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6.1. INTRODUCTION

A class of location decision problems may be formulated as covering
problems. We will study in this chapter some covering problems on net-
works. Here a set of clients, with given demands for services or com-
modities, are assumed to be located on the nodes or arcs of an underlying
network. The problems require that facilities be established on the network
to provide the necessary services or commodities for these clients. All
facilities will be assumed to be of the same type and each of them to have
sufficient capacity to serve all clients; that is, only the uncapacitated versions
of the covering problems will be considered. Whenever a facility is “close
enough,” as defined by the problem statement, to serve a client we say that
the client is covered by that facility. Generally, in the covering problems
discussed here we determine the number and locations of the facilities so
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264 Covering Problems

that the clients are covered with minimum cost, the cost function (or
objective function) being defined by the problem statement.

In this introduction we give an informal description of the various
location problems to be discussed in this chapter. Most of these problems
are either covering problems or can be solved by a sequence of covering
problems. Exact formulations are given in the succeeding sections where we
present solution techniques.

In most of our models the clients are assumed to be located only at the
nodes of the network. We refer to the case where clients are not restricted
to be at the nodes as a continuous location problem. A point in the network
where a facility may be established is referred to as a potential site.

We consider three types of costs involved with a given set of facility
locations. The first is the setup cost, that is, the cost of establishing a facility
at a given site. When the facilities may be located anywhere along the
network we assume that all setup costs are equal. When the set of potential
sites is finite, different setups will also be allowed. The second cost is the
transportation cost, that is, the cost of transporting the service (or commodi-
ty) between a facility and a client. The transportation cost is assumed to be a
nondecreasing function of the distance between the client and the serving
facility. Since we have assumed that each facility has a sufficient capacity to
serve all clients, each client will be served by its closest facility. Finally, we
may have what we refer to as the penalty cost, a cost which is applied only if
a client is not served by any facility. The penalty costs will, in general,
depend on the particular clients not served.

The following constraints are also included in our models. The first is a
budget constraint which models the upper bound on the total setup cost. If
all setup costs are equal, then the budget constraint reduces to an upper
bound on the number of facilities that may be established.

In addition we have client constraints and facility constraints. Through the
client constraints, we model the requirement that each client be served by a
facility which is located within a given distance (depending on the client)
from that client. One can think of the set of points within a given distance
from a client as the region of attraction for that client. Consider, for
example, the problem of a new company which is interested in entering an
existing market. We may assume that a client will switch to the new
company only if the latter establishes a facility within his region of at-
traction.

The facility constraint refers to the case when a facility can only serve
clients which are located within a given distance (depending on the facility)
from it. Here we may assume that associated with clients who are located at
large distances, are transportation costs that are too expensive for the
serving company.

Common objective functions that arise are:

1. minimize the maximum transportation cost (the center problem);
2. minimize the sum of the transportation costs (the median problem);
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3. minimize the sum of the transportation costs and the setup costs (the
uncapacitated facility location problem);

4. minimize the sum of the setup costs and penalty costs (the covering
problem);

5. minimize the penalty costs (the coverage problem).

In Section 6.2 we formulate both the client and facility constrained
problems as (0, 1) integer programming problems. We present a polynomial
time algorithm to solve this problem whenever the integer programming
problem satisfies certain properties. These properties are shown to be
satisfied when the underlying network has a tree structure. We also show
that the uncapacitated facility location (UFL) problem can be formulated as
a client constrained covering problem. Hence, it can be solved in polynomial
time in the case of a tree network by using the algorithm presented.

One aspect of location problems which is usually not addressed is the
aspect of allocating the total locational cost among the clients. In Section 6.2
we discuss the problem of finding a cost allocation which is “acceptable” to
all clients. After defining what is meant by ‘“‘acceptable,” we develop a
relationship between the cost allocation problem and the dual of the
covering problem. Acceptable allocations are shown to always exist for tree
networks. ‘

In the context of covering problems we also discuss the multiple covering
problem. Here, each client must be served by a number (depending on the
client) of facilities. There is also an upper bound (depending on the site) on
the number of facilitiecs we can establish at a given site. We show how the
algorithm developed in Section 6.2 can be used to solve the multiple
covering problem on tree networks when all setup costs are equal.

Section 6.3 is devoted to budget constrained center problems on trees.
We show that for different setup costs this problem can be solved as a
sequence of covering problems. In the case of equal setup costs, the budget
constraint specifies the number of facilities, say p; in this case we obtain the
classical p-center problem. Using the concept of a chordal graph we
establish a duality result for a class of p-center problems.

An extension of the classical center problem is the round-trip center
problem. In this problem we consider pairs of clients and a transportation
company which has to transport services (or commodities) from one client to
the other. A facility in this case is a depot where the vehicles of the
company are to be located. The transportation cost is assumed to be a
monotone nondecreasing function of the round-trip distance, that is, the
distance a vehicle has to travel to deliver the service from one client to
another, and then to return to its depot. Equivalently, the round trip
distance is the sum of the distances between the depot and the two clients
and the distance between the two clients. We prove that, unlike the center
problem, the round-trip version is NP-hard for different setup costs, even
on tree networks.
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When the facilities can be located anywhere along the tree, and the setup
costs are equal, the round-trip p-center problem, and the p-center problem,
can be solved in polynomial time. When we restrict the potential sites to the
set of all nodes, again we can solve both problems in polynomial time.
However, in the case when we restrict the sites to a strict subset of the
nodes, the p-center problem can still be solved in polynomial time, while the
round-trip p-center problem becomes N%-hard.

In Section 6.4 we show that there is a strong relationship between the
location problems and set covering problems on totally balanced matrices.
We show that the solution technique for the covering problem developed in
Section 6.2 is equally applicable to the case where the (0, 1) matrix of the
covering problem is totally balanced. We also discuss the budget constrained
coverage problem with equal setup costs and the p-median problem, both on
tree networks. These problems are special cases of integer programming
problems on totally balanced matrices, and are also solvable in polynomial
time.

6.2. THE INTEGER PROGRAMMING APPROACH

As a general framework for the location problems we utilize the following
integer covering program:

minimize 2 cx; + 2 PuZ.
jEM, wEM,;
subject to > a,x;+z,=1, VoeEM,, (6.2.1)
JEM,
x;€{0,1}, JEM,,

z,€{0,1}, wEM,,

where M|, M, are finite index sets and A = (a,,) is an |M,| X |M,| (0,1)
matrix. Let N=(V, E) be an undirected network with node set V=
{v,,v,,...,v,,} and arc set E. Each arc a € E has a certain length o, = 0.
If we consider each arc a = [v,, v;] as a line segment of length «,, then we
can define a point on the arc by its distance on the segment from v,. We
define the distance d(x, y) between two points x and y on N to be the length
of a shortest path (denoted by P[x, y]) from x to y. The distance D(y, X)
between a point y on N and a closed set of points X on N is defined to be
the distance d(y, x) where x is a closest point to y in the set X. We also let
D(X, y) denote the distance D(y, X). We assume that at each node there
exists exactly one client. We refer to the client located at node v, as client i,
i=1,2,...,m. If client i is not served by any facility, then a nonnegative
penalty cost of p, 1s incurred. We assume that the set of potential sites for
the facilities is a subset of nodes of the network. Without loss of generality
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let this set be V'={v,,...,v,}, n=m. The nonnegative setup cost of
establishing a facility at v, is ¢;, j=1,...,n. (We will refer to a facility
established at site v; as facility j, j=1, ..., n.) The covering problem is to
minimize the sum of setup costs and penalty costs, and it corresponds to the
special case of the covering program (6.2.1) with M, ={1,...,m}, M, =
{1,...,n} and a; =1 if and only if a facility at site v, can serve client i.
Thus, the covering problem is formulated as,
minimize 2 c;x; + z D:Z;
j=1 i=1
subjectto X aux +z,=1, i=1,...,m, (6.2.2)
j=1
x, €10, 1}, i=1,...,n,
z,€{0,1}, i=1,...,m,

where x;, = 1 if and only if a facility is established at v, and z, =1 if and only
if client i is served by no facility. :

The client constrained covering problem corresponds to the case where we
have a region of attraction of radius r; for client / and we set a; =1 if and
only if d(vi,vj)ﬁri, i=1,...,m j=1,... n.

The facility constrained covering problem corresponds to the case where
we have a radius s, for facility j and we set a;, = 1 if and only if d(v,, v;) =3s,,
i=1,...,m,j=1,...,n.

The uncapacitated facility location problem (UFL) is to locate facilities at
the nodes in order to minimize the sum of the setup and transportation
costs. The transportation cost for client i is given by a nondecreasing
function f.(d) of the distance d between client i and the facility serving it.
We let f,() correspond to the case when client i is served by no facility. Due
to the fact that facilities are uncapacitated and the transportation costs are
nondecreasing, we will assume without loss of generality that each client is
served by its closest facility. If S is the subset of nodes corresponding to
established facilities, then the corresponding objective value of the UFL
problem is given by

2 ¢+ 2 [(D(v,, 5) (6.2.3)
j: v]-ES i=1
where by convention D(v;, ¢) = .

Let us return for a moment to the client constrained covering problem
(that is, the case where a; =1 if and only if d(v,, v;,) =r,), and minimize
(6.2.2) for a given solution x; € {0, 1}, /=1, ..., n. Define S = {v; : x; = 1}.
Since p, =0 an optimal solution 1s given by z, =1 if

a,x; = 0 (or equivalently D(v,, S)>r,),
1

n

]
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and z, =0 if
21 a;x; =1 (or equivalently D(v,, §)=r,), i=1,...,m.
iz
If we define the function fi(r), i=1,2,...,m by
B={o e (6.2.4)

then the optimal objective value of (6.2.2) corresponding to the set of
established facilities S is given by (6.2.3).

We conclude that both the client constrained covering problem and the
UFL problem can be formulated as

mi?érgize{ > cj+§: f.(D(v,, S))} (6.2.5)

J: UjES

where f,, i =1, ..., m is a nondecreasing function.
We demonstrate next that the UFL problem can be formulated as a client
constrained covering problem. Rewrite (6.2.5) as

minimize [2 cx; + 2 f< mm {d(vl, ])})] (6.2.6)
subject to x,€40,1}, j=l,...,n

where x; = 1 if and only if a facility is established at v,.

