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Abstract:

The most common problems studied in network location theory are the p-median and the

p-center models. The p-median problem on a network is concerned with the location of p points (medi-
ans) on the network, such that the total (weighted) distance of all the nodes to their respective nearest
points is minimized. The p-center problem is concerned with the location of p-points (centers) on the
network, such that the maximum (weighted) distance of all the nodes to their respective nearest points
is minimized. To capture more real-world problems and obtain a good way to trade-off minisum (effi-
ciency) and minimax (equity) approaches, Halpern introduced the centdian model, where the objective
is to minimize a convex combination of the objective functions of the center and the median problems.
In this paper, we studied the p-centdian problem on tree networks and present the first polynomial time
algorithm for this problem. © 1998 John Wiley & Sons, Inc. Networks 32: 255-262, 1998

1. INTRODUCTION

In a typical location problem on a network there is a set
of customers located at some points on the network. The
goal is to locate new facilities (servers) on the network
in order to minimize the cost of serving the customers.
In most location models, this cost is assumed to be a
monotone nondecreasing function of the distances be-
tween the customers and the servers. The most fundamen-
tal and common problems studied in network location
theory are the p-median and the p-center models. The
underlying assumption in both models is that the servers
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are identical and uncapacitated, and as a result, each cus-
tomer will be served by the nearest server. The p-median
problem is concerned with the location of p servers (me-
dians), such that the total (weighted) distance of all the
customers to their respective nearest servers is minimized.
The p-center problem is to locate p servers (centers) such
that the maximum (weighted) distance of all customers
to their respective servers is minimized. To capture more
real-world problems and obtain a good way to trade-off
the minimum (efficiency) and minimax (equity) ap-
proaches of the p-median and the p-center problems,
Halpern [8—-10] suggested to consider a convex combina-
tion of the center and median objective functions, which
he labeled the centdian function. More recently, Carrizosa
et al. [3] presented an axiomatic approach justifying the
use of the centdian criterion.

The p-median and the p-center models have been stud-
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ied extensively from both the theoretical and algorithmic
points of view. (We refer to Mirchandani and Francis
[16] and the references cited there for the major results
on these models.) Nevertheless, there are only very few
algorithmic results on the p-centdian problem. Several
complexity results on the p-centdian problem, like NP-
hardness on general networks, follow directly from the
fact that the problem is a generalization of the median
and the center problems.

In this paper, we focus on the p-centdian problem on
tree networks. Our main contributions are the identifica-
tion of a set of points of a polynomial size, which is
guaranteed to contain an optimal solution, and a polyno-
mial time algorithm to find an optimal solution. To the
best of our knowledge, this is the first polynomial time
algorithm for the p-centdian problem on tree networks.

Efficient algorithms for solving certain location prob-
lems on tree networks can also be useful in deriving ap-
proximate solutions to the same problems on general net-
works. For example, the recent work of Bartal [1, 2]
implies that an algorithm to solve the p-median problem
on a tree can be used directly to derive a randomized
algorithm with a guaranteed performance ratio for the p-
median problem on a general network. His approach can
be applied to other problems, including the p-centdian
problem.

We start with a formal definition of the model on a
tree network. Let 7 = (V, E) be an undirected tree with
a node set V = {v;, ..., v,} and an edge set E. Each
edge has a positive length and is assumed to be rectifiable.
We refer to interior points on an edge by their distances
along the edge from the two nodes of the edge. We let
A(T) denote the continuum set of points on the edges of
T. The edge lengths induce a distance function on A(7T):
For any pair of points x, y in A(T), we let d(x, y) denote
the length of P(x, y), the unique simple path connecting
x and y. Also, for any subset Y € A(T) and x in A(T),
we define d(x, ¥) = d(Y, x) = Infimum {d(x, y)|y
€ Y}.A(T) is a metric space with respect to the above
distance function.

Suppose that each node v; € V is associated with a
pair of nonnegative weights, (u;, w;).

Restricting ourselves to tree networks, and using the
above notation, we now define the p-center, the p-median,
and the p-centdian problems. (Note that the node set V
is identified as the set of customers in these problems.)

The (u-weighted) p-center problem is to select a sub-
set of p points X < A(T), a p-center set, to minimize the
objective C(X ), where

C(X)=max{u;d(X,v)|i=1,...,n}.
The (w-weighted) p-median problem is to select a

subset of p points X € A(T'), a p-median set, to minimize
the objective M(X ), where

M(X) =Y {wdX,v)|i=1,...,n}.

