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The Tennis Coach Problem: A
Game-Theoretic and Experimental Study⇤

Ayala Arad

Abstract

The paper introduces a new allocation game, related to Blotto games: each tennis coach as-
signs his four different skilled players to four positions, and then each team plays all other teams
in the tournament. The winning team is the one with the highest total score.

The set of equilibria is characterized and experimental behavior in variants of the game is ana-
lyzed in light of an adapted level-k model which is based on an appealing specification of the
starting point (Level-0). The results exhibit a systematic pattern- a majority of the subjects used
a small number of strategies. However, although level-k thinking is naturally specified in this
context, only a limited use of (low) level-k thinking was found. These findings differ from those
obtained in previous studies, which found high frequencies of level-k reasoning among subjects in
various games. Thus, the results illuminate some bounds of the level-k approach.
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1. Introduction 
 
This paper introduces a new allocation game called the Tennis Coach problem, 
which captures the essence of some interesting strategic interactions observed in 
competitive environments. The game is analyzed both theoretically and 
experimentally and serves as a platform for studying iterated reasoning and non-
equilibrium models based on this concept. 
 
 
1.1 The Tennis Coach Problem 

 
Consider a tournament in which each participant plays the role of a tennis coach 
who is planning to send his team to the tournament. Each team consists of four 
players with four different skill levels: A+, A, B+ and B, where A+ is the highest 
level and B is the lowest. The coach's task is to assign his players to positions 1, 
2, 3 and 4 (one player to each position). Each team plays against each of the other 
teams in the tournament.  
 A battle between two teams includes four matches: a tennis player that 
was assigned by his coach to a particular position plays once against the player on 
the other team assigned to the same position. In any match between two tennis 
players of different levels, the one with the higher level wins and scores one point 
for his team. When two players with the same level play against each other, the 
outcome is a tie and each team receives half a point. Thus, a battle between two 
teams ends with one of the teams winning 3:1 or 2.5:1.5, or in a tie of 2:2. The 
team's score at the end of the tournament is the total number of points it received 
in all the battles. The only goal of the coaches is to win the tournament, i.e. to 
achieve the highest score among all the teams. 
 The strategic interaction between the coaches will be referred to as “the 
Tennis Coach problem”, or “the coach problem” for short. 
 
 
1.2 Experimental Motivation 

 
The first strategy that comes to mind is the allocation of the tennis players 
according to their correct ranking (i.e. A+ in Position 1, A in Position 2, B+ in 
Position 3 and B in Position 4). Such an assignment immediately suggests itself 
because of its special characteristics (levels and positions are perfectly correlated) 
and since it is observed in numerous real-life situations. Therefore, this strategy is 
a natural starting point for iterative reasoning in the coach problem. A coach i 
who believes that this instinctive strategy will be chosen frequently will best-
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respond to it; a coach j who believes that many coaches use i's reasoning will best 
respond to the strategy chosen by i and so on. 

A classic game-theoretic analysis of the coach problem ignores the 
existence of the salient strategy (A+, A, B+, B) and the induced framing effect.  
Thus, the game's structure and its psychological properties call for addressing 
solution concepts other than equilibrium, which are based on iterative reasoning. 
In particular, the coach problem will be used for exploring the concept of level-k 
thinking which has recently become increasingly popular.1  
 Level-k non-equilibrium models assume that the population of players 
consists of several types, each of which follows a different decision rule. L0 is a 
non-strategic type who chooses his action naively by following a particular rule of 
behavior that depends on the context and is determined by the modeler. L1 best 
responds to the belief that all other players are L0, L2 best responds to the belief 
that all other players are L1, and so on. Thus, a type Lk, for k>0, is behaving 
rationally in the sense that he best responds to his belief regarding other players' 
actions. However, the belief held by Lk is not the “correct” belief as required by 
Nash equilibrium. Level-k models were first introduced by Stahl and Wilson 
(1994, 1995) and Nagel (1995). Since then, they have been developed extensively 
and used to explain experimental results in a variety of settings. For example, 
Crawford and Iriberri (2007b) apply the model to explain behavior in auctions.2  
  Papers that use level-k models to explain experimental results usually 
estimate the frequency of each type in a particular context. The appeal of this 
approach is due to a finding stated clearly in Crawford and Iriberri (2007b, page 
1725): “The estimated distribution tends to be stable across games, with most of 
the weight on L1 and L2. Thus the anchoring L0 type exists mainly in the minds 
of higher types.” 
 Applying the level-k approach to explain experimental results requires a 
reasonable specification of L0 and of the belief held by type Lk in that particular 
context. Often (though not always) L0 is taken to be a uniform randomization 
over the strategy space. In the Tennis Coach problem, the specification of L0 is 
intuitively appealing due to the existence of a salient strategy (A+, A, B+, B), 
which is the natural starting point for iterated reasoning.3 Indeed, this 

                                                 
1 The term “iterated reasoning” is usually associated with “iterated dominance”, although the term 
is more general and describes a process in which a player applies arguments recursively. In this 
paper, I do not discuss iterated elimination of dominated strategies since there are no dominated 
strategies in the coach problem. Thus, throughout the paper I refer to level-k thinking as “iterated 
reasoning”. 
2 Some other examples are: Ho, Camerer and Weigelt (1998), Costa-Gomes, Crawford, and 
Broseta (2001), Crawford (2003) and Costa-Gomes and Crawford (2006). A different model 
containing similar ideas is introduced in Camerer, Ho, and Chong (2004). 
3 This specification has features in common with the specification in Crawford and Iriberri (2007a, 
2007b). 
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specification of the starting point will turn out to be the best for explaining the 
experimental data. 

Decision rules based on level-k reasoning are expected to be reflected in 
subjects' choices in this game also because, given this anchor (starting point), best 
responding to an Lk type is cognitively simple (as I confirm experimentally). 
Furthermore, compared to many other level-k models, the adapted model in the 
Tennis Coach problem assumes weaker and more plausible assumptions on 
subjects' beliefs. Thus, as will be shown in Section 2.4, the typical choice of Lk is 
not only optimal given the belief that all (or almost all) other subjects are Lk-1 
types, but is also the unique best response to the belief that the majority of 
subjects are Lk-1, or to the belief that the most frequent type is Lk-1 and that the 
rest of the choices are uniformly distributed. 
 Since level-k types are naturally specified in the coach problem and level-
k thinking is cognitively simple here (in fact, it provides an escape from the 
potentially complex strategic reasoning in this game), the level-k approach 
appears to be suitable a priori. On the other hand, the strategy space in the game 
is large enough and the structure of the game rich enough to leave room for other 
kinds of decision rules which are not based on iterated reasoning (examples will 
be discussed at a later stage). Therefore, the Tennis Coach problem is an ideal 
platform for testing the extent to which level-k models are capable of explaining 
behavior in novel settings. 
 As expected, experimental behavior in the one-shot game was not 
consistent with any equilibrium predictions. The adapted model of level-k 
reasoning explained only some of the behavior in the game. Patterns based on 
iterated reasoning were indeed found, but most choices seemed to be driven by 
other kinds of deliberations. The subjects' ex-post explanations of their decisions 
supported this finding. The distribution of strategies reflects a low level of 
reasoning – even the first step of iterated reasoning was not very common and the 
second and higher steps were almost totally absent. These frequencies are much 
lower than those reported in the literature for the parallel steps in other games. 
Thus, the results illuminate some bounds of the level-k approach.4 
 

 
1.3 Theoretical Motivation 

 
The coach problem will be analyzed as a tournament of N players (coaches). 
Aside from its literal interpretation, one can think of the tournament model as 
describing the following situation: players are occasionally involved in a two-
person interaction (the pairs of players are randomly matched) in which they 