By 1ntroduc1ng m - n constraints and m - n new (0, 1)-variables we replace
the nonlinear part in the objective function of (6.2.6) by a linear expression.
The idea behind this transformation is the following. For each client (node)

v, =1, ,m, we denote by r,;, =r, = . the (sorted) sequence of
d1stances from v, to the n potential sites in V’ We also define r;  ,, =oo. If
there is no estabhshed facility within distance r;, from v,, then the closest
cstablished facility is at a distance of at least r,,,,. In this case the
transportation cost for client i is increased from f,(r,. ) (the cost if the closest
facility was at distance r; ) to at least fi(r, ,,,). Therefore we can consider
the difference f,(7, ,,,) — f,(r;x) as a nonnegative penalty for not establishing
a facility within distance r;, from v,. Define the (m-n) X n (0,1) matrix

A= (aik,j) by

w, = Liff d(v, v)=r, , i=1,2,...,m
Lk=1,2,...,n. (6.2.7)

We now introduce the (0, 1) variables z,,, where z, =1 if and only if there
is no facility established within distance r,, from v,, i=1,...,m, k=
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1,...,n Letx;,j=1,...,n be some solution for (6.2.6). Then, we claim
that the transportation cost for client 7 is given by

f( min, e 03] = miviinize X (00 = £0uD) 20+ 0

vy

subject to

Z Ay X Tz =1, k=1,...,n
j=1
z, €{0,1}, k=1,...,n. (6.2.8)

To show (6.2.8) observe that since the coefficient of z,, in the objective
function of (6.2.8) is nonnegative an optimal solution is obtained by making
z,, as small as possible, that is, by making

0, if X ay x=1,
=1
z, = g (6.2.9)
 if D a, x.=0.
j=1

ik, j™vj

If we let #(i) be the smallest index such that r, ) = ming, ., {d(v;, v))}

then the number of facilities established within distance r,, from v, 1S Zero
for k<1(i), and at least one for k=¢(i). Since L_, a, ;x; counts the
number of established facilities within distance r,, from v, we have

{0, if k=1(i),
Zik = {1 ’ if k<1(i). (6.2.10)

Substituting this in the right-hand side of the objective in (6.2.8) validates
our claim:

t(iy—1

El (fi(ri,k+1) = fira) + filri) = fi(rit(i))

=1 min | (o, 0).
(6.2.11)

From (6.2.6) and (6.2.8) we obtain the following (0, 1) integer program-
ming formulation of the UFL problem

n

minimize z cx; + i i (i(riie) = [ira Dz + i fi(riy)
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subject to Eaik,].xjwtzikzl, i=1,....m, k=1,...,n
j=1
z,€{0,1}, i=1,....,m, k=1,...,n
x; €10, 1}7 j=1,...,n. (6.2.12)

Formulation (6.2.12) of the UFL problem is a client constrained covering
problem (note that a, =1 if and only if d(v;, v;) =r,):

Let us now consider the special case when the network is a tree. Let us
denote a tree by T = (V, E). A subtree is a closed connected subset of points
of T (closedness is meant with respect to the metric induced by the distance
function). A neighborhood subtree N(x, r) is defined as the set of all points
on the tree within a distance r (called the radius) from x (called the center),
that is, N(x, r) = {y &€ T: d(y, x) = r}. A neighborhood subtree of a tree is a
generalization of an interval on a line segment. We will see that neighbor-
hood subtrees possess some of the useful properties of intervals.-

An intersection matrix of the set {S,,...,S,} versus {R,,..., R},
where S, i=1,...,m, and R;, j=1,...,n are subsets of a given set is
defined to be the m X n (0, 1) matrix A = (g;;) defined by a; =1 if and only
if §; N R; is nonempty.

If in the client constrained covering problem we define a neighborhood
subtree S, = {y € T: d(v,;, y)=r,;},i=1,..., mthen the matrix A = (a,) of
(6.2.2) is the intersection matrix of neighborhood subtrees versus nodes,
that is, a;; =1 if and only if v, € §,.

Similarly we can define R, = {y & T:d(y,v))=s;},j=1,...,n. In this
case the matrix A = (a;;) of (6.2.2) is the intersection matrix of nodes versus
neighborhood subtrees, that is, a; =1 if and only if v, E R,.

We shall prove in Section 6.2.2 that for intersection matrices of nodes
versus neighborhood subtrees of a tree there exists a permutation of the
rows and a permutation of the columns (we give an efficient procedure to
find these permutations), such that the transformed matrix does not contain
a 2 X 2 submatrix of the form

il 0215

A matrix that does not contain the above submatrix is said to be in standard
greedy form. Since a matrix is in standard greedy form if and only if its
transpose is in standard greedy form we can also transform the intersection
matrix of neighborhood subtrees versus nodes into standard greedy form.

In Section 6.2.1 we give an O(mn) algorithm to solve the covering
problem on an m X n matrix in standard greedy form. We also define and
solve the multiple covering problem for a matrix in this form.

In Section 6.2.2 we discuss how we can find the permutations which
transform the intersection matrix of nodes versus neighborhood subtrees
into standard greedy form.
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In Section 6.2.3 we define a dual problem to the covering problem and
relate it to the allocation of the total cost among the clients.

6.2.1. The Covering Algorithm for Standard Greedy Matrices

Consider the covering problem

n m
minimize . cx; + > DiZ;
j=1 i=1
n
subject to zaijijrziZl, i=1,...,m,

j=1

x, €1{0,1}, j=1,...,n,
z,€{0,1}, i=1,...,m (6.2.14)

where A = (a,) is in standard greedy form. Without loss of generality we
assume that ¢;>0,j=1,...,nand p,;>0,i=1,...,m; if ¢; =0, then we
can take x; =1 and eliminate from (6.2.14) all rows i and variables z; for
which g, =1; if p,=0, then we take z;=1 and eliminate row i from
(6.2.14). Let us define the L P-relaxation of (6.2.14) as the problem obtained
from (6.2.14) by replacing the integrality constraints by the nonnegativity
constraints on the variables.

The algorithm we describe shortly starts by solving the dual of the
LP-relaxation:

legs
maximize > Y;
=1

=1
0=y, =p,, i=1,...,m. (6.2.15)

After a feasible solution y of (6.2.15) is obtained by our algorithm, it
constructs a feasible (0, 1)-solution x, z of (6.2.14) which, together with y,
satisfy the complementary slackness relations given by

yi(z al.jxj+zi—1>=0, i=1,...,m, (6.2.16)
j=1
xj<2 yia,‘j_C,):Oa ji=1,...,n, (6.2.17)
i=1
z(y,—p)=0, i=1,...,m. (6.2.18)

It follows that x, z is an optimal solution of (6.2.14).
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In the first phase, the algorithm starts by calculating y,, ..., y, recur-
sively by a greedy approach, that is, given y,,...,y, ; such that
L) va;=c,j=1,...,nand 0=y, =p,i=1,...,k—1we give y, the
largest value such that Zle ya;=¢, j=1,...,n and 0=y, =p,. So
Yis---» Y, 1s defined recursively by

k-1
yk=min{pk,,min {cj—Zyiaij}}, k=1,...,m.
i=1

J :ak]:l

(6.2.19)

If y, is such that %< ya; <c¢; and T y.a; = ¢;, then we say that
constraint j is saturated by y,. Constraint j is a binding constraint if
YL y.a, = c;. Index sets [ and J play an important role in our algorithm,
where [ is defined to be the index set of the y-variables which saturate a
constraint, and J is defined to be the index set of the binding constraints,
that is, I = {i| y, saturates a constraint} and J = {j|constraint j is binding}.

In the second phase, the algorithm constructs a subset J* of J. The (0, 1)

solution x, z of (6.2.14) is defined by

1, ifjeJ*,
Y=o, otherwise ,
1, it 2 a,=0,
z,= jes*
0, otherwise .

The subset J* of J is defined as follows (beginning with J* = ¢); add the
largest index k€ J to J* and delete all indices j € J from J for which
a; = ay =1 for some i € [; repeat until J = .

Clearly x, z, and y are feasible solutions. In order to prove that they are
optimal solutions we show that the complementary slackness relations hold.
Let us say that row i is covered by column j if a; =1. The following
properties, to be proven shortly, are required to show that x, y, and z are
optimal.

Property 6.1. FEach row i € [ is covered by exactly one column j& J*.

Property 6.2. Each row [ &I with y, =0 is covered by at least one column
jeJx.

Property 6.3. Each row i &1 with y, = p, is covered by at most one column
jeJ*.

Theorem 6.1. Let x, z and y be the solutions defined above. Then x, z and y
are optimal solutions of (6.2.14) and (6.2.15), respectively.

Proof. Since J*CJ (6.2.17) is satisfied. From Property 6.1 and the
definition of z it follows that z; =0 for i € I. Equivalently it follows from
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Property 6.2 that z, =0 for i &1 and y, =0. From Property 6.3 and the
definition of z it follows that ¥,.,. a; + z,=1 for i €1 and y, = p,. Hence
the complementary slackness relations (6.2.16), (6.2.17), and (6.2.18)
hold. [J

Proof of Property 6.1. Let j be the largest constraint which is saturated by
y;,. If j& J*, then j was deleted from J because there exists an index k € J*,
k>j and an index p €/ such that a,, =a, =1. If p=1i, then row [ is
covered by column k. If p # i, then since y, saturates constraint j we must
have p <i. (Note that y ..., y, were defined recursively.) By the stan-
dard greedy form a,; =a,, =a; =1 imply a, = 1. Therefore row i is cov-
ered by column k& J*. Thus each row i & is covered at least once.
Whenever we add k€ J to J* all indices j &€ J for which a;=a, =1 for
some I € [, are deleted from J; hence each row i € I can be covered at most
once. We conclude that row i € [ is covered exactly once by a column from

J*. O

Proof of Property 6.2. Since y, =0 there exists a constraint j with a;, =1
which was saturated by y , before y, was calculated by the algorithm, that is,
p <i. It follows from the proof of Property 6.1 that row p is covered by a
column k € J* which is at least as large as any j € J that is saturated by y .
If j = k, then row i is covered by column k, else by the standard greedy form
a,; = a, = a,;=1limply a, =1, and again row i is covered by column k. We
conclude that row i & I with y, = 0 is covered at least once by a column from
Jr. O

Proof of Property 6.3. Suppose that row i is covered by the two columns j,
k € J* with j < k. Let column j be saturated by y . Since y, >0 and i &1 we
have p >i. By the standard greedy form a;=a, =a, =1 imply a,, = 1.
Hence row p € I is covered by columns j, kK € J*, contradicting Property 6.1.
We conclude that row i &1, y, = p, is covered at most once by a column

from J*. [
Let us give an example to demonstrate the algorithm.