With our notation the p-centdian problem on the tree T
is to find a set of p points X € A(T), a p-centdian set,
minimizing the objective

C(X) + M(X).

Efficient algorithms to solve both the p-center and the
p-median problems on trees are well known. The most
efficient algorithm known for the weighted p -center prob-
lem is the O(n log*n loglogn) algorithm of Megiddo and
Tamir [15]. This algorithm can be further improved to
O(n log®n) by using the modification in Cole [4]. [For
the unweighted case, ie., when u; = 1, i =1, ..., n,
Frederickson [6] developed an optimal O(r») time algo-
rithm.]

The most efficient algorithm known for the weighted
p-median problem is the O(pn?) algorithm in Tamir
[19]. No polynomial time algorithms for the p-centdian
problem on a tree, for a general p, have been reported in
the literature. Efficient algorithms for the case p = 1 were
reported in Halpern [8] and Handler [11].

We present the first polynomial algorithm for the p-
centdian problem on trees. The complexity of our algo-
rithm is O(pn®), for p = 6, and O(n?), for p < 6. We
also consider the discrete version of the model where
the p selected points must be nodes and show that the
complexity bound for this case reduces to O(pn*), for p
= 4, and O(n*), for p < 4.

2. SOLVING THE p-CENTDIAN PROBLEM

In this section, we outline the general solution approach
which leads to a polynomial time algorithm. For each
nonnegative real r, define the r-restricted p-median prob-
lem on the tree T to be the problem of minimizing the
sum of w-weighted distances of the nodes to a p-median
set, given that the u-weighted distance of each node to
the p-median set is at most r. (Note that unlike the un-
restricted p-median problem, where there is always an
optimal p-median set which consists of nodes only, the
p-median set for the restricted problem is not necessarily
a subset of nodes.) Let m(r) denote the optimal value of
the above r-restricted problem. Then,

m(r) = min {M(X)‘uid(xv ;)

(X|XeAT).|X|=p}

For each nonnegative real r, let g(r) = r + m(r). The
p-centdian problem can now be reformulated as



min {g(r)}.

Let r* be a minimizer of the function g(r). The gen-
eral strategy that we apply is as follows: We will first
identify explicitly a set R of O(n”) cardinality, called a
finite dominating set, which includes r*. To find r*, it
will then suffice to compute g(r) for all values of r € R
and evaluate the minimum of the function g(r) over R.
[In the last section, we will show that the function g(r)
is not necessarily convex or unimodal, and, therefore, a
binary search on the set R to locate r* is not directly
applicable.] Thus, to obtain a polynomial time scheme
with the above approach, we will need a polynomial algo-
rithm to compute the function g(r) [equivalently m(r)]
for any specified value of r. Indeed, we will show that
for any value of r, m(r) can be computed directly by the
algorithm in Tamir [19] in O(pn*) time. We will then
show how to modify and adapt the algorithm in Tamir
[19] to compute m(r) in O(pr?) tine. This will result
in an O(pn®) algorithm for solving the p-centdian prob-
lem on tree networks.

2.1. A Finite Dominating Set

In this section, we identify a set R of O(n*) cardinality
containing r*, the optimal solution of the p-centdian
problem.

Theorem 2.1. Let r* be a minimizer of the function g(r)
=r + m(r). Then, r* is an element in the set

R =R, UR,UR,,
where
Ry = {u;d(vi, v)lv, vy € V),
Ry = {d, v)/(Vw; + Vuj|vi,v; € V},

Ry = {(d(vjs v) — d(ui, v))/
(M — V)|, v, v € Vyu € Py, up) ).

Proof. Let X' be an optimal solution to the p-centdian
problem. Then, there is a partition of V into p subtrees,
Ty, ..., T,, where all the nodes in each subtree 7; are
served by the same point, say x;, in X', that is, d(v;,
X'y = d(v;, x]), for each node v; in 7;. In particular, at
optimality, the subproblem corresponding to 7}, j = 1,

., p, is an r*-restricted 1-median problem. For a real
nonnegative r, let m;(r) be the objective value of the r-
restricted 1-median subproblem, defined on 7.