                                                 
4 For other examples of games in which this approach is not successful see Rey-Biel (2009) and 
the references there. 
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receive some payoff. However, a player does not wish to maximize the sum of 
payoffs obtained in the various interactions but rather to have the highest total 
payoff among the players in the population. The assumption that players care only 
about their relative ranking in the population, though an extreme one, is consistent 
with many real-life situations. The set of equilibria in the tournament will turn out 
to be equivalent to that of the two-person game in which players maximize score. 
The tournament and this two-person game are not identical (since the best 
response functions differ for some beliefs) but the strategic reasoning is similar 
and the equilibria are identical. 
 As such a two-person game, the coach problem can be seen as an 
intuitively appealing version of the popular Colonel Blotto game, introduced by 
Borel (1921). In the Colonel Blotto game, two players simultaneously allocate a 
fixed number of troops to N battlefields. A player wins a battle if the number of 
troops he assigns to a particular battlefield is higher than that assigned by his 
opponent, and each player aims to maximize the number of battlefields won.5 The 
game has been widely interpreted as a competition between two players, in which 
each distributes his limited resources across N tasks and succeeds in a task if he 
assigns more resources to it than his opponent. A well-known application of the 
game involves the interaction between vote-maximizing parties in an election 
campaign, in which the promises made by the parties are modeled as the various 
ways to divide a homogeneous good and are assumed to determine the outcome of 
the election. The basic idea is that an individual votes for party X if it has 
promised him more than party Y. This scenario could also be interpreted as vote-
buying.6 
 Whereas in the Blotto game all partitions (and in some versions only 
discrete partitions) of the total resources are possible, in the coach problem a 
player is restricted to a finite number of allocations. This does not make the coach 
problem a special case of the Blotto game, but rather a different and somewhat 
simpler version, yet one which captures much of its strategic spirit. Moreover, in 
some cases, the coach problem reflects more realistic assumptions than the Blotto 
game. For example, a general might not be able to assign any number of troops to 
a single battlefield and may be restricted by the internal organization of his army 
to assigning one division to each battlefield, where the divisions differ in ability 

                                                 
5 A number of papers have analyzed the game on a theoretical level. Roberson (2006) provides an 
analysis of the continuous case and Hart (2008) characterizes the equilibrium in the discrete case. 
Arad and Rubinstein (2010), Avrahami and Kareev (2009), Chowdhury et al. (2009) and Hortala-
Vallve and Llorente-Saguer (2010) analyze experimental behavior in different versions of Blotto 
games. 
6 See some variants of the promises game in Myerson (1993), Laslier and Picard (2002) and Dekel 
et al. (2008). 
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and strength. More generally, the coach problem is better suited to competitive 
scenarios in which human resources are allocated among several tasks.   
 The Tennis Coach problem is also able to capture the interaction in the 
campaign promises game, in which promises are made in the form of a list of 
priorities (an ordering of projects) that a candidate guarantees to adhere to after 
being elected. If different projects are associated with different groups (each with 
equal voting power) then declaring the list of priorities is equivalent to the 
problem of the tennis coach.  
 Now consider an R&D race in which each of two firms chooses the order 
of the routes it will follow in trying to solve a particular problem. Each firm 
wishes to be the first to find the solution. Assume that there are 4 possible routes 
but only one of them will lead to the solution. A firm's strategy is the order in 
which its sequential search will be conducted (i.e. which route to follow at each 
point in time).  Interestingly, choosing the order of the search is equivalent to 
allocating the tennis players in the coach problem.7 When two firms search 
according to their chosen ordering, the probability that a firm will be the first to 
find the solution is equivalent to the number of points earned by a team in the 
Tennis Coach problem.8  

 Characterizing the set of equilibria in the Tennis Coach problem is quite 
involved and relies on its special structure, in which any pure strategy has a 
unique “best response”9 and the “best response” function induces a partition of the 
game's 24 strategies into 6 cycles of 4 strategies each (within a cycle, each 
strategy is the “best response” to the preceding strategy in that cycle). The 
characterization yields some interesting results. For example, it will be shown that 
the simplest mixed strategy equilibrium (simple in terms of number of strategies 
in the support of the equilibrium strategies) involves the use of two pure 
strategies, with the property that each is the “best response” to the “best response” 
of the other strategy. 

The rest of the paper is organized as follows: Section 2 presents a game-
theoretic analysis of the Tennis Coach problem and an adapted level-k model; 
Section 3 describes two experimental studies of two different versions of the 
coach problem; and Section 4 concludes. 

 
 
 

                                                 
7 The players' skill levels are analogous to the search schedule. For example, assigning A+ to the 
second position in the coach problem is equivalent to following the second route first. 
8 See a related game in Fershtman and Rubinstein (1997). 
9 A strategy S is the “best response” to the strategy T if S achieves the highest possible score (3 
points) when playing against T. 
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2. Theoretical Analysis of the Tennis Coach Problem 
 

2.1 Formal Presentation of the Game  

 
Players and strategies 

The players in the game consist of N tennis coaches who participate in a single 
round-robin tournament. Coaches choose their strategies simultaneously at the 
beginning of the tournament. A pure strategy in this game is an assignment of the 
four tennis players in the team, with skill levels A+, A, B+ and B, respectively, to 
the four positions.  Denote A+ by 1, A by 2, B+ by 3 and B by 4.  Formally, 
denote a pure strategy by a four-tuple, which is a permutation of (1, 2, 3, 4), 
where the jth component is the level of the player assigned to position j. An 
abbreviation will often be used to represent a strategy, where, for example, 2134 
will represent the strategy (2, 1, 3, 4). Since any order of the four players is 
permissible, there are 24 possible strategies in the game. 
 
Scoring  

When two teams play against each other, four points are divided between them. A 
team receives one point when it assigns a better player to a particular position and 
no points if the other team assigns a better player. Each team receives half a point 
when the two players assigned to a position are equally ranked.  

Let ^ ` ^ `iiii yxiyxiyyyyxxxxscore  �! !�!� |5.0|),,,,,,,( 43214321  

be the total number of points earned by a team that uses a strategy 

),,,( 4321 xxxxS   against a team using the strategy ),,,( 4321 yyyyT  . Thus, 

4),(),(  � STscoreTSscore  for all S and T. 

 Note that a team can never score less than one point in a battle against 
another team since the best tennis player is unbeatable and in the case that he ties, 
the second-best player cannot lose and at worst will tie. This implies that a team 
cannot earn more than 3 points in a battle and that there are five possible scores: 
3, 2.5, 2, 1.5 and 1. 
 
Payoffs  

Each team will play all the other teams in the tournament. The total score of a 
team that chooses strategy S is the sum of points it scores in all battles. Each team 
wishes to score the highest number of points among all the teams in order to win 
the tournament but does not care about its total score per se. This is in fact 
characteristic of many real-life situations, in which competitors only care about 
winning and the total points earned or the gap between the winner and runners-up 
is only of secondary importance. (This was also characteristic of the experiments 
reported on later in the paper.) It is assumed that a prize is shared between the 
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winning teams in the tournament. Therefore, a team prefers winning together with 
M other teams over winning with N>M other teams (this assumption prevents the 
game from having trivial equilibria in which all coaches win by choosing the 
same assignment). Thus, in a tournament between two coaches, the payoff 
structure is simple: unlike the score function which can receive five values, the 
payoff function can now receive only three (since each coach prefers winning the 
tournament over a draw and a draw over losing).  
 
