that for each node vy € v! and a point x on Pluj,v]
satisfying d(x, vj) = vy, the objective value of the path P{uvg, x] is A}(+ f.(y). (Note
that f;,(0) = A? and f;,(d(vj,v)) = Atz.) For convenience, we extend the definition of
fj.1(y) for all nonnegative values of y, by defining f;,(y) = A% forall y > d(vj,v;). Let
V2* be the set of leaves of V2. Define

F(y)= min f;,(y).
veV

Since the total number of breakpoints of all the functions { f; ;} is at most ny, it is known
that the total number of breakpoints of F' is at most O (n2a(n72)), where «(n2) is the inverse
of the Ackermann function (see [26]). Moreover, the sequence of breakpoints of F can be
generated in O(n2 logns) time (see [14]).

We are now ready to compute, for each node vy € V!, the best path whose length is at
most L, which has one of its endpoints at v and the other at some point in 72. By the
above analysis the objective value of such a path is

Ap+ F(L —d(u, v)).

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 71

F(L —d (v, v;)) can be computed in O(logn2) time by applying a binary search over the
breakpoints of F. We now conclude that in O(nlogn) time we can find the best path of
length not exceeding L, which contains a node in V1 — {vj} (V2 - {v;}) and some point,
which is not v; in T2 (T1).

As in the previous section we continue recursively with the subtrees 7! and T2. To
evaluate the total effort needed to solve the problem recursively, let C(n) denote the effort
to compute the unconditional continuous median path of length not exceeding L in a tree
with n nodes. We obtain

C(n) <cnlogn+ Cny) 4+ C(ny),

where ny +ny=n—+1,n; <2(n+ 1)/3 and ny < 2(n 4 1)/3. We conclude that the total
complexity is C(n) = O(nlog®n).

In the next subsections we describe efficient algorithms for the conditional models. We
start with the O (nlog? n) preprocessing phase, mentioned in the previous section, where
we compute the terms {g; ;} for all edges (v:, v;).

4.3.3. An O(nlog?n) algorithm for the conditional median path problem with no length
constraint

When there is no length constraint, the conditional median path is a path connecting two
leaves of the tree. Indeed, this problem can be solved in O (n) time after all the terms {a; ;)
have already been computed in O(nlog?n) time. The approach is similar to that of [2].
Specifically, for each node v;, we compute the optimal median path, which has v; as one of
its endpoints, and is contained in V;. Let B; denote the objective value of such an optimal
path. Then recursively we have the following: If v; is a leaf then B; = A;. Otherwise,

Bi=A; + Ujrélsigj,»)[Bj —aji—aijl

Finally to find the conditional (discrete) optimal median path with no length constraint,
for each node v; we compute the best path, which is contained in V;, and contains v;. Let
C; denote the objective value of such a path. Then we have the following: If v; is a leaf then
C; = B;. If v; has only one child then again C; = B;. Suppose that [S(v;)| > 2. Consider
the set {B; —a;,j —aj,i: vj € S(v;)}. Let j(1) and j(2) be the indices corresponding to
the two smallest entries in this set. Then it is easy to see that

Ci=Ai+Bjny—ajw.i —a,j0+ Bjo —aj@, —a,-

The objective value of the conditional optimal median path without length constraint is
then min,,cv C;. We therefore conclude that the conditional median path problem without
length constraint can be solved in O (nlog?n) time.

4.3.4. An O(nlog?n) algorithm for the discrete conditional median path problem with a
length constraint

We show how to adapt the O(nlogn) algorithm from Section 4.3.1, which solves the
respective unconditional model. We assume that all the (a; ;} coefficients have already
been computed. We follow the notation in Section 4.3.1. Suppose now that v; is a centroid

72 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

of the original tree. Our task is to find the best path containing nodes in both V1 — {v ;}and
V2 — {v;}. For each node v € V! (vg € V?) let

Al = Z wemin[d (v, Plvj, vel), d(v,)]

yeVv!

(A,%: Z w min[d(v,,P[vj,vk]),d(vns)])

veV?

Note, that A} (A2) is the sum of the weighted distances of all the nodes in V! (V2) from
Plvj, v] U S, where Plv;, v] is the path connecting the centroid v{- with vg. In linear
time we compute {A}(} and {A%}, using the following equations: Let Vj (ij) be the subset

of V! (V?) consisting of all the nodes adjacent to the centroid v; in V1 (V?). Then,

Ai: Zaj,, and A?: Zaj‘,.

v,erl v,er2
If v; is a node adjacent to v, on the path connecting the centroid v; to v, in V! then,
1 1
Al = Ak — At + At —day k.

Similarly, if v is a node adjacent to v, on the path connecting the centroid v; to v, in v?
then,

2 2
A=Ay —ap +Ar—a ;.