We show that m;(r) is a convex, decreasing, piecewise
linear function of r, with breakpoints in the set R defined
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above. Let x}* be the (unique) solution to the u-weighted
1-center problem on T}, and let y*, a node in 7}, be the
solution to the (unrestricted) w-weighted 1-median prob-
lem on T;, which is closest to x#. We view the path
P(x¥, y¥) connecting x# and y¥* as a line segment of
length d(x}*, y*) and consider the u-weighted 1-center
function, C;(x;), and the w-weighted (unrestricted)
I-median function, M;(x;), defined on this path (seg-
ment). For convenience, we assume without loss of gen-
erality that x; is a real variable restricted to the interval
(segment) [0, d(x}, yj)], where x; = O corresponds to
the 1-centerof 7;, x¥, and x; = d(x¥*, y}) corresponds
to the 1- median of 7}, y¥*.

For each node v; of T, the distance function d(v;, x;)
is a convex piecewise linear function with at most one
breakpoint. Therefore, from its definition, the median
function, M;( x;), is a convex, decreasing, piecewise linear
function of its (one-dimensional) argument x;. Its
breakpoints correspond to the nodes of T; on the path
P(x¥,yF).(See also[5].) Similarly, the center function,
C,(x;), is a convex, increasing, piecewise linear func-
tion of x;. Each breakpoint of this function is a point
x on P(x¥, y*) whose u-weighted distances from two
nodes of T}, say v; and v,, are equal, that is, ¥ d(v;, x)
= u,d(v,, x).

Let r] and r] denote, respectively, the optimal values
of C;(x;) at x¥ and y¥. For each value of r, in the interval
[r], ri1, let x;(r) denote the unique solution to the equa-
tion C;(x;) = r. In particular, x;(r) is a concave, increas-
ing, piecewise linear function of r. [The concavity fol-
lows directly from the convexity of C;(x;).] From the
above, if r is a breakpoint of x;(r), then there exist a pair
of nodes of T;, say v; and v,, such that u;d(v;, x;(r))
=ud(, x(r)) =r.

For each value of r, in [r], r}], the solution to the
r-restricted 1-median problem is attained at the closest
point to y* in the set {z|z € A(T)|w;d(v;, z) = r, Yy
€ T;}. Since the latter set contains x}*, the optimal solu-
tion to the r-restricted 1-median problem on 7; is attained
at the point x; on P(x¥, y}¥) for which C;(x;) = r, ie.,
at x;(r). Therefore, m;(r) = M;(x;(r)). (mi(r) = = for
r < rj,and m(ry = my(rj) for r = rj).

From the above discussion, it follows that m;(r) is a
conveXx, decreasing and piecewise linear function of r.
[The convexity of m;(r) follows directly from the convex-
ity of M;( x;), the concavity of x;(r), and the monotonicity
of M;( x;).] Moreover, since the functions M;(x;) and x;(r)
are piecewise linear, each breakpoint of m;(r) must corre-
spond to a breakpoint of M,(x;) or x;(r). Specifically, if
r is a breakpoint of m;(r), then x;(r) is either a breakpoint
of the median function M;(x;) [i.e., x;(r) is a node of 7;
on P(xj, y})] or x;(r) is a breakpoint of the center
function C;( x;). If x;(r) is a node of T, say v,, then from
the definition of C;(x;), there exists some node, say v; of
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T;, such that r = u;d(v;, v,). Thus, in this case, r € R;.
If x;(r) is a breakpoint of C;(x;), then there exist a pair
of nodes in T;, say v; and v,, such that w;d(v;, x;(r))
=ud(v,, x;(r)) = r. If x;(r) is on P(v;, v,), the path
connecting v; with v,, then it is easy to confirm that r
=d(v;, v,)/(1/u; + 1/u,) and, therefore, r € R,. Other-
wise, let v, be the closest point to x;(r) on P(v;, v,). In
this case, the equations u;d(v;, x,(r)) = wu,d(v,, x(r))
= r imply that r = (d(v,, v,) — d(vi, v))/(L/u, — 1/u;)
and, therefore, r € R;.

We have shown that for each j = 1, ..., p the
breakpoints of the function m;(r) belong to the set R
defined in the statement of the theorem. To conclude the
proof, observe that r*, the optimal solution to the p-
centdian problem, is a minimizer of the function g'(r)
=71+ Zyerp my(r).

g’ (r) is a convex piecewise linear function, and its
breakpoints coincide with the breakpoints of the functions
my(r), j =1, ..., p. Therefore, the minimum point of
g'(r) is attained at one of these breakpoints. This con-
cludes the proof of the theorem. ]

We note that the specialization of the above theorem
for the unweighted case, that is, when u; = w; = 1, for
all i = 1, ..., n, can be obtained from the results in
Pérez-Brito et al. [17, 18].