Comment: Hamilton and Romano (1998) describe a similar but not identical 
assignment game (that is able to capture political parties' assignments of 
candidates in simultaneous multiple-elections, as well as the assignment of tennis 
players in dual team matches). There are only two teams in their game, each 
consisting of n tennis players. The outcome of any match between two players is 
probabilistic and each team wishes to maximize its probability of winning the 
overall competition. They found that the (generically) unique equilibrium in this 
game involves uniform randomization over the strategy space. The coach problem 
analyzed here assumes deterministic scoring in the matches. More importantly, it 
is defined as a tournament rather than a game of two teams (and hence is not a 
special case of the former). These differences lead to a completely different 
analysis and the set of equilibria in the coach problem is much broader than 
uniform randomization, as will be shown below.  
 
 
2.2 The Score Function  

 
The possible scores in any battle between two strategies can be presented in a 
matrix. Presenting the score function in an illuminating way (see Figure 1 in the 
appendix) requires an appropriate choice of the strategy order. This sub-section 
presents some properties of the score function that help direct us to it. 
   
Partition of strategies into cycles 

We say that a strategy S wins a battle against strategy T, if 2),( !TSscore . A 

strategy S defeats strategy T if 3),(  TSscore . Given a level  4}3,2,{1,�x and 

an integer =�n , denote by x+n the level y satisfying y=x+n (mod 4). For any 

strategy S, let )1,1,1,1(),,,()( 43214321 ����  xxxxxxxxDSD  be the unique 

strategy that defeats S. The function D is reversible. Thus, for each strategy S, 
there is exactly one strategy D(S) that defeats S and exactly one strategy D-1(S) 
that is defeated by S. If we perform D on S four times, we again obtain S.10 This 

                                                 
10 D(D(S) is denoted by D2(S), and D(D2(S)) is denoted by D3(S). 

7

Arad: The Tennis Coach Problem

Published by De Gruyter, 2012

Brought to you by | University of California - Berkeley (University of California - Berkeley)
Authenticated | 172.16.1.226

Download Date | 6/7/12 6:31 PM



 

implies that the function D induces a partition of the game's strategies into six 
disjoint cycles of four strategies each.  
   

Following are the basic properties of the score function: 
 

Property 1.  ( , ) 2score S S  , 1))(,(  SDSscore , 2))(,( 2  SDSscore  and 
3))(,( 3  SDSscore . 

  
 The following property, which states that any strategy that confronts a pair 
of non-sequential strategies in a cycle scores a total of 4 points, is of particular 
importance. 
 

Property 2.   For any T and S, 4))(,(),( 2  � SDTscoreSTscore . 
 
Cycles 1 and 2 

Although the score function is invariant to any permutation of the positions, some 
strategies are more salient than others.  In particular, the strategy 1234 
immediately suggests itself because of its special characteristics (levels and 
positions correlate perfectly). Moreover, it is a strategy that can be observed in 
numerous real-life situations. Thus, the cycle that contains 1234 is of particular 
importance in the experimental part of the study and its role is discussed later in 
length.  Denote 1234 by L0, D(L0)=L1, D(L1)=L2, and D(L2)=L3. Cycle 1 is 
denoted as [L0, L1, L2, L3].  

 Different notations are used for the other cycles.  Thus, for any ^ `6,..,2�i , 

denote Cycle i by [S0(i), S1(i), S2(i), S3(i)].  For Cycle 2, I choose S0(2)=4321, 
which is another possible salient strategy. Thus, Cycle 2 is [4321, 3214, 2143, 
1432]. 
 
Property 3.  If 1CycleS �  and 2CycleT � , then 2),(  STscore  
  

Thus, any strategy in Cycle 1 ties with each of the strategies in Cycle 2. A 
pair of cycles with this property will be called twin cycles. 
 
Cycles 3, 4, 5 and 6 

Four other cycles will now be identified and the strategies ordered in a manner 
that will simplify the analysis. The first strategy in each of these cycles is chosen 
to be a permutation of 1234 that swaps two tennis players at adjacent levels: x and 
x+1. Let S0(3)=1324, S0(4)=4231, S0(5)=1243 and S0(6)=2134. 
 
Property 4.  Cycles 3 and 4 are twin cycles, as are Cycles 5 and 6. 
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Property 5.  For 30 dd k  and 63 dd i : 2))(,(  iSLscore kk , 
5.1))(,( 1  � iSLscore kk , ,2))(,( 2  � iSLscore kk  and 5.2))(,( 3  � iSLscore kk .  

 
 We define Cycles 3, 4, 5 and 6 as being parallel to Cycle 1. This term is 

appropriate since for i=3,4,5,6 kL  ties with )(iSk  for any k and the score obtained 

by kL  when played against )(iSm  is close to that obtained by kL  when played 

against mL  ( 5.00))(,(),( oriSLscoreLLscore mkmk  � ).  

  

 Due to symmetry considerations, any Cycle i can serve as the “starting 
point” for identifying parallel cycles (by identifying the order of strategies in four 
other cycles, which makes these cycles parallel to Cycle i). In this way, the score 
can be determined for any two strategies. The matrix presentation of the score 
function appears in Figure 1 in the appendix. 

 
 

 2.3 Equilibrium characterization 

 
This subsection characterizes the population equilibrium in the Tennis Coach 
problem. A distribution of strategies is a population equilibrium if the average 
score of a strategy in the support of the distribution is at least as high as any other 
strategy when playing against this distribution. This concept can be seen as an 
approximation of Nash equilibrium for a tournament with a large number of 
teams. It generally fits cases in which players are assumed to best respond to a 
distribution of pure strategies (even if the number of players is small) and is 
particularly natural when players do not know the exact number of participants. 

Denote by P(S) the probability assigned by the distribution P to the 
strategy S. There is no equilibrium with P(S) =1 since any strategy T for which 
score(T,S)>2 earns a higher score than S. Thus, the support of an equilibrium 
contains at least two pure strategies. 
 
Claim 1  A probability distribution P is a population equilibrium if and only if the 
average score for all 24 strategies is 2 points.  
 

Proof.  Obviously, if all the strategies score 2 points, then by definition P is a 
population equilibrium. The other direction: All strategies in the support of P 
yield the same average score only if the average is 2 points. The score of any 
strategy outside the support must be at most 2; however, if some strategy S 
receives strictly less than 2 points, property 2 implies that D2(S) receives more 
than 2 points. Thus, all the game’s strategies score 2 points. Ŷ 
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 Before moving on to a complete characterization of equilibrium, I present 
several claims concerning simple forms of equilibrium that will clarify the 
intuition behind the characterization. 
 
Claim 2  If P satisfies  P(S)=P(D2(S)) for any strategy S, then P is an 
equilibrium. 
 

Proof.  By Property 2, each strategy T in the game receives an average score of 2 
points when played against a pair of non-sequential strategies. Since for all S, 
P(S)=P(D2(S)), the expected score for any T is 2 points. Ŷ 
 
Claim 3  Any equilibrium P with a support contained in a single cycle satisfies 
 P(S)-P(D2(S))=0  for all S. 
 

Proof.  If for some strategy S, P(D2(S))>P(S), then D3(S) earns more than 2 
points. To see this, recall that D3(S) earns 2 points when played against D(S) and 
D3(S) and more than 2 points, on average, when played against S and D2(S). Ŷ 
  
 The analysis of equilibrium remains unchanged if 2 points are subtracted 
from any possible score in the score matrix. Such a transformation implies that in 
equilibrium there is no strategy with an average score different from zero. For 
convenience, what follows is analyzed accordingly. 
 
Claim 4  Any equilibrium P with a support contained in two cycles satisfies 
 P(S)-P(D2(S))=0  for all S. 
 