Example 6.1. 'The matrix A = (a;;) of (6.2.14) is given by

P any

NN

fl
S O—= O OO O
OO = e e e (O
OO R =D
i i s B e B an i an B e
OO OO O
—_ R e e D
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We have ¢, =2, ¢, =4, ¢c;=4,¢,=4,¢c5=3,¢c,=8,p,=2,i=1,2,...,7.
Using the algorithm we find y, =2, y, =2, y. =2, y,=0, y. =0, y, =2,
y,=1,I={3,7} and J = {2, 3,5}. Furthermore x; = x; = 1, all other x; are
zero, z, = 1, all other z, are zero. The total cost is 9. This covering problem
corresponds to the location problem of Example 6.2. O

Notice that whenever y, saturates more than one constraint we only need
to keep the last one since all others will never be chosen by the algorithm.
In the example, y, saturated constraints 2 and 3 so we only had to add 3 to
J.

Let us now define the multiple covering problem. This can be formulated

as
minimize E CiX; |
j=1
subject to > a,x; = b,, i=1,...,m (6.2.20)
j=1
O=x,=u, x; integer , j=1,...,n,
where b;,i=1,...,m,u;,j=1,..., nare integers. Each client i has to be
served by b, facilities, i =1, ..., m, and there may exist at most u;, facilities
at location j, j=1,...,n. A feasible solution exists if and only if
Yioyayu;=b, i=1,...,m. Let us assume that this is the case and let us

also assume that the matrix A = (a;;) is in standard greedy form. When the
setup costs ¢; are not all equal we know of no procedure solving the problem
in polynomial time, even on tree networks. In the case of equal setup costs

we may assume that ¢, =1, j=1,...,n Let us define y,=u, —x;, j=
1, ..., n. The multiple covering problem in case of equal setup costs can be
formulated as
minimize u; — > 7
j=1 j=1
subject to E aijijZ aijuj—bi, i=1,...,m
i=1 i=1
! ! (6.2.21)
0=y, =u,, y, integer, j=1,...,n,
or equivalently
maximize E Y,
j=1
subject to a;y;= 2. azu; —b,, i=1,...,m,
=1 =1 (6.2.22)

O=y. =u,, y; Integer, j=1,...,n.
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Since A, and therefore also its transpose, is in standard greedy form,
(6.2.22) is equivalent to (6.2.15). We have already proved that an optimal
solution of (6.2.15) is given by (6.2.19). Furthermore, it follows that if ¢,

(j=1,...,n) and p, (i=1,...,m) in (6.2.15) are integer, then the
constructed solution is also integer. Assuming b, (i=1,...,m) and u,
(j=1,...,n) are integer, the following algorithm will solve the multiple

covering problem. Define the variables x; in (6.2.20), for increasing index of
j, to be as small as possible; that is, use the following recursive relation:

ji—1
X; = max {O max {b — 2 a,u, — > aikxk}}. (6.2.23)
k=1

fia;=1 k=j+1

Let us interpret (6.2.23). £,.; a,x, is the number of times client i is

“covered” (served) by facilities that have already been established.
L—jt1 Gy U, is an upper bound on the number of times facilities, which
might be setup at sites {v,,,, ..., V,}, can cover this client. Thus, if the sum
of the two is less than b,, then the difference should be accounted for by x;.
Note that if a;=1, then b, —X;_ }Ha,kuk—Zk 1alkkau since b, <
Yy, a,u, by assumptlon

6.2.2. Transformation to Standard Greedy Form

To be able to apply the algorithm given in the previous section to the
covering problem (6.2.2) and the multiple covering problem (6.2.21) for
both the client and facility constrained versions on trees, we need to show
how to transform the intersection matrix of nodes versus neighborhood
subtrees (of a tree) into standard greedy form. This transformation is based
on the following theorem (see Kolen, 1983) which we shall prove later in
this section.

Theorem 6.2. Let N(x,, r;) and N(x,, r,) be two neighborhood subtrees
containing an endpoint t, of a longest path in the tree. Then N(x,, r;)C
N(x,, r,) or N(x,, r,) C N(x,, r,).

Theorem 6.2 is no longer true if we replace the endpoint ¢, of a longest
path by an arbitrary “tip node,” that 1s, by a node which is adjacent to
exactly one other node.

The result of Theorem 6.2 constitutes a generalization of the following
property of intervals. If [a, b] is some interval, and I, and I, are subintervals
containing point a, then I, C I, or I, C I,.

Before proving this theorem let us examine its implications. Consider the
intersection matrix of m nodes versus n neighborhood subtrees of a tree 7'
and suppose that we have ordered its rows such that the first row corre-
sponds to a vertex, say f,, which is an endpoint of a longest path in 7. Then
we know from Theorem 6.2 that all columns having a 1 in row 1 (that is all
neighborhood subtrees containing ¢,), can be totally ordered by inclusion,
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that 1s, for any two of them one is contained in the other. Since ¢, is a tip
node of the tree we can remove it and the unique arc containing it from the
tree T. Let T, be the resulting tree. It is easy to see that the intersection of a
neighborhood subtree N(x, r) of T with 7, is a neighborhood subtree of T}.
Thus, there is a y € T, and a radius s such that N(y, s) = N(x, r) N T, (see
Exercise 6.1). Using this we can repeat the above argument. In general, let
t,,, be the node corresponding to row i+ 1, were ¢;,., 1s defined to be an
endpoint of a longest path in 7, and where 7, is the subtree obtained by
deleting ¢, and the unique arc of 7,_, containing ¢, from T, ,, i=
1,...,m—1. (7, is defined to be the original tree 7.) Using Theorem 6.2
and Exercise 6.1 we have established that the intersection matrix of nodes
(rows) versus neighborhood subtrees (columns) has the nest ordering proper-
ty for columns whenever the rows of the intersection matrix are defined

recursively above.

Property 6.4. An m X n (0,1) matrix has the nest ordering property for
columns if for i=1, ..., m the following holds: all columns containing a 1
in row i can be totally ordered by inclusion when they are restricted to rows
with index greater than or equal to i (see the matrix of Example 6.1 for an
illustration).

To find the permutation of the m nodes (rows) corresponding to the nest
ordering property for columns we use the following observation (see Exer-
cise 6.2).

Property 6.5. Let v be a given node of a tree 7. Then a node of T which is
at a largest distance from v is an endpoint of a longest path in 7 (see the tree
in Figure 6.3 for an example).

Thus the nodes ¢,,...,t,, which are recursively defined above, and
correspond to the permutation of the rows can be obtained as follows. Find
the distances from some given node v to all m nodes of the tree (this takes
O(m) time). Sort these distances and suppose that d(v, v,,)=d(v,v,)=

-+=d(v,v,, ). Then set t,=v,, t,=0,,...,t,=0,,(=v). The effort
involved in computing and sorting these distances is O(m log m). Therefore
the permutation of the rows yielding a nest ordering property for columns is
obtained in O(m log m) time.

Given this permutation of the rows, one more step is needed now to
transform the matrix into the standard greedy form. For (0, 1) vectors x and
y, of the same dimension, we say that x is lexical larger than y if x and y are
different and in the last coordinate in which they differ x has a 1 and y has a
0. (Note that this is not the same as lexicographically larger; in that case the
first coordinate in which the vectors differ would be important.) We say that
a set of vectors x ', . . . ,Axk is in nondecreasing lexical order if =x"Torx™"!

is lexical larger than x', i=1,...,k— 1.
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Lemma 6.1. If a (0, 1) matrix has the nest ordering property for columns
and the columns are ordered in a lexical nondecreasing order, then the maitrix
is in standard greedy form.

Proof. Suppose we are given a 2 X 2 submatrix, as defined by the rows
i(1), i(2) (with (1) <i(2)) and columns j(1), j(2) (with j(1)<j(2)):

(O ¢
(D[ 1 1
i(2)[ 1 0 }
i(3)L 0 1

Since columns j(1) and j(2) differ, j(2) is lexical larger than j(1). Therefore
there exists a row i(3) (with i(3) > i(2)) such that column j(1) has a 0 and
column j(2) has a 1 in this row. But this contradicts the nest ordering
property for the columns which implies that column j(1) is contained in
column j(2) or vice versa, whenever we restrict these columns to rows with
an index of at least i(1). [

Ordering n (0, 1) vectors of dimension m in a lexical ordering can be
done in O(mn) time using a radix sort procedure (see Aho, Hopcroft, and
Ullman 1974). We conclude that the transformation of the intersection
matrix of the nodes of a tree (rows) versus n neighborhood subtrees
(columns) into standard greedy form can be achieved in O(nm + m log m)
time.

The following example illustrates the above concepts.

Example 6.2. Consider the tree shown in Figure 6.1. Let us root the tree at
v =v, and calculate the distances to all other nodes and order them in
nondecreasing order, say d(¢,, v) = d(t,, v)="---=d(t,, v) with ¢, = v. Then
if we take ¢, as the node corresponding to row i of the matrix, i=1,...,7,
this will give the desired permutation.

Figure 6.1. Tree of Example 6.2.
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Let us consider the following neighborhood subtrees Ny = N(v,4), N, =
N(v,,6), N, = N(v,,3), N;=N(v;,2), N,=N(v,,1), N,=N(v,,2), N, =

N(vg, 4). A lexical nondecreasing ordering is given by the matrix.

N, Ny N; Ny N, N, N,

s o 0 0o 0o 1 0 0
510 1 1 1 1 0 0
610 1 1 1 1 0 0
L1 0 0 0 0 0 1 1
(|1 0 0 0 0 0 1
0 1 1 1 1 1 1
Lo 1 1 1 1 1 1]

(The transpose of the first six rows of the matrix was used in Example
6.1) O

Let us return to Theorem 6.2.