3. SOLVING THE r-RESTRICTED
p-MEDIAN PROBLEM

To solve the p-centdian problem on a tree network T, it
will suffice to compute the solution to the r-restricted p-
median problem for all values of r in the set R, specified
in Theorem 2.1.

We will show how to solve an r-restricted problem in
polynomial time, by adapting and modifying the algo-
rithm for the (generalized) p-median model in Tamir
[19]. The generalized model is defined as follows:

Each node v; of the tree T is associated with a real
nondecreasing function f;. (f; is viewed as a transporta-
tion cost function.) The problem is to select a subset §
of at most p nodes in V minimizing the objective

2 fild, 8.

vEV

(Note that in the above model the p points to be se-
lected are restricted to the node set of the tree.) The
algorithm in Tamir [ 19] solves the above generalized p-
median problem in O(pn?®) time. We now show how to
formulate the r-restricted p-median problem as an in-
stance of the above-generalized p-median problem.

Let r be a positive real and consider the r-restricted
p-median problem. From the nature of the objective func-

tion, it is clear that the optimal p-median set can
be restricted without loss of generality to the following
set Y(r):

Y(r)=VU {yly € A(T), wd(v;, y)

= r, for some v; € V}.

The set Y (r) is of O(n?) cardinality. In Kim et al.
[13], it is shown how to compute the set Y (r) and aug-
ment its points to the node set of T in O(n*) time. Let
T(r) denote the augmented tree with the node set Y (r).
Finally, to formulate the r-restricted p-median problem
as the generalized p-median model in Tamir [19], we
define the transportation cost functions for all points in
Y (r). The transportation cost function of each point in
Y (r) which is not a node of the original tree T is the zero
function. For each v; € V, define the transportation cost

function f; by
wit t=r
fi(t) =
o t>r.

Solving the r-restricted p-median problem reduces to
the solution of the above-generalized p-median problem
on the augmented tree T(r). Since T(r) has O(n?) nodes,
the algorithm in Tamir [19] will solve the latter problem
in O(pn*) time.

Since our approach for solving the p-centdian problem
on 7 requires the solution of the r-restricted p-median
problem for O(n?) values of r, the complexity bound is
O(pn’). In the next section, we show how to reduce this
bound to O(pn®), by improving the complexity of the r-
restricted p-median problem to O(pn?).

3.1. An Improved O(pn?) Algorithm
for the r-Restricted p-Median Problem

Suppose now that the given tree T = (V, E) is rooted at
some distinguished node, say, v;,. For each pair of nodes
v;, v;, we say that v; is a descendant of v; if v; is on the
unique path connecting v; to the root v,. If v; is a descen-
dant of v; and v; is connected to v; with an edge, then v
is a child of v; and v; is the (unique) father of v;. If a
node has no children it is called a leaf of the tree.

As shown in Tamir [ 19], we can now assume without
loss of generality that the original tree is a binary tree,
where each nonleaf node v; has exactly two children, v;,,
and v;(,,. The former is called the left child, and the latter
is the right child. For each node v;, V; will denote the set
of its descendants, and 7; will be the subtree induced by
V;. (v; is also viewed as the root of 7;.)

In the first preprocessing step, we augment to T the
set of points ¥ = Y (r), defined in the previous section.



(Recall that there is an optimal solution to the r-restricted
problem, where all p selected points are in Y. Moreover,
since V ¢ Y, we only need to add the points in ¥ — V.)
Each point in Y is called a seminode. In particular, a node
in V is also a seminode. For each node v;, ¥; will denote
the subset of seminodes which have v; on the path con-
necting them to the root v;. As mentioned above, the
cardinality of ¥ is m = O(n?), and the augmentation of
Y to T can be performed in O(n?) time, as described in
Kim et al. [13].

In the second preprocessing step, for each node v;, we
compute and sort the distances from v, to all seminodes
in Y. Let this sequence be denoted by L, = {r}, ...,
ri't, where rf < ri*'i=1,...,m— 1,and r] = 0.
For convenience, to handle a degenerate case, where the
elements in L; are not distinct, we assume that there is a
one-to-one cotrespondence between the elements in L;
and the seminodes in Y, such that

1. If y, € Y corresponds to r}, then r} = d(v;, »).

2. If y, and y, are two distinct seminodes in Y}, and y, is
on the unique path connecting y, with the v;, then the
element of L; representing y, will precede the one rep-
resenting y,. In particular, v, corresponds to ;.