Proof.  Assume the contrary. Consider iCycleS �  for which P(S)-P(D2(S))=A is 

maximal. Since D(S) earns a positive score A when played against strategies in 
Cycle i, it must earn a negative payoff (-A) when played against strategies in 
Cycle j in order to reach the equilibrium score (0 points). This can occur only if 
P(D2(T))-P(T)=2A for the strategy jCycleT � , for which score(D(S),T)=0.5 

(score(D(S),T)=2.5 in the original score function). However, A is the maximal 
difference between the probabilities of non-sequential strategies in a cycle, a 
contradiction. Ŷ 
  

Recall that a minimum of two pure strategies is used in equilibrium. 
Claims 3 and 4 add that these two strategies must be non-sequential in the same 
cycle. In other words, the simplest mixed strategy equilibrium involves the use of 
two strategies, with the property that each is the “best response” to the “best 
response” of the other strategy. (It is appropriate to say that D(S) is the “best 
response” to S because it is the strategy that achieves the highest score in a battle 
against S). 
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 We now consider the full characterization of the game's equilibrium. 
Define:  
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Outline of the proof.  In equilibrium, the score earned by any strategy must be 
zero. Using Property 2, it is sufficient to verify that in any cycle, two arbitrary 
adjacent strategies, S and D(S), both earn 0 points (which implies that each of the 
other two adjacent strategies also earns 0 points). The next step is to understand 
that the points earned by a strategy S are determined only by differences between 
the probabilities of two non-sequential strategies that do not tie with S. Solving 
the system of 12 linear equations (see the appendix) yields the solution given in 
the proposition. Ŷ 

 
The analysis of equilibrium in this sub-section is equivalent to that of a 

symmetric mixed-strategy Nash equilibrium in a two-player game, in which the 
payoff matrix is the score matrix of the Tennis Coach problem. In other words, the 
analysis also captures scenarios in which each of the two players aims at 
maximizing his objective score and not just to obtain a higher score than his 
opponent. In fact, P is a population equilibrium if and only if it is an equilibrium 
mixed strategy in this two-player game. 

 
Comments 
 

(I) All population equilibria with a support contained in three cycles belong to the 
class suggested in Claim 2 in which P(D2(S))-P(S)=0 for any S. This is because 
there are 6 degrees of freedom in the system. Therefore, if we substitute zero for 
the 6 variables, we obtain a single solution: 0 ' . This claim does not hold for 

equilibria with a support contained in four cycles. By Proposition 1, the following 
distributions are examples of equilibria for which the condition in Claim 2 is not 
satisfied:   
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Note that these two examples induce different vectors of the type 

)0,0,0,0,,,,,,,,( babababa ���� ' , which reflects the structure of equilibria with a 

support contained in the first four cycles. 
 
(II) Uniform distribution over all the strategies in any subset of the 6 cycles is an 
equilibrium. 
 
(III) Consider a two-player tournament, in which the players' payoffs are 1 for 
winning the tournament, 0 for a draw and -1 for losing. It is straightforward to 
show that in this game, a probability distribution G is a Nash equilibrium mixed 
strategy if and only if G(S)=G(D2(S)) for any S.  
 
(IV) The results in this section are not immediately extendable to the 
characterization of equilibrium in cases in which teams include more than four 
tennis players. However, Comment II applies in these cases as well. In the case of 
three tennis players in a team, there are only three equilibria and all of them have 
the structure suggested in Comment II. 
 
 
2.4 Best Response Function 

 
This sub-section investigates the best responses to some interesting distributions 
of choices. In particular, I identify the best responses for distributions that I 
consider to be natural beliefs and which may be those actually held by coaches in 
the experiment. Examples of natural beliefs include: “All other coaches will 
choose S”, “Most of the coaches will choose S” and “The most frequent choice 
will be S”. The analysis here will be used for constructing a plausible level-k 
model. 
 As intuition suggests, the best response to the belief that “almost all other 
coaches will choose Sk(i)” is D(Sk(i)). However, given the belief that all other 
coaches will choose Sk(i), any D(Sk(j)) for a parallel Cycle j is also a best response 
(a coach who chooses D(Sk(j)) earns an average score of 2.5 points but wins the 
tournament since it is the highest score among the coaches). The next proposition 
refers to the natural belief that “most of the coaches will choose S”. The adapted 
level-k model that will be constructed in Section 2.6 relies on this proposition. 
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Proposition 2  If 1>P(S)>0.5 for some S, then D(S) is the unique best response to 
P.  
 

Outline of the proof.  Assume without loss of generality that 1>P(L0)>0.5. We 
need to show that no strategy earns as much as L1. It is enough to show that for 

any 1X Lz , if )3(),( 0 tLXscore � , then tYLscoreYXscore d� ),(),( 1  for any Y. 

In other words, X cannot compensate for its inferiority to L1 when played against 
L0 by its superiority when played against some other strategies. The proof covers 
all the possible strategies X and confirms that the condition on the score is 
satisfied (see the appendix). Ŷ 

 
Now consider the belief that “all choices will be in Cycle i and the most 

frequent choice will be S”. For such a belief, the optimal choice is not necessarily 
D(S). For example, if P(S0)=0, P(S1)=0.4, P(S2)=0.3 and P(S3)=0.3, then the 
optimal choice is S3, and not S2. The reason is that the optimal choice, when 
choices are in a single cycle, is determined by the differences between two non-
sequential strategies. The optimal choice in this case is Sk+1, for k that maximize 
P(Sk)-P(Sk+2). 

  The last example also demonstrates why D(S) is not necessarily the 
optimal strategy given the belief that “the most frequent strategy is S”. However, 
it is easy to see, as an implication of Property 2, that D(S) is the optimal strategy 
for the belief that the most popular choice is S and that the rest of the chosen 
strategies are uniformly distributed. Essentially, this claim states that D(S) is the 
best response to a belief that attributes high probability to the strategy S and takes 
into account some level of uniform noise. 
 
 
2.5 A Variant of the Game 

 
In the experimental part of the paper, a second version of the game is discussed, 
which is denoted as Version 2. It differs from the first version only in the method 
of scoring. Thus, in Version 2, a team receives one point in a battle against 
another team only if it wins three matches out of four. At any other case, it does 
not receive any points.  
 In this version of the game, and given a probability distribution P, it is 
always optimal to choose D(S*), where S* is the strategy for which P(S) is 
maximal. Therefore, Proposition 2 becomes trivial in this context and can be 
extended to the following proposition: If none of the strategies are chosen more 
often than S, then D(S) is a best response. If, in addition, none of the strategies are 
chosen as often as S, D(S) is the unique optimal strategy. Equilibrium analysis 
also becomes simpler in this version. Thus, the probability distribution P 
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constitutes an equilibrium if and only if, for any S and T in the support, P(S)=P(T) 
and in any Cycle i, P(S0(i))= P(S1(i))= P(S2(i))= P(S3(i)).  
 
 
2.6 The Adapted Level-k Model 

 
In this sub-section, the equilibrium solution concept is abandoned and an 
alternative approach is considered in an attempt to account for the experimental 
behavior in the Tennis Coach problem. The game's structure and its psychological 
properties call for applying the concept of level-k thinking, which is based on 
iterative reasoning.  
 Level-k non-equilibrium models assume that the population consists of 
several different types of decision makers and that each type uses a different level 
of iterated reasoning. L0 is a non-strategic type who chooses his action naively. 
L1 best responds to the belief that all other players are L0; L2 best responds to the 
belief that all other players are L1; and so on.11 In each game, the specification of 
L0 determines the definition of the other Lk types in that particular context. Type 
L0 is often assumed to choose a strategy by performing a uniform randomization 
over the strategy space, but there are cases in which L0 is specified differently. A 
relevant example is presented by Crawford and Iriberri (2007a) who construct an 
adapted level-k model to explain behavior in hide-and-seek games with non-
neutral framing12. Their L0 type instinctively recognizes salient actions13 and his 
typical decision rule is taken to be a mixed strategy which puts greater weight on 
salient actions. Their specification of the naive L0 type accurately captures a 
psychological effect that is also relevant in the Tennis Coach problem. Another 
related specification is that used by Crawford and Iriberri (2007b) in the context 
of auctions, in which the “truthful L0” bids the value that his own private signal 
suggests. 
 Note that any distribution of choices can be explained trivially by 
specifying L0 as a decision maker who chooses according to that particular 
distribution. A level-k model attempts to explain the data primarily through the 
behavior of L1, L2 or higher types and by considering only a small number of 
natural non-strategic types. In other words, the explanatory power of level-k 
models is based on the typical behavior of the strategic types.  
 