Proof of Theorem 6.2. let P[t,,t,] be a longest path in the tree T.
N(x,, r,) and N(x,, r,) both contain ¢,. Define 7" to be the minimal subtree
of T which contains N(x, r,) U N(x,, r,). Clearly, ¢, is in 7". Since ¢, is an
endpoint of a longest path in 7, it is also an endpoint of some longest path
of every subtree of T containing ¢,. Thus, let ¢; be some point in 7" such that
Plt,, t;] is a longest path in 7. Due to the minimalilty of 7' we have
t; € N(x, r;) UN(x,, r,). Suppose without loss of generality that f; &€
N(x,, r,). Then, N(x,, r,) contains P[t,, t;]. Therefore N(x., r,)=T"' (see
Exercise 6.4), and N(x,, r,) C T' = N(x,, r,). This completes the proof. [

It was shown above that the intersection matrix of the m nodes of a tree
(rows) versus n neighborhood subtrees (columns) can be transformed into
standard greedy form in O(nm + mlog m) time. Consider the case where
the m X n matrix corresponds to the intersection of m neighborhood sub-
trees (rows) versus some subset of n (out of the m) nodes of the tree
(columns) (each neighborhood is centered at some node of the tree). In this
case the standard greedy form can be achieved in O(nm) time only. To see
that, consider the transpose of this matrix, which is n X m and transform it
to standard greedy form.

First we permute the n rows (nodes) of this transposed matrix. The first
row of the permuted matrix is obtained as follows. Iteratively remove all tips
of the tree (with their adjacent arcs) which are not in the above subset of n
nodes. The remaining tree has only tips belonging to this subset of n nodes.
Then find a node which is an endpoint of a longest path of the remaining
tree. This node will correspond to the first row. To find the second row,
remove this node from the tree, and repeat the above process. Continuing
this procedure for n iterations, we obtain the permutation of the rows.

From Property 6.5 it follows that each iteration can be performed in
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O(m) time. Therefore the permutation of the rows consumes O(mn) time.
The lexical ordering of the columns can also be done in O(mn) time by radix
sorting as discussed above. Thus, the standard greedy form is obtained in
this case in total time of O(mn).

Summarizing, we conclude that the results in Sections 6.2.1 and 6.2.2
imply the polynomial solvability of both the client and the facility con-
strained covering problems, as well as the UFL problem, on tree networks.
For example, the methods in these sections solve the client constrained
problem and the UFL problem on trees in O(mn) and O(mn’) times,
respectively. (Recall that the UFL has been formulated in (6.2.12) as a
covering problem with an (m - n) X n matrix in standard greedy form.)

Polynomial algorithms for these problems can also be constructed using
dynamic programming principles. The dynamic programming approach util-
izes the natural partial ordering of the nodes induced by rooting a tree at an
arbitrary node (see Megiddo, Zemel, and Hakimi, 1983).

6.2.3. The Cost Allocation Problem

It has been shown earlier that both the covering problem and the UFL
problem can be formulated as

minimize > cx; + > PuZw
j=1 wEM,
subject to > a,x+z,=1, weM,,
=1
! (6.2.24)
x, €{0,1}, ji=1,...,n,
z,€{0,1}, weM,.
In both cases the variables x, ..., x, correspond, respectively, to the n
potential facility sites. In the case of the covering problem with m clients M,
is defined by M, ={1,...,m} and each index in M, is associated with a

different client (see the definition of the covering problem). In the case of
the UFL problem (see (6.2.12)), |M,|=m"-n, and each index w € M,
corresponds to a pair (i, k) where i is a client and k is a facility site. In
particular, each client i is associated with a subset of n indices in M. If we
denote this subset by /,, i=1,...,m, then/,, ..., I constitute a partition
of M,. Thus, in both the covering problem and the UFL problem we have a
partition of the rows of the matrix A =(a,;) into m subsets I,,...,1I,,
where I, i=1, ..., m, is associated with client i. For the covering problem
|I,| = 1, while for the UFL problem |I,|=n,i=1,...,m.

We have shown how to solve the location models defined by (6.2.24) in
the case where the matrix A = (a,,;) is in standard greedy form. However,
we have not addressed two important issues related to these location
models. First there exists the question of cooperation between the clients. Is
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there an incentive for them to cooperate? Suppose that each one of two
subsets of clients operates on its own and establishes facilities serving its
members only. Since we have assumed that there are no capacity constraints
on the facilities, it is clear that if these two subsets of clients (coalitions)
unite, their total cost will not increase. Therefore, viewing only the total
cost of all clients, there exists an incentive for all of them to cooperate and
act as a grand coalition.

The second question that arises is on the allocation of the total cost. Is
there an “‘acceptable” allocation, an allocation such that no group of clients
will have an incentive to not cooperate by splitting from the grand coalition
and acting on its own? In game theory terminology such an allocation is
called a core allocation. Namely, a core allocation of the total cost is such
that no coalition can pay less than its part in this allocation if it establishes
facilities that will serve its members only. The total cost incurred by a
coalition of clients I C {1, ..., m}, if they want to act alone, is given by
v(l), where v([) is the optimum value of (6.2.25).

minimize > cx;+ > P,z
j=1 i€l wel;
subject to > a,x+z,=z1, welUJ{l:iel},
! (6.2.25)
ij{O,l}, j=1,...,n,
z,€{0,1}, welU{l:iel}
where I, is the set of constraints corresponding to client i, i =1,... m.
Let us define the core of the covering problem by
core ({1, .. .,m})Z{yERm: > y,=v({1,...,m}) and
i=1
> y,=v() forall IC{1,..., m}} : (6.2.26)
el
If yE€core ({1,...,m}), then it is called a core allocation and y; denotes
the part of the total cost paid by client i, i=1,..., m. It is clear that no

coalition of clients would do better by breaking the cooperation between all
clients if a core allocation is used to split the total cost. Thus a core
allocation possesses a desirable stability property which seems to be neces-
sary for an allocation to be acceptable by all the clients.

We next give an example of a covering problem for which the core is
empty. The example is defined on a network which is a cycle. This motivates
us to look at trees; we will show that for covering problems on trees the core
1s nonempty.
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1 1 2
1 1
3 1 4

Figure 6.2. Network for Example 6.3.

Example 6.3. Consider the network shown in Figure 6.2. Each arc has
length one. We consider the UFL problem with setup cost equal to 1.5 for
all nodes and transportation costs which are equal to the respective distances
from clients to their closest established facilities. It is easily verified that an
optimal solution to the problem is given by establishing facilities at 1-and 2
and letting 3 and 4 be served by 1 and 2, respectively. The total cost is 5. If
the UFL problem is restricted to any subset of three clients the optimum
value is 3.5. Therefore every vector y in the core must satisfy:

Yty tysty, =5
y, Ty, +y, =35
yi+y, +y,=3.5
Y, +y,+y, =35
y,tysty,=3.5.

Adding the four inequalities together yields 3(y, + y, + y; + y,) =14. But
the latter contradicts 3(y, + y, + y, + y,) =15 which is the first equation.
Therefore we conclude that the core is empty. O

Having observed that cycles may yield an empty core, we turn to tree
networks and prove that there the core is always nonempty. If u is the
optimal solution of the dual of the LP-relaxation of (6.2.24), then we will
show that y,=%X ., u,, i=1,...,m, will generate a core allocation.
Remember that 7, is the set of constraints corresponding to client i in
(6.2.24).

Theorem 6.3. If the problem (6.2.24) arises from a tree location problem,
that is, the matrix (a,;) is in standard greedy form, and u is an optimal
solution to the dual of the LP-relaxation of (6.2.24), then y=(y,,..., y,)
defined by y, =¥ e, u, is in the core defined by (6.2.26).

Proof. It is shown in Section 6.2.1 that the optimal objective value of a
covering problem, defined by a matrix in standard greedy form, is equal to
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the optimal value of its linear programming relaxation. Thus, duality yields

v({1,...,m})= >, uw:i > um=§:l)7i.

wEM, i=1l w€l;

Therefore to prove that y is in the core it suffices to show that

ZZuMSU(I) for all IC{1,...,m}.
el wel;
Let IC{1,...,m} and consider the dual problem of the LP-relaxation of

(6.2.25). Again by the results of Section 6.2.1 we know that the optimal
solution to the dual of this problem is equal to v(/). If we prove that
u,, w< I, i€11s a feasible solution to this dual problem, then the result
follows from the weak duality property. Of course, we know that 0 =u =
P., w€M,, so that it suffices to prove that 2,., %, u4,4,; =¢; for
j=1,...,n, but this is trivial since the left-hand side is less than or equal to
Xwem, U,a,; for which we know that it is less than or equal to ¢;, j=

1,...,n. U

We refer the reader to a paper by Tamir (1980) for a treatment on a more
general cost-allocation game on trees.

6.3. CENTER PROBLEMS

In this section we discuss the budget constrained center and round-trip
center problems on trees. We assume that clients are located only at the
nodes of the tree. Each node is identified as a client. At the end of this
section we also refer to other cases. We consider the case where facilities
can be established only at the nodes as well as the infinite case where we
may establish a facility anywhere along the tree.

The round-trip distance occurs, for example, in the context of a trans-
portation problem in which a company has to execute a number of jobs. Job
i consists of picking up goods at node a; and delivering them at node b,. The
distance a vehicle located at a depot x has to travel in order to execute job i
and return to its depot is given by the round-trip distance d(x, a;)+
d(a,, b,)+ d(b,, x). If we let D(P,;, x) denote the distance from x to the
closest point on P,, the shortest path connecting a, and b,, then the
round-trip distance is given by 2[d(a,, b,) + D(P,, x)] (see Figure 6.3).
If X 15 a closed set of points on the network, then
D(Pi7 X) = minxeX {D(Pu )C)}

For ease of exposition we will assume, while defining the center prob-
lems, that the transportation cost between client i and the closest established
facility x is d(v,, x). Similarly, the transportation cost between a pair of
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U

a; & I i

X

Figure 6.3. Illustrating that D(P, x)=d(u, x), and round-trip distance =2[d(a,, b,) +
D(P;, x)].

clients a,, b, and x is D(P,, x). The case where these costs are nondecreasing
functions of the distances can be treated similarly. Note that the round-trip
distance 2[{d(a;, b,) + D(P,, x)] is a nondecreasing function of D(P;, x).