Using the above expressions we proceed exactly as in Section 4.3.1, and find in linear time
the objective value of the best discrete conditional median path of length not exceeding L,
which contains nodes in both V! — {v;}and v?— {vj}.

In the recursive step we now have to find the best path contained in T! (T?). (Due to
symmetry we show only how to compute the path in T!.) We augment a node vg to V!
and connect it with an edge to the centroid v;. We define a0 = A2, and solve the problem
recursively on the augmented tree T'. As in Section 4.3.1 the complexity of the recursive
algorithm is O(nlogn). However, in the conditional model the preprocessing phase of
computing {a; ;} takes O(n log? n) time and determines the total complexity.

4.3.5. An O(n?) algorithm for the continuous conditional median path problem with a
length constraint

At this stage we still do not know how to apply the above divide and conquer approach
to the continuous conditional median path problem. Specifically, it is not clear to us how
to aggregate the data from 72 (T') into the centroid and decompose the problem into two
“independent” subproblems on 7'! and 72.

Instead, we use a direct approach to obtain an O(n?) algorithm. Since we know how
to compute the best discrete path of length not exceeding L, in O (nlog? n) time, we can
assume, without loss of generality, that there exists an optimal almost discrete path P for
the continuous problem, whose length is exactly L, and one of its endpoints, say x, is not a
node. To obtain a quadratic time algorithm it is sufficient to restrict x to a given edge, and
show how to get the best path with one endpoint on this edge in linear time.

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 73

First, we need some preprocessing. For each node vy define
X ={x € A(T): d(v, x) =d (v, $)}.

Let X = Uzzl X. Note that | X| = O (n?). It is shown in [15] how to compute the points
in X, and locate and sort them on the respective edges, in O (n?) time. We also compute
and sort the distances from each node to all other nodes. This can also be performed in
O (n?) time, as shown in [15].

We now consider an individual edge (v;, v;), and show how to find the best median path
with an endpoint x, on this edge. (To simplify the notation we assume that x =d(x, v;).)
Let X; ; denote the sorted list of all points of X on (v;, v;). We also augment the nodes
v; and v; to this list. As above we let V; ; (V;;) be the set of nodes in the connected
component containing v; (v;), obtained by removing the edge (v;, v;). For each x on
(vi, vj) we define

g0 =3 wiminfd(x, v), d (v,)]

veV

As noted, g; j(x) is a monotone, piecewise linear and concave function with breakpoints
at X; ;. It is clear that in O(n) total time we can compute g; ;j(y), and g;;(y), for all
y € X; ;. Let x be a point on (v;, v;). It is sufficient to look only at paths of the type
Plug, x] of length L, where v € V;;. For such a path the objective value is a piece-
wise linear concave function of x. Its breakpoints are in X; ;. Similar to the notation in
Section 4.3.4 we define Ay ; = Zu,evjv,‘ wy min[d(v;, Plug, v;]), d(v;, S)]. As explained
there, in linear time we can compute these terms for all vy € V; ;. The objective value of a
path P[vg, x] is equal to Ay, ; + g;,j(x), where d (v, v;) +x = L.

Next we let Z;; = (vg(1y, .- .» Uk(n;,;)) be the ordering of the nodes in V; ; by their dis-
tances from v;. (vg1y = v, and nj; = |V;;|.) Finally, by scanning Z; ; and the sequence
of breakpoints X; ; we compute in O(n) time the objective values of all paths of length L
which have one endpoint in V; ; and the other end on (v;, v;).

We conclude that the total time to solve the continuous conditional median path problem
with a length constraint is O (n?).

5. Final comments
We conjecture that the complexities of the algorithms for the conditional median path
problems presented above can be further improved by using the data structures imple-

mented by Alstrup et al. [1] to solve the unconditional versions of these models. This will
be a subject of future research.

Acknowledgments

The research of the second and fourth authors was partially supported by Spanish
MCyT grant numbers BFM2001-2378, HA2003-0121, BFM2004-0909. The third author

74 A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75

was supported by Spanish MCyT grant numbers BFM2000-1052-C02-01 and BFM2003-
04062.