 

 

                                                 
11 In some cases (e.g. Camerer et al., 2004), Lk is assumed to best respond to a combination of 
lower types. 
12 The games were introduced in Rubinstein, Tversky and Heller (1996). 
13 Bacharach and Stahl (2000) propose a general framework that captures this idea. 
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Specification of L0 in the Tennis Coach problem 

The main assumption I make in this subsection is that the natural starting point for 
iterated reasoning in the coach problem is the salient strategy 1234 (L0), which is 
associated with the non-strategic type L0. Since this naive strategy is a natural 
choice, a sophisticated coach might choose to best respond to such a strategy by 
choosing 4123 (L1). Forming a belief concerning the opponent's strategy and best 
responding to it is the first step of iterated reasoning and thus the type who 
chooses this strategy is denoted as L1. An iteration of this process involves best 
responding to the belief that other coaches will choose L1. Therefore, L2 will 
typically choose the strategy 3412 (L2) which reflects the second step of iterated 
reasoning. The highest level of iterated reasoning that this model takes into 
account is the third iteration which leads to type L3 choosing 2341 (L3).

14 
 Note that if a coach simply wants to win the tournament and believes that 
all other coaches will choose L0, then he actually has five possible best responses: 
L1, S1(3), S1(4), S1(5) and S1(6), though the score for S1(i) against L0 is less than 
that for L1 against L0. The justification for my definition of types is Proposition 2, 
which states that if “the majority of the coaches choose T” (rather than all the 
coaches), then the only optimal strategy is D(T). This kind of belief reflects a 
rough estimation of the opponents' choices and is likely to be more common than 
the belief that all other coaches choose a specific strategy. Therefore, the 
assumption made here concerning coaches' beliefs is more plausible than those 
made in other level-k models.15 In fact, the typical choices of types defined in the 
model can be sustained also under a different reasonable assumption, according to 
which type Lk best responds to the belief that choices are uniformly distributed 
except for one strategy Lk-1 which is (even slightly) more frequent. This also 
means that the presence of a uniform noise, which may be interpreted as errors 
that players make, should not affect the behavior of higher level-k types. 
 Another strategy to be considered as an anchor for iterated reasoning is 
4321 (S0(2)).  Allocating the players in the reverse order can be viewed as a 
salient strategy, though a weaker one than 1234. It is likely that non-strategic 
types would choose this strategy while strategic types might treat it as an anchor 
for iterative reasoning. Thus, the choice of Sk(2) is considered as a possible 
outcome of another level-k decision rule, based on a different anchor. Clearly, 

                                                 
14 This is because the fourth level of iterated reasoning and the choice of L0 cannot be 
distinguished. Tennis teams were defined as consisting of 4 rather than 3 players because in 
previous experimental studies of other games, the fourth level of iterated reasoning was rarely 
observed, whereas the third level was more commonly observed. This finding justifies the 
assumption that L3 is the highest type. 
15 In many other games appearing in the literature (for example, Costa-Gomes et al., 2001), the 
definition of level-k types would be affected dramatically by a transition to this assumption.  
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allowing for another kind of level-0 type can only improve the fit of the level-k 
model. 16 
 The experimental results will be analyzed in light of the above 
specification, thus allowing for two possible anchors and two possible types that 
use each level of reasoning. In other words, all the strategies in Cycle 1 and Cycle 
2 are associated with level-k reasoning. This specification will turn out to be the 
best for accounting for the experimental data.  
 
Alternative specifications of L0 
There are other intuitively appealing specifications of level-0 types. For example, 
consider a non-strategic type who chooses each strategy in the game randomly 
and equally often, excluding the strategy 1234 which he chooses more frequently. 
Given this alternative specification, L1, who best responds to L0, would choose 
4123 as before and hence higher types would also behave as before. Note that 
from L1's point of view, the interpretation of this L0 is the same as in the original 
model, under the assumption that type Lk best responds to the belief that the most 
frequent choice is Lk-1 and that the rest of the choices are uniformly distributed. 
The non-strategic type could be specified in a similar manner under the 
assumption that the strategy 4321 is chosen more frequently than the rest or under 
the assumption that both 1234 and 4321 are chosen more frequently than other 
strategies. In this last case, as long as 1234 receives more weight than 4321, the 
best response to this type would be 4123. Allowing the existence of two non-
strategic types, one who gives more weight to 1234 and another who gives more 
weight to 4321, implies that the two types who use the first step of iterated 
reasoning (based on the two possible anchors) choose L1 and S1(2), respectively. 
Note that the alternative specifications of L0 above would not change the typical 
behavior of higher types and hence should not affect the explanatory power of the 
model.  The only possible change that could result is an increase or decrease in 
the proportion of behavior that can be explained by the level-0 types.  

Taking L0 to be a type who chooses a strategy randomly and uniformly 
(ignoring the framing) also could be considered intuitively appealing; however, it 
does not produce any constraint on the k-level types for any k>0.  In fact, all 24 
strategies are best responses to this strategy and thus, for any strategy S and for 
any k, one can say that S is the choice of a level-k type. Since this specification 
does not produce any prediction, I do not treat the uniform randomization 
decision rule as an anchor of level-k thinking.17 However, I allow for an almost 

                                                 
16 Note that  a special property of Cycle 1 and Cycle 2 is that the strategy that defeats S is created 
by "shifting" each tennis player to the position to his right (left) and the last (first) tennis player to 
the first (last) position. Thus, it is cognitively easy to find D(S) for any S in these cycles. 
17 Similar reasons lead Crawford and Iriberri (2007a) to avoid specifying L0 as a type who chooses 
a strategy randomly and uniformly.  
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identical L0 type who chooses randomly and nearly uniformly, that is, he assigns 
equal probability to all strategies and (even slightly) higher probability to L0. 

 
 

3. Experiments 
 
Two studies were designed to test whether the adapted level-k model can explain 
behavior in the game, to ascertain the depth of iterated reasoning in this context 
and to provide insights on the subjects' reasoning. Study 1 explores behavior in 
the original coach problem whereas Study 2 investigates a variant of the game 
which was introduced in Section 2.5. 
 

 

3.1 Study 1 

 
3.1.1 Experimental Design 

 
I report three different experiments that are based on the Tennis Coach problem 
introduced in Section 1. The original text used for each experiment appears in the 
appendix. 
 
Experiment 1  

The experiment was carried out in a number of economics courses at Tel Aviv 
University and at the College for Management in Israel. The students were asked 
to participate in an experiment at the beginning of the lesson. In keeping with the 
theoretical framework, the experiment was carried out in the form of a 
tournament. A total of 113 subjects participated in 7 tournaments of about 16 
participants each. Each Subject chose one strategy and then the strategy was 
played against his classmates’ strategies.18 The tournament winner was the one 
whose total score was the highest. The winner in each tournament received a prize 
of 200 NIS (around $50). 
 Since there are 24 strategies in this game, a large sample is required in 
order to obtain a meaningful distribution of strategies. Experiments 2 and 3 were 
conducted online19 which enabled collecting 772 additional observations. In the 

                                                 
18 In all the experiments, strategies were not presented in a list in order to avoid order effects. 
Subjects faced a matrix with four columns representing the different positions and four rows 
representing players' levels. They allocated the tennis players on their team by marking one box in 
each row.  
19 All the online experiments reported in this paper were conducted through the website: 
http://gametheory.tau.ac.il, which was created by Ariel Rubinstein and provides tools for 
conducting choice and game theoretic experiments. 
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first part of those experiments, each subject participated in a tournament, as in 
Experiment 1. In addition, Experiment 2 investigated the subjects' understanding 
of the best response function by testing whether they could optimally respond to 
simple given beliefs. In Experiment 3, subjects were asked to explain their 
choices and their decision time was measured. This data may contribute to our 
understanding of the behavior in the game. 
 