Let us start by considering the budget constrained center problem, where
facilities can be established at the nodes only. The setup cost of establishing
a facility at v; is ¢, j=1,...,m. (Here we assume that all nodes are
potential sites.) The budget constrained center problem is to minimize the
maximum of the distances of the clients to their respective nearest facilities,
subject to a budget constraint on the total setup cost. It is formulated as
follows:

minimize z (6.3.1)
subject to m€1r€1 {dv,v)} =z, i=1,...,m, (6.3.2)
U]' b
> ¢=B, ScV (6.3.3)
j: vjES

where S denotes the set of established facilities. Notice that z can only take
on values belonging to the set R, where

R={d(;,v):i,j=1,...,m}. (6.3.4)

It is easy to prove the following claim. The optimum value of (6.3.1) is the
smallest value z, say z*, in the set R for which the client constrained
covering problem (6.2.2), with radius »,=z*, and penalty p, =, =
1,...,m, has a total setup cost which does not exceed B. Hence, we can
solve this budget constrained center problem by solving a sequence of
covering problems. Using a binary search over the above set R, the optimal
solution will be found after solving O(log m) covering problems.

In the case when all setup costs are equal, the budget constraint simply
specifies the number, say p, of facilities that may be established. In this case
the problem is well recognized as the p-center problem. We will defer our
discussion of this case, and treat it together with the respective case of the
round-trip center problem. The general p-center problem is extensively
discussed, in another perspective, in Chapter 7.

In contrast with the problem (6.3.1)-(6.3.3), the budget constrained
round-trip center problem is /% -hard when facilities, which are restricted to
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be located at the nodes, may differ in their setup costs. Recall that in this
problem we are given ¢ pairs of clients {a, b,}, i=1,...,q, and the
objective is to minimize the maximum of the distances of the pairs to their
respective nearest facilities, subject to a budget constraint. Formally, the
budget constrained round-trip center problem is:

minimize z (6.3.5)
subject to mirsl {(D(P,v)} =z, i=1,...,q (6.3.6)
1)]-6
> ¢=B, Scv (6.3.7)
J: v]-ES

where § denotes the set of established facilities (depots).

The NP-hardness is proven by reducing the node cover problem, a known
NP-complete problem, to this problem. Given an undirected graph G =
(V, E) with m nodes and a number k < m, the node cover problem is to
determine whether there exist a subset V' of V of at most k nodes, such that
each arc contains at least one node in V. B

Consider the tree T in Figure 6.4. Suppose that V= {u,,...,u, }. Then
{v,, v;} is defined to be a pair of clients in T if and only if [, u,] is an arc of
G. The setup costs associated with the nodes of T are as follows: ¢; =1,
i=1,...,mandc, ,=m+ 1. Taking the budget constraint B to be k, it is
then an easy task to verify that G has a node cover of cardinality k if and
only if the solution to the budget constrained round-trip problem is equal to
zero. We conclude that the budget constrained round-trip center problem on
trees is NP-hard, even for the case where all but one of the setup costs are
equal. (Notice that the problem is in fact ¥?-complete when posed as a
recognition problem.) We will show later that if all setup costs are equal
then this problem is polynomially solvable.

The above reduction leading to the NP-hardness result is, in fact, valid
for a larger class of objective functions. We may consider any nondecreasing
objective function of the distances D(P, X), ..., D(Pq, X), X CV, which
is equal to zero if and only if D(P,, X)=0,i=1,..., q. For example, the
median version of the problem, where we try to minimize L1, D(P,, X)
over all feasible subsets X of cardinality p, is also /?-hard when the set of
potential location sites consists of all the nodes of the tree but one.

Um+1

e e o v

U 1 U2 m

Figure 6.4. The tree of the reduction.
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The difference in complexity between the budget constrained center
problem and its round-trip counterpart is due to the fact that 7, ={y &
T:d(y,v,)=r} is a neighborhood subtree, while, in general, this does not
apply to S, ={y€& T: D(P,, y)=r}. (Note that P, is a path in the tree and
not a node.)

Let us now introduce some theory to exhibit the polynomial solvability of
the center and round-trip center problems, for the case where facilities are
allowed to be located anywhere along the tree, with a constant setup cost.

We will assume that the tree is rooted at some arbitrary node, say v,,. For
each node v; define v, to be a child of v, if v, is adjacent to v; and v, is on the
shortest path from v, to v,,. Note v; is also called the parent of v,. We also
assume without loss of generality that the nodes are indexed in such a way
that children have a smaller number than their parent. See Figure 6.5 for an
illustration of a tree with 7 nodes rooted at v,. The children of v, are v, v,,
and v,. :

Let T,,..., T, be subtrees of 7. Without loss of generality we may
assume that they are induced subgraphs, that is, each tip of a subtree
belongs to the node set of T. (If this is not the case the tips are augmented
to the node set.) With each subtree T, we associate a node v,;, called the root
of the subtree T,, which is the node with the largest index in 7,. This means
that the root of T, is on the shortest path connecting the root of 7 with any
point in 7,. We then have the following observation.

Property 6.6. Given subtrees T, and T, with roots v,; and v,,, respectively,
suppose that ri =< rj. Then

T.NT,#¢ iff v,ET,.

re

From this we can obtain the Helly property for trees.

Property 6.7 (Helly Property). Given subtrees T,, ..., T, such that T,N T;
is nonempty for i # j, then N}_, T, is nonempty.

Figure 6.5. Illustration of node indexing.
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Proof. Without loss of generality assume r1 =72--- = rn. Since T, N T,
is nonempty fori=1,...,n, we havev,, €T, i=1,...,n. [J
Remark 6.1. It follows from the above proof that when T,,..., 7T, are
induced subtrees whose intersection is nonempty, then this intersection
contains a node.

The intersection graph corresponding to the subtrees T,,..., T, is the
graph G =(U, E), with U= {u,,...,u,} and [u,, uJ€ E if and only if
i#jand T,N T, is nonempty.

A chordal graph is an undirected graph with the property that every
simple cycle of length at least four contains a chord, that is, an arc
connecting two nodes which are not adjacent in the cycle. The following
theorem states that the intersection graph of subtrees of a tree is a chordal
graph. The converse of this theorem is also true, so that every chordal graph
is representable as the intersection graph of subtrees of some tree. This
one-to-one correspondence between chordal graphs and intersection graphs
of subtrees of a tree has been established by Walter (1972, 1978), Buneman
(1974), and Gavril (1974). We will present a different and simpler proof for
the chordality of the above intersection graph.

Theorem 6.4. The intersection graph G = (U, E) of the set of subtrees
T,,..., T, of agiven tree T is chordal.

Proof. Without loss of generality we assume rl =r2=,..., =rn. Con-
sider a simple cycle of length at least four and suppose that u;, the node of
G corresponding to T, has the smallest index among all nodes of the cycle.
Also, let [u,, u,] and [u;, u,], k # j, be two arcs in that cycle. Since we have
v, €T,N T, (Property 6.6), [v,,v,] is a chord of the cycle. [

Remark 6.2. Taking a closer look at the proof of Theorem 6.4 we see that
we have actually proved the following. There exists an ordering of the
indices of the nodes of the intersection graph, determined by the roots of
the subtrees, such that all nodes u; in & which are adjacent to «; and have a
larger index than u, form a clique in G; that is, a set of nodes which are
pairwise adjacent. An ordering with this property is called a perfect elimina-
tion scheme (see Example 6.4).

One can prove that there exists a perfect elimination scheme for a graph
if and only if the graph is chordal (see Golumbic, 1980).

An independent set of a graph is a set of nodes such that no two of them
are adjacent. A clique cover is a set of cliques with the property that each
node of the graph is contained in at least one clique. Since each node of an
independent set must be in a different clique of the cover we have a weak
duality result. The cardinality of any independent set is less than or equal to
the cardinality of any clique cover.
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The existence of the above ordering for the intersection graph of subtrees
of a tree enables us to prove a strong duality result for chordal graphs.

Theorem 6.5. Let G be an intersection graph of the set of subtrees
T,,...,T,of agiven tree T. Then the maximum cardinality of an indepen-
dent set in G is equal to the minimum cardinality of a clique cover.

Proof. We shall construct an independent set and a clique cover of the
same cardinality. Consider the perfect elimination scheme induced on the
nodes of G by the roots of the subtrees 7,,..., T,. Suppose that u, is a
node of G which is smallest with respect to the ordering. Add this node to
the current independent set. From Remark 6.2 we know that all nodes
adjacent to u, together with u; form a clique in G. Add this clique to the
current set of cliques. (Initially, both the independent set and the set of
cliques are empty.) Remove the subgraph induced by u,; and its adjacent
nodes from G. The remaining graph will still be an intersection graph of
subtrees. We will repeat this procedure for the remaining graph, and this
will produce the desired clique cover and independent set. [

Example 6.4. Consider the tree shown in Figure 6.5. The subtrees will be
given by their nodes, T, ={v,}, T, ={v,, v,, ¢}, T5=A{v,, 05,04}, T, =
{v,,v,}, Ts={vs,v,}, and T, = {v,, v,}. We obtain r1 =1, r2=6, r3 =06,
rd=7, r5=7, and r6=7. The intersection graph is given in Figure 6.6,
where u; corresponds to T,.

It is easily observed that the ordering of the perfect elimination scheme
corresponds to the indices of the nodes, u,, i=1,...,7. By the procedure
described in the above proof {u,, u,} is a maximum independent set, while
{u,,u,, u;} and {u,, us, uy} is a minimum clique cover. O

Let us demonstrate how the duality result of Theorem 6.5 can be used to -
solve the p-center and round-trip p-center problems, when facilities can be
established anywhere on the tree. It will be shown that both problems are
solvable by a sequence of covering problems.

The covering problem for the p-center problem is

U, U,

Figure 6.6. Intersection graph for Example 6.5.
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minimize | X]|
subject to D, X)=r, i=1,...,m, (6.3.8)
XCT

where D(v,, X)=min, .y {d(v;, X)}. (Since X is finite,
well defined.)

For the round-trip p-center problem we obtain the following covering
problem

X|=m, D(v,, X) is

minimize | X|
subject to DP,X)=r, i=1,...,q, (6.3.9)
XCT

where D(P;, X)=min ., {D(P,, x)}.
Focussing first on (6.3.8), define the subtrees T, ={y € T: d(v,, y) =r},

i=1,...,m. It is easily verified that
T.NT, is nonempty iff d(v, v;)=2r, Lj=1,...,m.
(6.3.10)
If G=(U,E), U={u,,...,u,)} is the intersection graph of T, ..., T,,

then [u,, ;] € E'if and only if i # j and d(v,, v;) = 2r. If two clients v;, v, can
be served by the same facility, then 7, N 7' is nonempty. Therefore, clients
which can be served by the same facility form a clique in G. Conversely, any
two subtrees corresponding to nodes in the same clique are pairwise
nondisjoint. According to the Helly property (Property 6.7), there exists a
point of the tree which is contained in all subtrees corresponding to the
same clique. This means that a facility located in such a point can serve all
clients corresponding to this clique, that is, the distance of these clients to
the facility is at most r. This proves that there is a one-to-one correspond-
ence between the cliques of G and the subsets of the clients that can be
served by the same facility. Therefore, finding the minimum number of
facilities which can serve all clients within a radius r, is equivalent to finding
a minimum clique cover in G.