References

[1]1 S. Alstrup, PW. Lauridsen, P. Sommerlund, M. Thorup, Finding cores of limited length, in: F. Dehne,
A. Rau-Chaplin, J.-R. Sack, R. Tamassia (Eds.), Algorithms and Data Structures, in: Lecture Notes in Com-
put. Sci., vol. 1272, Springer, Berlin, 1997, pp. 45-54.
[2] I. Averbakh, O. Berman, Algorithms for path medi-centers of a tree, Comput. Oper. Res. 26 (1999) 1395-
1409.
[3]1 R.1. Becker, Y. Perl, Finding the two-core of a tree, Discrete Appl. Math. 11 (1985) 103-113.
[4] O. Berman, D. Simchi-Levi, Conditional location problems on networks, Transport. Sci. 24 (1990) 77-78.
[5]1 R. Chen, Conditional minisum and minimax location—allocation problems in Euclidean space, Transport.
Sci. 23 (1988) 157-160.
[6] R. Chen, G.Y. Handler, The conditional p-center problem in the plane, Naval Res. Logist. 40 (1993) 117—
127.
[7] Z. Drezner, Conditional p-center problems, Transport. Sci. 23 (1989) 51-53.
[8] Z. Drezner, On the conditional p-median problem, Comput. Oper. Res. 22 (1995) 525-530.
[9]1 R.L. Francis, T.J. Lowe, H.D. Ratliff, Distance constraints for tree network multifacility location problems,
Oper. Res. 26 (1978) 570-596.
[10] G.N. Frederickson, D.B. Johnson, Finding kth paths and p-centers by generating and searching good data
structures, J. Algorithms 4 (1983) 61-80.
[11] S.L. Hakimi, E.F. Schmeichel, M. Labbé, On locating path—or tree shaped facilities on networks, Net-
works 23 (1993) 543-555.
[12] P. Hansen, M. Labbé, The continuous p-median of a network, Networks 19 (1989) 595-600.
[13] S.M. Hedetniemi, E.J. Cockaine, S.T. Hedetniemi, Linear algorithms for finding the Jordan center and path
center of a tree, Transport. Sci. 15 (1981) 98-114.
[14] J. Hershberger, Finding the upper envelope of n line segments in O(nlogn) time, Inform. Process. Lett. 33
(1989) 169-174.
[15] T.U. Kim, T.J. Lowe, A. Tamir, J.E. Ward, On the location of a tree-shaped facility, Networks 28 (1996)
167-175.
[16] N. Megiddo, A. Tamir, E. Zemel, R. Chandrasekaran, An O (n Iogzn) algorithm for the kth longest path in
a tree with applications to location problems, SIAM J. Comput. 10 (1981) 328-337.
[17] J.A. Mesa, The conditional path center problem in tree graphs, unpublished paper presented to the EWGLAS
held in Lambrecht (Germany) in 1995.
[18] E. Minicka, Conditional centers and medians on a graph, Networks 10 (1980) 265-272.
[19] E. Minieka, The optimal location of a path or tree in a tree network, Networks 15 (1985) 309-321.
[20] E. Minieka, N.H. Patel, On finding the core of a tree with a specified length, J. Algorithms 4 (1983) 345-352.
[21] PB. Mirchandani, A.R. Odoni, Locating new passenger facilities on a transportation network, Transport.
Res. B 13B (1979) 113-122.
[22] C.A. Morgan, J.P. Slater, A linear algorithm for a core of a tree, J. Algorithms 1 (1980) 247-258.
[23] S. Peng, W. Lo, Efficient algorithms for finding a core of a tree with specified length, J. Algorithms 20
(1996) 445-458.
[24] S. Peng, A.B. Stephens, Y. Yesha, Algorithms for a core and k-tree core of a tree, J. Algorithms 15 (1993)
143-159.
[25] S. Sahni, General techniques for combinatorial approximations, Oper. Res. 25 (1977) 920-936.
[26] M. Sharir, PK. Agarwal, Davenport—Schinzel sequences and their geometric applications, Cambridge Uni-
versity Press, 1995,
[27] A. Shioura, M. Shigeno, The tree center problems and the relationship with the bottleneck knapsack prob-
lems, Networks 29 (1997) 107-110.
[28] PJ. Slater, Locating central paths in a graph, Transport. Sci. 16 (1982) 1-18,.

A. Tamir et al. / Journal of Algorithms 56 (2005) 50-75 75

[29] A. Tamir, Fully polynomial approximation schemes for locating a tree-shaped facility: a generalization of
the knapsack problem, Discrete Appl. Math. 87 (1998) 229-243,

[30] A. Tamir, T.J. Lowe, The generalized p-forest problem on a tree network, Networks 22 (1992) 217-230.

(311 A. Tamir, J. Puerto, D. Pérez-Brito, The centdian subtree on tree networks, Discrete Appl. Math. 118 (2002)
263-278.

[32] B.-E Wang, Efficient parallel algorithms for optimally locating a path and a tree of a specified length in a
weighted tree network, J. Algorithms 34 (2000) 90-108.

[33] B.-FE. Wang, Finding a two-core of a tree in linear time, SIAM J., Discrete Math. 15 (2002) 193-210.

[34] B.-F. Wang, Private communication, June 2001.