Experiment 2 

Students from three undergraduate economics courses in Israel (at Tel Aviv 
University, Haifa University and Ben-Gurion University) were invited by email to 
take part in the online experiment within the next few days. 279 students 
responded and were randomly assigned to play either the original game denoted 
as Version 1 or a variant of the game denoted as Version 2. Here I report the 
choices of 131 subjects who were assigned to Version 1 (the results of Version 2 
are reported in Study 2). The winner of the tournament in each class won NIS 
200. After choosing a strategy subjects answered three questions that tested their 
understanding of the best response function. They were asked to provide an 
optimal response to each of the following beliefs: “All other subjects will choose 
(A, B, A+, B+)”, “All other subjects will choose (B+, B, A+, A)” and “Most of 
the subjects will choose (B, A+, A, B+)”. Subjects were told that there is at least 
one correct answer to each question and that those who answered the questions 
correctly would win some CD’s.  
 Since the number of students who entered the website and only then 
decided not to participate was negligible, I conclude that a subject’s decision to 
participate in the experiment was no different in character than the decision to 
participate in a laboratory experiment. Therefore, there is no reason to think that 
the recruiting method used here attracted a subject pool different from that of 
conventional laboratory experiments. 
 
Experiment 3 

The subjects in this study consisted of 641 students in 14 different courses of 
game theory and economics, originating from 7 countries.20 The lecturers in these 
courses assigned the Tennis Coach problem as a homework task. The website's 
server recorded the time each subject spent on making the decision (response 
time) together with the strategy that he chose. Following the decision, subjects 
were asked to explain why they had chosen the strategy they did. The subjects did 
not know in advance that they would be asked to explain their choice or that their 
response time would be recorded. Lecturers were not able to observe the 
individual decisions made by their students. They did have access to the 
distribution of choices made, the three winning strategies and the identities of the 

                                                 
20 The US, the UK, Colombia, the Slovak Republic, Argentina, Canada and Brazil. 
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three winning students. The winners in the tournament did not receive a monetary 
prize. Nevertheless, they had an incentive to treat the tournament seriously in 
order to have the honor of being announced in class as one of the winners.   
 Some may consider the lack of monetary incentives to be a disadvantage 
of the experimental method since monetary incentives can increase the 
engagement of the subjects and reduce the noise in the experimental results. 
However, the evidence in Camerer and Hogarth (1999) suggest that monetary 
incentives typically have little effect in experiments of this kind.21 Moreover, the 
results here turned out to be very similar to those of the other two experiments.  

The experimental method used here has several advantages. In particular, 
the use of the didactic website is a convenient and inexpensive way to collect a 
large number of observations. The large sample is important in this game in order 
to obtain a meaningful distribution of choices. It also facilitates the comparison of 
response times for different strategies and the analyses of the subjects' own 
explanations of their choices.  

 
Non-choice data: response time and explanations  

As the analysis in Costa-Gomes et al. (2001) suggests, it is possible to draw 
incorrect conclusions concerning the frequencies of types based on observed 
choice alone. They used subjects' patterns of information search to interpret their 
choices in normal-form games. The approach in this paper is to use subjects' 
response time and explanations to interpret their observed choices.  

A subject’s explanation of his choice may reveal the decision rule he used 
and in particular whether it was based on iterative reasoning. Recall that subjects 
were asked to explain their choices only after making the decision and therefore 
their choices could not have been affected.  
 Response time (RT) is defined as the number of seconds from the moment 
that the server receives the request for the problem until the moment that an 
answer is returned to the server. This additional information is used to classify 
strategies in the game as intuitive choices or as an outcome of cognitive 
deliberation. This method is discussed in Rubinstein (2007), whose main claim is 
that the RT of choices made using cognitive reasoning is longer than that of 
choices made instinctively, i.e. on the basis of emotional response. This approach 
is in line with dual-system theories, such as that in Kahneman and Frederick 
(2002). 
 
 

                                                 
21 “The data show that incentives sometimes improve performance, but often don’t… In games, 
auctions, and risky choices the most typical result is that incentives do not affect mean 
performance, but incentives often reduce variance in responses”. Camerer and Hogarth (1999), 
page 34. 
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3.1.2 Experimental Results 

 
Table 1 in the appendix presents the data for Experiments 1-3. Recall that each 
experiment consists of a number of tournaments. I focus on analyzing the 
aggregate data in each of the experiments. By and large, the main features of the 
distribution of choices are preserved in the individual tournaments. The following 
table summarizes the findings concerning level-k reasoning in the three 
experiments.  
 

Choice 
Percentages 

Cycle 1  Cycle 2  
Others L0 L1 L2 L3 total S0(2) S1(2) S2(2) S3(2) total 

Experiment 1 
(n=113) 

classes, with 
monetary reward 

18.6 9.7 4.4 3.5 36.2 12.4 1.8 5.3 0 19.5 44.3 

Experiment 2 
(n=131) 

online, with 
monetary reward 

10.7 19.1 4.6 2.3 36.7 7.6 5.3 6.1 0.8 19.8 43.5 

Experiment 3 
(n=641) 
online, no 

monetary reward 

22 10.1 3.3 3.6 39 8.7 3.6 2.8 2.7 17.8 43.2 

  
In all three experiment, about 56% of the subjects' choices were strategies 

in the first two cycles, where 37-41% of the subjects chose one of the following 
three strategies: L0, L1 or S0(2). Strategies in other cycles were chosen far less 
frequently – almost always by less than 4% of the subjects. 

The main difference between the results of the three experiments is the 
“switch” of about 10% in Experiment 2 from strategy L0 to strategy L1 relative to 
Experiment 1 and 3. When this difference is neutralized, the three distributions 
are no longer significantly different.22

 More importantly, the qualitative findings 
in the three experiments are similar. Thus: (1) As will be shown below, the 
distribution of strategies is far removed from equilibrium. (2) The strategy L0 was 
one of the most popular choices, which confirms its salience and its role as a 
potential anchor for iterated reasoning. (3) A significant proportion of choices 
(43- 44%) was outside the first two cycles and thus cannot be attributed to level-k 
thinking. (4) High levels of iterated reasoning were uncommon. In particular, 

                                                 
22 Applying the chi-square test with respect to eight categories - one for L0 and L1 as a category, 
one for each of the other strategies in cycles 1 and 2 and another for the rest, it was found that 
there is not significant difference between the frequencies of categories in pairwise comparisons 
(Experiments 1 and 2: chi-squares=4.81, p=0.68; Experiments 2 and 3: chi-square=7.46, p=0.38; 
Experiments 1 and 3: chi-squares=8.06,  p=0.33). 
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level-2 strategies were chosen much less often than in other games reported in the 
literature and level-3 strategies were almost totally absent. 
 
Best responding to a given belief (Part 2 of Experiment 2) 

In the second part of Experiment 2, subjects were asked to provide an optimal 
response to each of the following (possibly noisy) single-point beliefs: 1. All other 
subjects will choose (A, B, A+, B+) 2. All other subjects will choose (B+, B, A+, 
A) and 3. Most of the subjects will choose (B, A+, A, B+). 125 out of the 131 
subjects participated in this part of the experiment. The following table 
summarizes the results. 
 