By the duality result of Theorem 6.5 and (6.3.10), the minimum number
of facilities is equal to the maximum number of clients for which the mutual
distance is greater than 2r. The latter problem is formulated as

maximize ||
subject to d(v;, v;)>2r, iLjel, i#7, (6.3.11)
Ic{1,2,...,m}.
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For the round-trip center problem we define T, ={y € T: D(P,, y) = r},
i=1,...,g. We leave it to the reader to show that

T,N T, is nonempty iff v, =4r (6.3.12)
where
y; = d(a;, a;) +d(b,, b)) — d(a;, b;,) —d(a;, b;) , iLj=1,...,q9.

Using exactly the same reasoning as for the center problem we can show
that the optimal solution to (6.3.9) is equal to the solution of

maximize 1]

subject to Y, >4, i, jel, i#7], IC{1,...,q}.
(6.3.13)

The usefulness of these duality results is demonstrated by the next two
theorems. They define sets (in fact of polynomial cardinality), that contain
the optimal values for the p-center and round-trip p-center problems,
respectively.

Theorem 6.6. Suppose that p < m, then

i d(v, ./2}
IQ{I,~-<II,12§, [7]=p+1 {L/‘Igll,ni#i{ ;, V’) }
= min { max {D(vi,X)}}. (6.3.14)
XCT, ]X|:p i=1,..., m

Proof. 1t is sufficient to show that for each r =0, the right-hand side of
(6.3.14) is less than or equal to r if and only if the left-hand side is less than
or equal to r. The following equivalence is straightforward.

min { max {D(v,, X)}}Sr
=p 1= m
if and only if

min {|X|: {izlmax N {D(v,, X)}} =r, XC T} =p. (6.3.15)

.....

Using the duality between (6.3.8) and (6.3.11), (6.3.15) is equivalent to

max {[I|: IC{1,...,m},d(v,v,)>2r, i, jELi#j}=p,
(6.3.16)
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which, in turn, is immediately observed to be equivalent to

max { min {d(vi,vj)/Z}}Sr. O (6.3.17)

c{1, ..., m}, [Hl=p+1 Ui, jEI, i#f

Performing the same analysis for the round-trip p-center problem we obtain
the following theorem.

Theorem 6.7. Suppose that p <gq, then

max {min yl.]./4}= min { max {D(Pl.,X)}}.
= q

Ic{1, ..., q), [|=p+1 Ui, JEI, i#] XCT, |x|=p Li=1,. ..,
Theorem 6.6 implies that the optimal solution to the p-center problem is an
element in the set

R={d(v;,v;)/2:i,]=1,...,m}. (6.3.18)

Similarly, Theorem 6.7 implies that the optimal solution to the round-trip
p-center problem is an element in

R={y/4ij=1,...,q}. (6.3.19)

This means that we can solve the two center problems as a sequence of
covering problems. For example, the optimal solution to the p-center
problem 1s the smallest element r in R for which the solution to the
respective covering problem (6.3.8) is at most p. A similar observation
applies to the round-trip p-center problem, when the respective covering
problem is (6.3.9). Polynomial algorithms for the covering problems (6.3.8)
and (6.3.9) are described by Kariv and Hakimi (1979a) and Kolen (1985),
respectively. These algorithms work on the tree networks (see also Slater,
1976). One can also generate the respective intersection graphs and find
minimum clique covers on these chordal graphs by the polynomial schemes
of Gavril (1972) and Rose, Tarjan, and Lueker (1976).

An efficient implementation of the approach to solve the p-center
problem on trees as a sequence of covering problems is presented by
Megiddo, Tamir, Zemel, and Chandrasekaran (1981). It is based on an
efficient search of the above set R (6.3.18), without explicitly generating it.
To illustrate the idea of searching the above set R without explicitly
generating its |R| = O(m”) clements, consider the special case where the
tree is a path. In this case the nodes {v,,...,v,} may be identified as
numbers on the real line. Suppose that v,=v,=---=v, . Then R=
{3(v,—v,): 1=i=]=m)}. Define

R, ={(v;—v)/2:j=i,i+1,...,m}, i=1,...,m.
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Then R is the union of the sets R, i=1, ..., m. The search in R for the
optimal solution to the p-center problem consists of O(log m) steps. In each
step we delete parts of the sets R;, i=1,...,m, which are known not to
contain the optimal value. Furthermore, the cardinality of R, the union of
the sets R,, i =1, ..., m, will decrease by a factor of at least 1/4 at each
step.

Throughout the search each set R,, i=1,..., m, will be represented as
R, ={(v;—v;)/2: j=a(i), a(i) +1,...,b(i)}, where i =a(i)=b(i)=m,

and a(i), b(i) are updated at each step. (Initially a(i) = i and b(i) = m). So
the elements of R, are not calculated explicitly but represented by a(i) and
b(i). The elimination of elements from R is performed as follows. We first
compute the median element, s,, of each set R,, i =1,..., m. s, 1s given by
(v, —v,)/2, where k =[5(b(i) — a(i) + 1)].

Having computed {s,,...,s,} we associate a weight, w,, with s,,
i=1,...,m, where w, = b(i) — a(i) + 1, is the number of elements in the
current set R,. Using the method of Aho et al. (1974), we then find in O(m)
time, the weighted median, say r, of the set {s,,...,s, }. Next we solve the
covering problem (6.3.8) for the value r, using the O(m) procedure of Kariv
and Hakimi (1979a). If the optimum of the covering problem is less than or
equal to p, then the optimum value of the p-center problem is less than or
equal to r. Therefore, if s, = r, the elements in R, which are at least as large
as s; can be deleted from R,. Similarly, if the optimum to the covering
problem is greater than p, the optimum value of the p-center problem is
greater than r. Thus, if s, = r the elements in R, which are smaller than or
equal to s, can be discarded.

Since r is a weighted median of the sequence {s,,...,s,}, it is easy to
see that we will delete at each step at least 1/4 of the elements in R, the
union of the sets R,, i=1, ..., m. Note that the deletion of elements in a
set R, is done in constant time by increasing a(i) or decreasing b(i),
depending on the case. Hence, the total time for one step of this procedure
is O(m). Since at each step the cardinality of R is decreased by a factor of at
least 1/4, after O(log m) steps, R will contain one element, the optimal
value to the p-center problem. We conclude t\h t the total complexity of this
algorithm to solve the p-center problem on a\tree which 1s a path is
O(m log m).

The p-center problem on a tree with m nodes is solved by Megiddo et al.
(1981) in O(m log® m) time. A further improvement of this implementation
was achieved by Frederickson and Johnson (1983), who reduced the time
bound to O(mlogm). An O(m) algorithm for the case p =1 is given by
Handler (1973). A more general case of the above p-center problem, where
the transportation costs are arbitrary linear functions of the distance is
solved by Megiddo and Tamir (1983) in O(m log® m log log m) time.

The set R’ in (6.3.19) is the set of elements of the form ; D(P,, P,),
i,j=1,...,q, where P, and P; are the shortest paths on T connecting the
pair of clients a,, b, and a,, b, respectively. When the clients are restricted
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to the nodes of T (as was assumed above), each distance D(P;, P,) is also
the distance between some two nodes of the tree. We conclude that R’ in
(6.3.19) is a subset of R in (6.3.18). Therefore, while looking for the
optimal solution to the round-trip p-center problem, we can either search
over R in (6.3.18) or R’ in (6.3.19), depending on which is more con-
venient.

We remind the reader that duality results similar to Theorems 6.6 and 6.7
are easily obtained for more general transportation cost functions than the
identity function we have chosen here for ease of exposition (see Tansel,
Francis, Lowe, and Chen, 1982; Kolen, 1985).

A comment is in order with respect to the round trip p-center problem
when facilities can be established only at the nodes of the tree. For this case
we showed above that the problem becomes NZ-hard even if we exclude
only one node from the set of potential sites (the set of nodes). However,
we will use the above analysis, on chordal graphs to show that if all nodes of
the tree are potential locations, then the round-trip p-center problem is
polynomially solvable.

Fizrst note that in this case the optimal value of the objective is an element
in R |

R*={d(v;,v): i, j=1,...,m}. (6.3.20)

Thus, the round-trip p-center problem is polynomially solvable if the
following covering problem is polynomially solvable.

minimize B¢
subject to DP,X)=r, i=1,...,q, (6.3.21)
XCV.
Define S,={yeT: D(P,,y)=r}, i=1,...,q, and let S be the subtree

induced by the nodes of T that belong to S; as well. We claim that (6.3.21) is
equivalent to finding a minimum clique cover on the intersection graph
corresponding to the induced subtrees S, ..., S,. In order to prove this
claim by the above analysis (which was applied to the case where each point
on a tree was a potential facility), it suffices to prove the following. If a
subcollection {S},, ..., S} of {S{,...,S } has a nonempty intersection,
then it contains a node. Since S}, i=1,..., g, are induced subtrees the
latter follows from Remark 6.1. ‘

Therefore, we conclude that the round-trip p-center problem where
facilities can be established at all nodes and only at nodes, at a constant
setup cost, is polynomially solvable.

We conclude this section with a discussion on the continuous p-center
problem, that is, where each point of the continuum of points on the tree is
identified as a client. We consider two cases. The first one is where facilities
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can be established at the nodes only, while in the second case there are no
restrictions on the potential location sites.

The first case is easily reducible to the case of a finite set of clients. It is
shown by Chandrasekaran and Tamir (1982) that the solution to the
problem is not affected if we assume that clients exist only at some finite set
of points. Specifically, clients are located only at the nodes and at the
midpoints of all shortest paths connecting nodes of the tree. Therefore, we
can solve the budget constrained version of this problem by augmenting the
above finite set of clients to the set of nodes of the tree and solving the
resultant discrete p-center problem as before.