3. If y; is not a leaf, and y, and y, are both in V., (V«)),
where the element representing y, in L;y (L)) pre-
cedes the one representing y,, then the element of L;
representing y, will precede the one representing y,.

4. Ifyyisin Y, y,isin Y — Y}, and d(v;, y) = d(v;, y),
then the element of L; representing y, will precede the
one representing y,.

Fori =1, ..., m, the seminode corresponding to r} is
denoted by yi.

We note that the total effort of the second prepro-
cessing step is O(n*). It can be achieved by using the
centroid decomposition approach as in Kim et al. [13]
or the procedure described in Tamir [19].

We are now ready to present the ‘‘leaves to root’
dynamic programming algorithm to solve the r-restricted
p-median problem. The algorithm is a modified version
of the algorithm in Tamir [19] to solve the generalized
p-median problem.

For each node v;, an integer ¢ = 1, ..., p, and r}
€ L;, let G(v;, q, r}) be the optimal value of the subpro-
blem defined on the subtree T}, given that a total of at
least 1 and at most ¢ seminodes (service centers) can be
selected in T; and that at least one of them has to be in
{y}, ¥}, ..., ¥i} N Y;. (In the above subproblem, we
implicitly assume no interaction between the seminodes
in 7; and the rest of the seminodes in T.) The function
G(v;, q, r) is computed only for g =< |V;|. Also, for each
node v;, we define
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G(y, 0, = 2 fi(=).

vEV;

Similarly, for each node v; and an integer g = 0, 1,

., p, we define F(v;, g, r) to be the optimal value
of the subproblem defined on the subtree T;, under the
following two constraints:

1. A total of at most g seminodes can be selected in Y;.

2. There are already some selected seminodes (service
centers) in ¥ — Y;, and the closest among them to v
is at a distance of exactly  from v;.

[F(v;, q, r) is computed only for ¢ = |V,|, and r =
r}, where r} corresponds to a seminode y} in ¥ — ¥,.]

To motivate the above definitions, we note that if all
the elements in L; are distinct, then G(v;, g, r}) is the
optimal value of the subproblem defined on T}, given that
at least 1 and at most ¢ seminodes are selected in 7, and
the closest among them to v; is at a distance of at most
r} from v;. The conditions on L;, required above, ensure
that the same interpretation of G(v;, q, r j-) can be made
for the ‘‘distinct’”’ elements of L;, that is, the elements
ri, satisfying r} < ri*?.

The algorithm defines the functions G and F at all
leaves of T and then recursively, proceeding from the
leaves to the root, computes these functions at all nodes
of T. The optimal value of the problem will be given by
min{ G(vy, p, r1"), G(v, 0, r")}, where v, is the root
of the tree.

Let v; be a leaf of T. Then,

G (v, l,r}) =0, i=1,...,m.
Foreachi =1, ..., m, such that y; € Y — ¥;,
F(vj’ 0, r;) :.fj(d(vj7 y}))
and
F(vj’ 15 r;) = min{F(vjv 0! r!’:), G(vjv 1! r_;)}'
Let v; be a nonleaf node in V, and let v;(,, and v;(,) be
its left and right children, respectively. The element r/
corresponds to y} = v;, which, in turn, corresponds to a

pair of elements, say rly, and ri;, in Ly, and L),
respectively. Therefore,

G(vj’ q rjl)

= min
q1+qz=g9-1
a1s |Vl
g1=|V;)

{Fiay, @1y riy) + Fuay, Gas i)}
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Generalty, fori =2,...,m,consider r}. If r! corresponds
to a seminode y; € ¥ — 1, then

Gy, g, r) = Gy, q, i),

If y; € Y, then y! corresponds to some element, say
rkiy in Lig), and to some element, say rj.) in Ly, If
¥j € Y1), then

G(Uja q, rj’) = min{G(Uj) q, r;z‘l)’fj“(rji‘)

+ min
q1+92=9
1=q=|Vjpy!
a=V;xl

{G(Uj(l)v q1, rf(l))