At least two out of three1 & 2 & 33 2 1 Questions 

93 81 899093% that answered correctly: 

 
Comment: Among those who chose 1234 or 4321, only 12.5% (3 students out of 
24) did not answer the three best response questions perfectly. In other words, 
their possibly naive choice does not indicate that they did not understand the 
game or did not know how to best respond to simple beliefs. 
 
Explanations (Part 2 of Experiment 3) 

A total of 380 subjects in Experiment 3 provided an explanation of their choices 
(72% out of 526 who were asked). Four explanations were unclear and therefore 
discarded. The remaining 376 explanations were classified according to the five 
categories below and the proportion of each category was calculated.23 
 
1. Intuitive choice (18%)  
This category includes explanations such as: “It was a guess”; “I don't know 
why”; “It felt right” and “Intuition”.  45% of subjects who provided intuitive 
explanations chose L0.  
 
2. Random choice (19%)  
This category includes explanations that mentioned the word “random” or similar 
words. Some of them explained the randomization as an attempt to choose a 
different strategy from that of other players or to surprise their opponent. The 
category also includes explanations such as: “It does not matter what I choose 

                                                 
23 The explanations were classified in the following manner: First, five categories were defined 
(by myself) based on the content of the explanations. Next, each explanation was classified into a 
category by myself and by a research assistant independently. Our classifications were identical in 
90% of the cases. For the rest (39), another research assistant was asked to choose the category. 
He could either choose one of the proposed categories or a different one (which in fact did not 
occur). The final category for these remaining explanations was the one chosen by two of us. 
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because the distribution of choices is practically uniform if I don't know it”. 
Among subjects in this category, 10% chose L0 and explained that it did not 
matter what they chose. The other 90% said that they randomized and 19 
strategies were chosen by them.24  
 
3. First step of iterated reasoning (10%)  
This category includes explanations that describe best responding to the belief 
that most of the choices will be X (primarily L0 or S0(2)). 80% of the subjects in 
this category chose L1 and 8% chose S1(2).  
 
4. Second step of iterated reasoning (1%, four subjects) 
This category includes explanations that describe best responding to the belief 
that most of the choices will be L1.  
 
5. Other strategic decision rules (52%) 
This category includes explanations such as: “I am mixing good and bad players”, 
“I am sacrificing the weak player in order to win in other positions”, “My choice 
was based on my life experience”, “The best players of my opponent were likely 
to be in the middle positions and therefore I put mine on the edges” and “The 
player in the first position should be the best one since my opponent will put A in 
the first position” (or something similar based on some other partial belief). It also 
includes explanations based on incorrect reasoning (such as “I am trying to 
achieve a tie”) or irrelevant considerations (such as taking into account order 
effects). Interestingly, only four subjects mentioned the concept of Nash 
equilibrium in their explanation, although many of the subjects had studied game 
theory. Each of the 24 strategies was chosen by subjects in this category.   
 

The following observations can be made based on the explanations:  
Among those who chose L0, 28% did not explain their choice. Of those 

who did (83), 65% belong to the intuitive and random choice categories and the 
rest belong to the category of other strategic rules. These frequencies suggest that 
L0 is typically an instinctive choice or the outcome of a low level of 
sophistication.  
 In contrast, only 11% of those who chose L1 did not provide an 
explanation. Among those who did (41), 75% of the explanations suggest that the 
subject indeed utilized the first step of iterated reasoning with L0 as an anchor. 

None of the explanations provided for the choice of L3 included a process 
of iterated reasoning. Only three explanations (out of 15) for the choice of L2 
explicitly described the use of two levels of iterated reasoning. Thus, the subjects’ 

                                                 
24 Unchosen strategies: 4231, 2143, 1243, 1432 and 1342. Most frequently chosen strategies: 1234 
(24%), 2413 (14%), 4321 (13%) and 1324 (6%). 
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explanations suggest that many (though not all) of those who chose this category 
used alternative decision rules rather than high levels of iterated reasoning. 
Another important finding is that no one who chose a strategy other than L2 or L3 
explained that he had used two levels of iterated reasoning or higher. 
 
   
3.1.3 Discussion of Study 1   

 
Can equilibrium explain the results? 

In each of the three experiments, the distribution of strategies is not consistent 
with any equilibrium prediction. Since there is a large set of equilibria in this 
game, I show that the experimental results do not satisfy the general properties of 
equilibrium. 25  
 One way to see it is by examining the expected score of the strategies 
presented in Table 1 (in the appendix). In Experiment 1, the strategies L1 and S1(4) 
are the clear leaders and the only strategy that comes close to the highest score is 
L2. These three strategies were chosen by only 17% of the subjects. Thus, the vast 
majority of the subjects could have significantly improved their chances of 
winning by deviating to L1 or S1(4). Similarly, the strategy L1 is the clear leader in 
Experiment 3 and the only strategy that comes close to it is S1(3). These strategies 
were chosen by only 14% of the subjects. In Experiment 2, the best response to 
the distribution is clearly L2, which was chosen by less than 7% of the subjects.  
 In order to demonstrate that minor changes in subjects' choices would not 
turn the distribution into equilibrium, the following exercise was carried out for 
each study separately: Let #S be the number of subjects who chose the strategy S 
in the experiment and M(S)=min{#S,#D2(S)}. The distribution of choices in each 
study was “normalized” by subtracting M(S) subjects from both #S and #D2(S), 
for any pair of strategies S and D2(S). Thus, the “normalized” distribution includes 
the choices of 57 subjects in Experiment 1 (50% of the population), 51 subjects in 
Experiment 2 (39% of the population) and 283 subjects in Experiment 3 (44% of 
the population). The resulting distributions appear in Table 2. As a consequence 
of Property 2, subtracting an equal number of subjects from the choices of both S 
and D2(S) leaves the best response to the distribution unchanged. Hence, in each 
of the studies, the resulting distribution is an equilibrium if and only if the original 
distribution is as well. 
 In the resulting distribution in Experiment 1, P(L0)=0.28 and P(L2)=0. In 
order for L1 to earn an equilibrium score, the total frequency of S2(3), S2(4), S2(5) 

                                                 
25 Note that any convex combination of equilibria is an equilibrium. Thus, if different groups of 
players play different equilibria, the resulting distribution of strategies in the population is an 
equilibrium. 
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and S2(6) has to be 0.56- twice as much as the frequency of L0. However, these 
strategies' frequency is less than 0.11. Thus, L1 would earn more than equilibrium 
score even if some subjects' changed their choices. In the resulting distribution in 
Experiment 2, P(L1)=0.43 and P(L3)=0. This implies that L2 would earn more than 
the equilibrium score even if all other choices were concentrated around S3(i), for 
i=3,4,5,6. However, P(S3(i))=0, for i=4,5,6 and P(S3(3)) is just 0.06.  In the 
resulting distribution in Experiment 3, P(L0)=0.42 and P(L2)=0. This implies that 
L1 would earn more than the equilibrium score even if all other choices were 
concentrated around S2(i), for i=3,4,5,6. The argument is strengthened by the fact 
that P(S2(i))=0, for i=3,4,5,6.  
 
Level-k thinking 
As stated by Crawford and Iriberri (2007b): “The estimated distribution tends to 
be stable across games, with most of the weight on L1 and L2. Thus, the 
anchoring L0 type exists mainly in the minds of higher types.” The results of the 
three experiments reflect a low level of sophistication in terms of level-k 
reasoning. Moreover, many choices do not reflect level-k reasoning at all and are 
the result of other types of deliberations.  