Efficient algorithms solving the second case, that is, when facilities can be
established anywhere on the tree are given by Chandrasekaran and Daugh-
ety (1981), Chandrasekaran and Tamir (1980), Frederickson and Johnson
(1983), and Megiddo and Tamir (1983). The most efficient algorithm known
is that of Megiddo and Tamir that runs in O(m log®> m) time.

A duality result for this continuous version of the p-center problem was
obtained by Shier (1977), using a direct inductive proof. We will generalize
his duality result by applying a theorem on infinite chordal graphs.

Consider the p-center problem where clients are located only at some
subset of points D C 7. D may be finite or infinite. Also suppose that
facilities can be established anywhere on the tree. We will now define a
generalized covering problem as follows.

Let each client x € D be associated with a positive radius r,. Find a
subset X of T of minimum cardinality, such that for each x € D there exists
y€ X with d(x, y)=r,.

For each x define T, ={y& T:d(x, y)=r_}, and consider the intersec-
tion graph G of {T }, x € D. G will have a node v, for each neighborhood
subtree 7', and v, and v, will be adjacent if and only if x # y and T, N T is
nonempty, that is if and only if d(x, y) = r, + r . If D is infinite so is G. Like
in the finite case it can be shown that G is an (infinite) chordal graph. The
following theorem on infinite chordal graphs (see Hajnal and Suranyi, 1958;
Wagon, 1978) is used to prove our duality result.

Theorem 6.8. Let G be an infinite chordal graph. Let 0(G) denote the
minimum cardinality of a clique cover, and let a(G) denote the maximum
cardinality of an independent set. If either 0(G) or a(G) is finite, then both
are finite and equal.

To ensure the finiteness of a(G) or (G) for the chordal graph associated
with our covering problem, we assume that the radii are uniformly bounded
from below. There exists an ¢ > 0 such that »_ = ¢ for all x € D. It is easily
observed that 6(G)=m + A/2e, where 4 is the sum of the arc lengths of
the tree. Since the Helly property is still valid for this case (7T, is connected
and closed, x € D), 6(G) is the solution to the covering problem defined
above.
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Using Theorem 6.8 we obtain the following corollary for the case
r,=r>0forall xe D.

Corollary 6.1. Let D be a subset of T. Then for any r >0,

min {|X|: XC T, d(y, X)=<r forall yEe D}
=max {|Y]: YC D, d(y,, y,)>2r for all y,,y,EY,y,#y,}.

Corollary 6.1 generalizes the duality between (6.3.8) and (6.3.11) as well
as the duality result obtained by Shier (1977) for the case D = T. When D is
assumed to be closed we obtain the following duality result for the p-center
problem.

Theorem 6.9. Let D be a closed subset of T. Then for each positive p,
p<|D

2

min {max{d(y,X}}Z max { min {d(x,z)/2}}.

XCT, |X|= yeD YCD,|[Y|=p+1 Lx, 2€Y, x#2
g g (6.3.22)

Unlike the finite case, if D is infinite, Theorem 6.8 does not suggest a set
R that includes r,, the objective value of the p-center problem (the
left-hand side of 6.3.22). This issue is resolved by Chandrasekaran and
Tamir (1980) for the case where D = T, and by Tamir and Zemel (1982) for
a more general case. For example, when D =T it is shown by Chan-
drasekaran and Tamir (1980) that r, = d(x, y)/2k, where x and y are some
tip nodes of T and k is an integer less than or equal to p. Linear time
algorithms solving the covering problem for D = T, and some generaliza-
tions are presented by Chandrasekaran and Tamir (1980) and Tamir and
Zemel (1982), respectively.

6.4. TOTALLY BALANCED MATRICES

The covering problem on trees was introduced and solved in Section 6.2. Its
formulation is given by (6.2.2).

The algorithm of Section 6.2 to solve the above integer program did not
utilize the fact that the matrix A was obtained by row and column
permutations from an intersection matrix of neighborhood subtrees versus
nodes or vice versa. It relied only upon the information that the matrix
A= (a;) was given in standard greedy form, and produced the optimal
solution in O(mn) time. This immediately raises the following questions.
What is the class of matrices that can be permuted into standard greedy
form? Is there an efficient procedure to recognize whether a (0, 1) matrix is
a member of this class?
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To this end, define a (0, 1) matrix to be totally balanced if it does not
contain a square submatrix with row and column sums equal to 2 and no
identical columns. Totally balanced matrices belong to the larger class of
balanced matrices introduced by Berge (1972).

It is a simple observation that each matrix in standard greedy form is
totally balanced (see Exercise 6.10). We will now prove the converse
statement. Namely, each totally balanced matrix can be permutated into
standard greedy form. This will characterize totally balanced matrices as the
class of matrices which are permutable into standard greedy form. (Note
that the property of total-balancedness is not affected by row or column
permutations). The proof uses the concept of a lexical matrix which was
introduced by Hoffman, Kolen, and Sakarovitch (1985).

We call a (0, 1) matrix lexical if both the rows and columns are ordered in
a lexical nondecreasing order. (See Section 6.2.2 for the definition of lexical
nondecreasing order).

Let the matrices A,, A, be given by

110

1
Alzlo ] and  A,=|1 0 1].
1o | 01 1

Then matrix A, is totally balanced but not lexical; on the other hand, the
matrix A, is lexical but not totally balanced. Thus the class of lexical
matrices does not coincide with the class of totally balanced matrices.

An algorithm that transforms any m X »n (0, 1) matrix into a lexical matrix
by permuting rows and by permuting columns of the matrix is presented by
Hoffman et al. (1985). The algorithm consumes O(nm®) time (assuming that
m=n).

In the theorem below we show that a totally balanced matrix which is
lexical is indeed in standard greedy form. In view of the above algorithm
and the fact that total-balancedness is not affected by row and column
permutations, the theorem implies that a totally balanced matrix is trans-
formable by row and column permutations into standard greedy form.

Theorem 6.10. Let A = (a,;) be a totally balanced lexical matrix. Then A is
in standard greedy form.

Proof. Suppose that A is not in standard greedy form. Then there exist
rows (1), i(2), (with i(1) <i(2)) and columns j(1), j(2) (with j(1)<j(2))
such that. A1y 1) = Ficny, j2) = gy, jy = 1 and a;5y 55, = 0. Let i(3) be t}}e
last row in which columns j(1), j(2) differ, and let j(3) be the last column in
which rows i(1) and i(2) differ. Since A is lexical, i(3) > i(2), j(3) > j(2) and
Aisy iy =05 @ysy 2y = 1, @iy, i3y = 05 dyay. 3y = 1. Furthermore since A is
totally balanced, it does not contain a 3 X 3 submatrix with row and column
sums equal to two. We can therefore conclude that g,y 5, =0.
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Consider now a square submatrix B of A of maximum order, say k,
satisfying the following property: if i(1) <i(2) <---<i(k) and j(1) <j(2) <
- - < j(k) denote, respectively, the indices of the rows and columns of B,

then
) i) jo) j(k)
(1 1 0 0]
2y |1 o 1
i(3) | 0 1 0
. : 0
. . 1
i(k) | 0 0 |
1. i(p), p=3,...,k, 1s the last row in which columns j(p —2) and
j(p — 1) differ,
2. j(p), p=3,...,k, is the last column in which rows i{( p —2) and

i( p— 1) differ,
3. B has ones only in the lower and upper diagonal and the first element
of the main diagonal and zero elsewhere.

(Note that kK =3 by the above argument.)

Using the fact that A is lexical define i(k + 1) (>i(k)) to be the last row in
which columns j(k — 1) and j(k) differ, and let j(k + 1) (>j(k)) be the last
column in which rows i(k — 1) and i(k) differ. We must have a,; . ;1) =
0, airyjy = L Gige—1yjeey = 05 @iyje+1y = 1. By the definition of i( p) and
j(p) 3=p=k), we know that a,,,,, =0 and a, . =0, g=
1,2,...,k—1. Again, using the fact that A is totally balanced we know
that A does not contain a (k + 1) X (k + 1) submatrix (with nonidentical
columns) whose row and column sums are equal to two. Thus a; ;1) +1) =
0, and the submatrix defined by the rows (1) <i(2)<---<i(k+1) and
columns j(1) <j(2) <---<j(k + 1) contradicts the maximality of B. [

As a consequence of the above theorem we conclude that an m X n
matrix A is totally balanced if and only if the O(nm®) algorithm, which
transforms any m X n (0, 1) matrix into a lexical matrix, transforms A into
standard greedy form. Testing whether a matrix is in standard greedy form
can also be performed in O(nm?) time comparing each pair of rows. Testing
for total-balancedness can therefore be done in O(nm®) time. Algorithms
with lower complexity bounds have been developed recently by Lubiw
(1987) and Paige and Tarjan (1987).

In the case of the covering problem on trees, the standard greedy form
was obtained in O(mn) and O(mn + mlog m) times for the client con-
strained covering problem and the facility constrained covering problems,
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respectively (see Section 6.2.2). In particular the matrix A associated with
this problem on a tree is also totally balanced. This matrix A is the
intersection matrix of neighborhood subtrees versus nodes. The fact that
such a matrix is totally balanced was first proved by Giles (1978). This result
was generalized by Tamir (1983) who proved that the intersection matrix of
neighborhood subtrees versus neighborhood subtrees is totally balanced.
This latter result can also be proved using the lexical representation of a
totally balanced matrix (see Hoffman et al., 1985). However, the converse
that “every totally balanced matrix is the intersection matrix of neighbor-
hood subtrees versus neighborhood subtrees of some tree,” was proved to
be false by Broin and Lowe (1986) who gave the following counterexample
of such a matrix:

1 000 10
0 01010
010001
0001 01
1100 11
L0 01 1 1 1]

Recently, Tamir (1987) has presented other classes of totally balanced
matrices defined by center location problems on trees.

In the remainder of this section we will discuss briefly some covering
problems defined by totally balanced matrices.

The budget constrained coverage problem is to minimize the penalty costs
given an upper bound on the setup costs. In case of equal setup costs the
budget constraint reduces to an upperbound on the number of facilities say
p. This problem can be formulated as

s

minimize D.Z;
i=1
subject to .Ea[jxl.Jrzizl, i=1,...,m,
j=1
2 x,=p (6.4.1)
j=1
x, €40,1}, i=1,...,m,
z,€{0, 1}, i=1,...,m

where a; =1 if client i can be served by a facility at v;, a; =0 otherwise.

