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We consider a class of discrete bottleneck problems which includes bottleneck integral flow
problems. It is demonstrated that a problem in this class, with & discrete variables, can be opti-
mized by solving atmost k& problems with real valued variables.

Several papers dealing with bottleneck flow problems [1,3-7,9] have recently
appeared in the Operations Research literature. Most of these papers have focused
on finding polynomial (in k, the number of variables) algorithms for problems with
real-valued flows. A minimax problem with integral flows is presented and poly-
nomially solved in [5]. However, the polynomial bound of the solution procedure in
[S] depends on data such as arc capacities and flow weights.

In this note we present a simple observation demonstrating that optimal bottle-
neck integral flows can be obtained by solving O(k) problems with real valued
flows. (The reader is referred to [2] for results on general combinatorial bottleneck
problems.)

Consider the following bottleneck problem:

Min Maxk {dix;},
X i</=

Ax=b, (1)
0<x;<a and X integer, Jj=1,...,k,
where all data are integral and ¢, =0, j=1, ..., k.

LetJ={/ l d; >0}. Then (1) reduces to finding the minimum gz, Z, such that (2) has
an integral solution.

Ax=b,
0 <x;<min(a;, z/d)), jeJ, 2)
OSXJ'SCIJ', j$.]

(Note that z/d; can be replaced by | z/d, |, while testing (2) for integral feasibility).
In the sequel we make the assumption that for all integral b and w {x ]Ax >b,
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0<x<w] is empty or else contains an integral solution. (Obviously, total uni-
modularity of A4 ensures this property.)

Lemma 1. Let 7 (z*) be the minimum z such that (2) has an integral (real-valued)
solution. Then  =kd; for some integer kandjel. Also

I*<I=z*+ max {d}.
jed

Proof. The equality Z=kd, is obvious from the monotonicity of min(a,, z/d,) in z.
Let d = max,, , {d,;}. In order to prove that Z < z*+d, it suffices (due to our assump-
tion on A) to demonstrate the nonemptiness of

Ax=b,
0<x;,<min(a;, | (z*+d)/d;]), jeJ, (3)
OSstaj, _]$J.

But, from

z* z* z*+d .
——< | =41 | < , J€J,
d; d; d;
it follows that the solution x*, yielding z*, is also feasible for (3).

Theorem. Let Z and z* be as in Lemma 1, and d =max;, ,{d}. Let m =|z*/d|.
Then | z/d | € {m, m + 1}. Furthermore, | z/d | = m if and only if (2) has an integral
solution with z =(m+1)d — 1.

Proof. The inequalities z¥<Z =<z*+d imply that | 2/d e {m, m+1}. Moreover,
| 2/d | =m if and only if there exists £ °in the interval [z* (s + 1)d), such that (2)
has an integral solution with z =z°. Since we seek for an integral solution, z° can be
restricted to integral values. Using the monotonicity (in 7) of the region defined by
(2), z° can be assumed to be (m+ 1)d — 1.

We now apply the Theorem to find Z. First we note that by our assumption on A4,
testing (2) for integral feasibility amounts to testing whether
X(z)={x|Ax 2 h0<x;<min(a, |2/d; |),jeJ;0=x,<a,j&]},

contains a real-valued solution.

A procedure for finding Z
Given the initial set J, go to Step 1.

Step 1. For the current set J, compute z*, the minimum value of z for which (2)
(with the current set J) has a real valued solution. Also, set d =max, ., {d,}. Suppose
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that d =d;, set m=|z*d|. If X(z) is empty for z=(m+1)d—1 go to Step 3,
otherwise go to Step 2.

Step 2. If |J|=1, Z=md. Terminate. Otherwise, replace the upper bound a;, by
min(a_,»(), m), and omit j, from the current set .J. Return to Step 1.

Step 3. If [J| =1, Z=(m + 1)d. Terminate. If X(z) is nonempty for z = (m + 1)d, set
z=(m+ 1)d, and terminate. Otherwise, replace a; by min{g; , m -+ 1), omit j, from
the current set J. Return to Step 1.

The initial set J satisfies |J/| <k. Thus, the entire process terminates in atmost k
iterations, since the cardinality of the current set J is reduced by 1 at each iteration.
In each iteration we find z*, the optimal value for the respective real valued problem
and test the feasibility of X(z) for atmost two values of z.

Using Lemima 1 we note that  can also be obtained by testing the feasibility of
X(z) for integers z in the range [z* z*+d], d=max, ,{d;}. Applying a binary
search on this range, 7 is found after solving O(log d) feasibility problems.

Although we have addressed only minimax problems our approach is easily
adapted to solve maximin problems as well.

Finally we relate our results to the bottleneck flow probiems considered in
[1,3-7,9]. These problems satisfy the assumption of our model since the respective
matrix .4 is totally unimodular. (The flow model actually requires Ax = 5 rather
than Ax = h. But since [_4] is also totally unimoduiar 4x = b can be replaced by
Ax=b, —Ax = —b, and the general model (2) applies to the flow problem as well.)
We also note that in the flow problems testing the feasibility of (2) for a given :
reduces to finding a maximum flow between two nodes of the network.

Let G = (N, E) be anetwork where N is the set of nodes and £ is the set of directed
arcs connecting them. Let n =|N| and e = |[E/|. Given nonnegative integers {c(4, /)],
tw(i, j)}, (i, j) € E, and v* the maximum flow between nodes s and ¢, the weighted
minimax flow problem, [5]. is:

Min ((Max w(i,j)f(i,j)>,

Ly ek - .
0, i#s1t,
st Y fGH- X fU0)= v¥, I=S5, (4)
(7)Y # (J,YeE ‘—U* l:I

O<fU,jy=<c(, ), (i,j)e E.
An O(n®) algorithm for the above problem, when flows are real-valued, is suggested
in [6]. We note that the parametric approach for general combinatorial problems
given in [10], also yields the same bound for this problem. In fact, the bound in [10]
is O((C(n, e))7), where C(n, e) is the complexity of finding a maximum flow on a
graph with 7 nodes and e arcs. Currently C(n, ¢) = O(n min(n-, e log n)), [8,11]. The
case when flows are restricted to integral values is considered in [5]. There, a poly-
nomial algorithm depending on {w(; )}, {c(ij)} is given. Our approach for
solving the integral flow problem has an O(e(C(n, e))?) bound, since the real valued
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bottleneck problem (Step 1 of our procedure), is solved O(e) times.
The bottleneck sharing problem [1,7] is a special case of (4). Its real-valued version
is obtained in O(|T'|c(n, €)) time, where |T| is the number of sinks in the network,
[3,7]. Using our scheme, the case where flows must be integral will be solved in
O(IT|*C(n, e)) effort.

We conclude by conjecturing that our scheme can be applied internally by a (para-
metric) algorithm for the real valued bottleneck poblem to yield the same time
bound for the integral-valued version as well.
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