+ F(v2), g2, i) 1.
If y! is on the edge (v;, vy(yy) and yi # v, then

G(vja Q1 r}) = min{G(Uj, q’ r}*l),f}(r})

+ min
g1+q2=¢-1
1= Ve |
a=|Vml

{F(viys q10 i) + F(viay, 2. i) 1)

If y; S Y}‘(z), then

G(v;, g, r)) = min{G(v;, g, ri "), fi(r})

+ min
an+92=q
1=Vl
I=g2=[Vjr2)]

{F(viy, g1, rf(l))

+ G2y, G2s Ti)) 1}
If yj is on the edge (v;, vj2)) and y} # vy, then

G(Uj! q, rj‘) = min{G(Uj7 q, r}‘l)’f}(rjl:)

+ min
q1+a2=g—1
q1=| Vil
ar=| Vil

{F(ay qus 75y + F(uyays G2, Fia) } e

Having defined the function G at v;, we can compute the
function F at v, for all relevant arguments. Let y! be a
seminode in ¥ — Y;. Then, y; corresponds to some ele-
ments, say rjuy and 7}y in Liy and Ly, respectively.
Therefore,

F(Uj, qa r_’/) = min{G(vjv 5], r})yﬁ(r;)

+ min
g1+a:=9
g1=1Vy!
=|V2))

{F(Uj(l)y q1, r}m)) + F(Uj<2), q2, r}(z))}}~

3.2. Complexity of the Algorithm

It follows directly from the recursive equations that
the total effort to compute the functions G and F at a

given node v; for all relevant values of ¢ and r is
O(n*min{ (| V|, p)}min{(|V;zl, p)}). Therefore,
the total effort of the algorithm is clearly O(p?n*). How-
ever, it is easy to verify that the finer and detailed analysis
in Tamir [19] can also be applied to the above model to
improve the bound to O(pr*).

4. AN ALTERNATIVE ALGORITHM
FOR THE p-CENTDIAN PROBLEM

We have presented above an O(pn®) algorithm for solv-
ing the p-centdian problem on a tree graph. When p is
small, there is an alternative scheme, based on the proof
approach of Theorem 2.1. We will show that this ap-
proach yields an O(n”) complexity bound for each fixed
value of p.

Consider all the O(n”™!) partitions of the tree T into
p subtrees, obtained by deleting a subset of p — 1 edges
of T. To achieve the O(n”) complexity bound, we now
show a linear time algorithm to solve the p-centdian prob-
lem on a forest consisting of a partition of 7 into p sub-
trees, Ty, ..., T,.

We adapt the notation used in the proof of Theorem
2.1. For each subtree T}, let x} be the (unique) solution
to the u-weighted 1-center problem on T}, and let y*, a
node in 7;, be the solution to the (unrestricted)
w-weighted 1-median problem on 7}, which is closest to
x¥. We view the path P(x¥, y}#) connecting x}* and
yF as a line segment of length d(x#, y*) and consider
the u-weighted 1-center function, C;(x;), and the
w-weighted (unrestricted) 1-median function M;(x;), de-
fined on this path (segment). The median function,
M;(x;), is a convex, decreasing, piecewise linear function
of its (one-dimensional ) argument ;. Its breakpoints cor-
respond to the nodes of 7; on the path P(x}*, y*). Simi-
larly, the center function, C;(x;), is a convex, increasing,
piecewise linear function of x;. Each breakpoint of this
function is a point x on P(x#, y}) whose u-weighted
distances from two nodes of 7}, say v; and v,, are equal,
that is, u; d(v;, x) = u,d(v,, x).

We now formulate the p-centdian problem on the for-
est consisting of the p subtrees Ty, ..., T, as a linear
program expressed in terms of the variables x;, ..., x,,
and n + | auxiliary variables. For convenience, we as-
sume without loss of generality that each real variable x;,
j=1,..., p, is restricted to the interval (segment) [0,
d(x¥, y¥)1, where x; = O corresponds to the 1-center of
T;, x¥,and x; = d(x¥, y}) corresponds to the 1-median
of T;, y¥. If the l-center, x}, is not an original node of
T;, we augment it to the node set of 7}, and let its x and
w weights be equal to 0. V/ will denote the node set of
T;. We note that the u-weighted 1-center, x*, can be
found in O(| V/|) time by the algorithm in Megiddo [14].



Similarly, the w-weighted |-median, y¥, can be found in
O(|V'|) time by the algorithm in Goldman [7]. Thus,
the total time to find {x{, ..., x}*}, and {y¥, ...,
yF¥}is O(n).