The p-median problem on a tree turns out to be a special case of (6.4.1).
The p-median problem is to locate p points X = {x,, ..., x,} on the tree in
order to minimize the sum of the transportation costs. In the case of linear
transportation costs this problem can be formulated as
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m
minimize > w,D(v,, X)
i=1

subject to XCT, (6.4.2)
[ XI=p
where w, is a nonnegative weight corresponding to client i, i=1, ..., m. It

was proved by Hakimi (1965) that there exists an optimal solution with
X C V. With this in mind we can easily verify that the p-median problem can
be reformulated very similar to the UFL problem in Section 6.2.1 as a client
constrained coverage problem. The reader is asked to construct such a
formulation (see Exercise 6.13). Kariv and Hakimi (1979b) gave an
O(m’p?) dynamic programming approach to solve the p-median problem on
trees.

A second example is the maximum coverage problem considered by
Megiddo et al. (1983). In this scenario they want to locate new facilities on
the tree. In case a new facility is within distance r; of client i this client will
go to that new facility and this will generate a revenue of p;,, i=1,..., m.
The maximum coverage problem is to establish at most p facilities on the
tree so as to maximize the total revenue obtained from clients who will use
the new facilities (equivalently, minimize the sum of revenues of clients who
will not use the new facilities). It can be shown (as in the p-median
problem), that facility locations may be restricted to a finite set of points on
the tree. If the nodes are identified as clients, then the locations can be
limited only to points on the tree that belong to the intersection of a
maximal subset of neighborhood subtrees in the collection N(v,,r,), i =
1,...,m. It suffices to consider one point in the intersection of each
maximal subset of neighborhood subtrees. From the discussion in Section
6.3, there is a one to one correspondence between maximal subsets of
neighborhood subtrees (with nonempty intersection) and the maximal
cliques of the intersection graph G of the subtrees N(v,, r;), i=1,...,m.
Therefore each maximal clique of G will contribute one potential facility
location. Since G is a chordal graph with m nodes, it has at most » maximal
cliques (see Exercise 6.8), and we can restrict our attention only to at most
m potential locations corresponding to the maximal cliques.

Using the finiteness of the set of potential facility sites, the maximum
coverage problem can be formulated as (6.4.1), and like the p-median
problem it can be solved in O(m’°p®) time.

Therefore we have two instances of problem (6.4.1) where A is a totally
balanced matrix and which can be solved in polynomial time. The question
immediately arises whether we can solve (6.4.1) polynomially for any totally
balanced matrix A?

If A is totally balanced, then the matrix given by

ol



Totally Balanced Matrices 299

where [/ is the identity matrix and e 1s a row vector of all ones, is also totally
balanced. In contrast to the LP-relaxation of (6.2.2) the LP-relaxation of
(6.4.1) does not always give an integer optimal solution. This is shown by
the following example. Let A be the 7 X 7 matrix given by

= oy

1 001000
0100 100
0010010
1 001001
01 00 101
001 0011
L0001 1 1 1
Take p,=1,i=1,...,6, p,=0, p=2. An optimal solution of (6.4.1) is

given by x, = x, = 1 and optimal value 2. If we take x;, = x, = x, = x, = J we
get a solution of 3/2. This example arises with the tree shown in Figure 6.7.

Broin and Lowe (1986) give an O(mn’ + p°n’) dynamic programming
algorithm to solve problem (6.4.1), when its matrix is of size m X n and
n=m.

Consider the dominating set problem on a graph. Given a graph G =
(V, E) and an integer k =|V| the dominating set problem is to determine
whether there exists a subset of at most k nodes such that each node not in
this subset is adjacent to at least one of these nodes. It is well known that
this problem is N %?-complete even for chordal graphs (see Booth and
Johnson, 1982).

Let us generalize the dominating set problem on a graph. Consider a
graph G = (V, E) with nodes v,, i=1,...,m and all arc lengths equal to
one. With each node v, we associate a nonnegative integer r; and a cost ¢;,
i=1,...,m. The generalized dominating set problem is to minimize the
total cost of a subset of nodes such that each node v;, i =1, ..., m is within
distance r, from at least one of the nodes in this subset. This problem can be
formulated as

minimize 2'”:1 CiX;

ji=
subject to i a;x; =1, i=1,...,m, (6.4.3)

j=1

x, €{0,1}, ji=1,...,m
1 2 3
4 5 6
7

Figure 6.7. Arc lengths equal to one, r,=1,i=1,...,7.
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where a,; =1 if d(v,,v;)=r,, a,;=0 otherwise. When r;=1 and ¢, =1,
i=1, , m we get the dominating set problem.

There exists a subclass of chordal graphs for which the generalized
dominating set problem can be solved in polynomial time. The neighbor-
hood matrix of a graph G = (V, E) with nodes v,,...,v, is the m X m
(0, 1) matrix defined by g, =1, i=1, ,mand a; =1, i7#],if and only if
[v,,v;]€ E. A graph is a strongly chordal graph if and only if its neighbor-
hood matrix is totally balanced. For a given graph with nodes v, . .. U
and all arc lengths equal to 1, let us define the m X m (0, 1) matrix A" by
a = 11if and only if d(v,, v;) = k. The neighborhood matrix is equal to Al Tt
was proved by Lubiw (1982) that if A is totally balanced, then [I|A%|--
|A ] ([A]B] denotes the matrix where the first m columns are the columns
of the matrix A and the last m columns are the columns of B) is totally
balanced for every k=1 (see Exercise 6.14). From this it follows that
whenever we have a strongly chordal graph the matrix of (6.4.3) is totally
balanced and hence we can solve (6.4.3) using the algorithm of Section 6.2.1
in O(m’) time by first transforming it into standard greedy form.

If we allow the arcs of the strongly chordal graph to have nonunit lengths,
then problem (6.4.3) becomes A P-hard even for the case where arcs have
length equal to 1 or 2. The dominating set problem is reducible to this
problem. Given a graph G with unit arc lengths, transform it into a
complete graph (which is clearly strongly chordal) by augmenting all missing
arcs and assigning each one of them a length of 2. The dominating set
problem is then equivalent to the generalized dominating set problem
(6.4.3) with a; =1 if and only if d(v,, v;) =1.

For further relationships between totally balanced matrices and strongly
chordal graphs the reader is referred to Anstee and Farber (1984), Farber
(1983, 1984), Chang (1982), lijima and Shibata (1979), and Lubiw (1982).
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EXERCISES

6.1 Let N(x, r) be a neighborhood subtree of a given tree T, and let ¢ be a
tip node of 7. Define T, to be the subtree obtained from T by
removing ¢ and the unique arc adjacent to it. Prove that N(x, r) N T,
is a neighborhood subtree of T'.

6.2 Let v be a given node of a tree 7. Prove that a node which is at a
largest distance from v is an endpoint of a longest path in 7.
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6.3

6.4

Let ¢, and ¢, be the two endpoints of a longest (simple) path on a
given tree 7. Prove that the unique solution to the (unweighted)
1-center problem on T is obtained by setting the center at the middle
point of the path P[z, t,].

Let ¢, and ¢, be the two endpoints of a longest (simple) path on a
given tree T. Show that if a neighborhood subtree N(x, r) contains ¢,
and ¢,, then N(x,r)=T.

Exercises 6.5, 6.6, and 6.7 deal with p-center problems on the real line. In
all these problems assume that v, <v,<<---<y,  are given real points on
the line and w,, w,, ..., w, are nonnegative reals. The weighted p-center
problem is given by

6.5

6.6

6.7

6.8

6.9

minimize z

subject to _ min {wlv,— x|} =z, i=1,...,m, (%)
ji= p

.....

Xi, Xy, ..., X, TCAlS

Formulate the weighted 1-center problem on the line as a two-
dimensional linear program with at most 2m constraints.

Consider the unweighted version of (x), that is, w,=1, for i=
1,...,m. Let z* denote the optimal value of z in (x). Design an
algorithm of order O(plogm) to test whether or not z* is greater
than a given value r (this is equivalent to testing whether p-centers
will suffice to cover each v,, i =1, ..., m within a radius r).

Given a positive number r, define the m X m incidence matrix A =
(a,) as follows

o ifwlu,—vl=sr,
4 =o, otherwise .
(a) Prove that A is totally balanced.

(b) Prove that every square nonsingular submatrix of A has a de-
terminant =1, that is, A is totally unimodular.

Prove that a chordal graph on m nodes has at most m maximal
cliques.

Construct an efficient algorithm that solves the budget constrained
center problem on a cycle network G, that is, G =(V, A) where

V={v,,...,v,}
and

A= {[017 Uz]> vy, vs], .00 [V 1> Um]a [V, Ul]} .

6.10 Show that a matrix in standard greedy form is totally balanced.
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6.11 Let V={v,,...,v,} be the node set of a tree T. Letv,,...,v, be
the set of tip nodes. Let P,= P[v,, v,],i =1, ..., k denote the simple
path connecting v, with v,. Let {Q,, ..., Q,} be a collection of paths
on 7T such that each O, j=1, ..., nis contained in some path of the
collection {P,, ..., P.}. Define the n X m incidence matrix A = (a,;)
by .

1, ifv,eQ,,
Gy = {O , otherwise .

Prove that A is totally balanced. (Hint: Prove the nest ordering
property and use Lemma 6.1 and Exercise 6.10.)

6.12 Let T=(V, A), V={v,,...,v,} be a tree. For each pair v, and v, of
adjacent nodes on T replace the (undirected) arc [v;, v;] by two
directed arcs [v;, v;] and [v;, v,]. Assign arbitrary nonnegative lengths
to the directed arcs. The network resulting is called a bitree. For v,, v,
let d(v;, v;) denote the length of the shortest directed path from v, to

v;. Given nonnegatlve realsr,, ..., deﬁne the outer nezghborhood
N(v],r)—{v eV:d(v;,v,)=r}, ] , m. Prove that the m X
m incidence matrix of outer nelghborhood versus nodes is totally
balanced.

6.13 Formulate the p-median problem as a client constrained coverage
problem (see Section 6.4).

6.14 Let A be a neighborhood matrix of a graph. Suppose that A is totally
balanced. Prove that the matrix [/|A|A’|---|A"] is totally balanced
for all k=1 (see Section 6.4 for the definition of A").
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