For each node v, € V/, on the path P(x}, y¥), we
let a; be the respective value of the real variable x;, that
is, ¢ = d(v;, x}¥). Next, for each node v, € V/, let
vy be the closest node to v, on P(x}, y}) and let b,
= d(vg, Vigy)-

For each subtree 7;,j = 1, . . ., p, the 1-center function
on the path P(x}, y*) is defined by

CJ(X,) = max {uk(‘xj - ai(k)| + b))
wew

Similarly, the I-median function is defined by

Mi(x) = 2 {wlx

Ui \Z

— gy + b}
The p-centdian problem on the above forest is to find

reals, x;, ..., x,, minimizing the objective

2 A/IJ(XJ)

U=Ll..p)

max Ci(x) +
U=1,..p}

A reformulation of the problem can be obtained by
associating a real variable z, with each node v, of 7. The

problem is to find real variables, x,, ..., x,, 21, ...,
Z, and r, minimizing {r + Z_; .,z }, subject to the
constraints

r=u(lx — gl + by,

ze = willx — ai| + b,
forallv,e V/,j=1,...,p.

The above problem can now be expressed as the fol-
lowing linear program:

mm{r+ 2 Zi},

{i=1un )

subject to the constraints
r=u((x — gy + b)),
r=u (=0 — aiy) + b,
Ze = wiel((x; — ary) + be),
Ze = wil(— (% = i) + b,

forallv, € V/,j=1,...,p.
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The above linear program is an instance of the model
presented in Zemel [20]. Specifically, it is a special case
of the dual of the p-dimensional Multiple Choice Linear
Programming Problem discussed in Section 3 of [20].
Thus, for any fixed value of p, the above linear program
can be solved in O(n) time.

To conclude, we have shown that for each fixed value
of p the p-centdian problem on 7 can be solved in O(n”)
time. This latter bound dominates the bound O(pn®)
for p < 6.

5. FINAL REMARKS

First, we note that the discrete model, where the p-cent-
dian set is restricted to the node set V, is solvable in
O(pn*) time. This follows directly from the facts that in
this case the set R; in Theorem 2.1 must include the
optimal value r* and the discrete r-restricted p-median
problem is solvable in O(pn?) time by the algorithm in
Tamir [19]. We can also adapt the alternative algorithm
of Section 4 to solve the discrete model in O(n”) time
for p < 4. In the discrete case, the algorithm in [19]
permits us to introduce setup costs for the p servers into
the objective function without affecting the complexity
bound.

The (continuous) model with u, = 1,i =1, ..., n,
is solvable in O(pn®) time. This follows from the fact
that the set R, U R, in Theorem 2.1 includes the optimal
value r*, that is, R = R, U R, in this case.

In the case of a path network, the complexity of the
(continuous and discrete) p-centdian problems will be
reduced to O(pn®). To obtain this bound, note that in
the case of a path the proof of Theorem 2.1 implies that
the node v, in the definition of the set R; in Theorem
2.1, must coincide with either v; or v;. Therefore, | Rs|
= O(n?) in this case. Moreover, the r-restricted p-median
problem can be solved in O(pn) time as follows:

Each node contributes at most 2 points on the path
whose distance from that node is equal to r. Thus, it is
sufficient to consider a discrete problem with at most 3n
points. This discrete problem is solvable in O(pn) time
by the results in Hassin and Tamir [12].

In view of the relatively high polynomial bound of
O(pn®), arelevant question is whether the function g(r),
defined in Section 2, possesses some properties that will
enable us to avoid its explicit computation for all values
of r in the set R, defined in Theorem 2.1. This would
have been possible if we could show that the function
g(r) is convex or unimodal. From the discussion in Sec-
tions 2 and 4, it follows that g(r) is piecewise linear and
all its local minimum breakpoints are in R. Nevertheless,
g(r) is neither convex nor unimodal, as illustrated by the
following example:

Let p = 2. Consider a path with 4 nodes vy, v,, v3, Vg,
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where the distance between adjacent nodes (v;, vg.)y)
is equal to 1. Suppose that u; = 1,i =1, ..., 4. Set w,
=w, =4 and w; = w, = 1. We have g(r) =5 + r
fors=r=1,g(r)=7—rforl =r=2, and g(r)

=3+ rforr=2.
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