Generally speaking, the frequency of non-strategic types (level-0) is much 
higher and the frequency of level-1 types lower than in other related studies; 
higher types are in fact almost totally absent. The proportion of subjects that 
actually use a high level of iterated reasoning might be even smaller than that 
indicated by observed choice since subjects who chose randomly or used decision 
rules other than iterated reasoning also must have chosen L2, L3, S2(2) or S3(2). 
Note that I do not consider the choice of L0 to be an outcome of four steps of 
iterated reasoning since in previous studies this level of reasoning was not 
evident. This is also supported by L0's low response time (median=125s) 
compared to the other strategies in Cycle 1  (and compared to strategies outside 
Cycle 1) and the fact that no one who made this choice explained it as being a 
best response to L3. 
 The subjects' explanations indicate that the only common starting point for 
iterated reasoning in players' minds was L0. A secondary and much less common 
anchor for iterated reasoning was S0(2). Furthermore, strategies outside Cycle 1 or 
Cycle 2 have much lower response times than L1's (median=194s),26 suggesting 
that there are no other pure strategies with the same role as L1.  
  In the second part of Experiment 2, 81% of the subjects answered all 
three questions perfectly and 93% answered correctly at least two questions out of 
three. This indicates that the game is not complex; subjects understand the game 
and are cognitively able to best respond to a single-point belief, such as the belief 

                                                 
26 An exception is the strategy S1(4) whose median response time is 181s (chosen by 2.8% of the 
subjects). 
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that all other choices will be S. Thus, we should not expect participants in the 
game to make many errors when trying to best respond to a belief of this kind.  

The high percentage of correct answers to Question 3 implies that subjects 
also have the correct intuition regarding the optimal response to the belief that 
most of the subjects (rather than all) will choose S. This result is important since 
the belief that most of the subjects will choose S sounds more plausible than the 
belief that all of them will choose S.  
 In answering Question 1 and 2, almost all subjects chose the best response 
that defeats the strategy (i.e., wins 3 out of 4 matches) assumed to be chosen by 
other coaches. Only a few chose one of the four pure strategies that score 2.5 
points. These findings provide further support for the plausibility of the definition 
of iterated reasoning used in this game (i.e., that the typical choice of Lk defeats 
the strategy chosen by Lk-1).  
 The above results concerning the subjects' ability to respond optimally to a 
given (possibly noisy) single-point belief suggest that level-k choices are not 
prevalent in the coach problem since subjects do not hold a belief of this kind. 
The subjects' explanations support this conjecture and suggest that a vast majority 
of them do not hold any belief at all on the distribution of the other subjects' 
strategies. However, subjects do attempt to forecast features of their opponents' 
strategies (such as: A+ is not likely to be assigned to Position 1) and respond 
according to that partial belief. Thus, one may explain the results by extending the 
level-k approach to allow for iterative reasoning given partial beliefs. This idea is 
formulated in a subsequent paper, Arad and Rubinstein (2010), in which a player 
is taken to implement an iterative process in several different “dimensions” 
(features of the strategy). 
 
 
3.1.4  Is There an Alternative Level-k Model that Account for the Data? 
 
Replacing the specification of L0 could not provide a better explanation for the 
experimental results in Study 1. In order to account for the pattern observed in the 
first cycle, the typical choice of L0 must be in the first cycle as well. Consider, for 
example, the specification of the strategy L3 as the typical choice of the L0 type 
(in this case, the strategy L0 will be interpreted as the typical choice of the L1 type 
and the strategy L1 will be interpreted as the choice of the L2 type). This 
alternative specification explains the same fraction of experimental behavior but 
is less plausible for the following reasons: (1) L3 it is not salient and is not likely 
to be a starting point for iterative reasoning, (2) the low response time associated 
with the choice of L0 suggests it is an instinctive one and (3) none of the subjects 
who chose L0 mentioned in his explanation an attempt to respond to L3. 
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Maintaining the specification of L0 and constructing the hierarchy of types 
using alternative assumptions on the belief held by type Lk does not help in 
explaining the data. One alternative assumption is that Lk believes that all other 
subjects are lower types than he is, but not necessarily Lk-1. This is the 
assumption made in the cognitive hierarchy model suggested by Camerer, Ho and 
Chong (2004). In the context of the coach problem, it may be possible to interpret 
the choice of 4123 (L1) as a best response to the belief of L2 that the population 
consists of L1 and L0 types (rather than just L1) and that L0 is more frequent than 
L1. Note, however, that if L2's belief is assumed to even roughly describe the 
observed distribution of lower types in the experiment, then L2 would typically 
choose 3412 (L2) in Experiment 2, since L1 is more frequent than L0.   

In order to apply the cognitive hierarchy model, we also need to assume 
that the distribution of types follows a one-parameter Poisson distribution. A 
parameter that produces a distribution with around 20% L0 choices would imply 
extremely high percentages of L1 and L2 choices and hence cannot account for 
the data in Experiments 1 and 3. A parameter that produces 10% L0 choices and 
20% L1 choices would imply an even larger percentage of L2 choices (more than 
20%). Even if we consider Lk types in both Cycle 1 and 2, a Poisson distribution 
does not provide a good fit to the distribution obtained in this experiment. 

 
Comment: Other solution concepts, such as quantal response equilibrium 
(introduced in McKelvey and Palfrey, 1995), which require that better strategies 
given the empirical data are chosen more frequently, cannot explain the results. In 
Experiments 1 and 3, L1 yields much higher expected payoff than L0, but L0 is 
chosen much more often. Similarly, in Experiment 2, L1 is significantly more 
frequent than L2 but its score is much lower.  
 
 
3.2 Study 2 

 
3.2.1 Experimental Design 

 
Subjects in this study played a variant of the game denoted by Version 2, which is 
presented in Section 2.5. Recall that the only difference between the two versions 
is in the system of scoring. In Version 2, a team scores 1 point only if it wins three 
matches out of four against another team. This system of scoring makes Version 2 
cognitively simpler than Version 1. More importantly, defeating is equivalent to 
winning here, which implies that L1 is the unique best response to the belief that 
“all other coaches choose L0”. This property of Version 2 makes the above 
definition of level-k types more plausible here. Another nice property of this 
version is that D(S) is the unique best response to the belief that S is the most 
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frequent choice, regardless of the “noise” distribution. Thus, the adapted level-k 
model is even more appropriate in Version 2 than it is in Version 1. Comparing 
behavior in the two versions would determine whether these differences increase 
the use of iterative reasoning.  

The data reported in this study was collected in two experiments. The 
subjects in Experiment A consisted of 148 undergraduate economics students in 
Israel who were assigned to Version 2 in the same online experiment that was 
reported in Experiment 2. As in Experiment 2, the winner in each tournament 
received 200 NIS. Experiment B used the method described in Experiment 3 to 
collect data from 704 students in 14 countries27 who were studying in 22 different 
courses. 
 
 
3.2.2 Experimental Results and Discussion 

 
Table 3 in the appendix presents the distribution of strategies in the two 
experiments. The following table summarizes the main finding concerning level-k 
reasoning.  
 

Choice 
Percentages 

Cycle 1 Cycle 2 
Others L0 L1 L2 L3 total S0(2) S1(2) S2(2) S3(2) total 

Experiment A 
(n=148) 

online, with 
monetary reward 

10.1 18.2 6.8 2 37.1 4.1 10.8 2.7 1.4 19 43.9 

Experiment B 
(n=704) 
online, no 

monetary reward 

18.6 12.9 5.3 2.8 39.6 5.8 5.4 2.4 1.7 15.3 45.1 

 
It is straightforward to show that neither distribution of chosen strategies 

is consistent with any of this version's equilibria. The suggested specification of 
the level-k model is the best possible one to account for the data in the 
experiment. However, it cannot explain a large proportion of the choices.  
 Roughly speaking, the distribution of strategies in this version resembles 
that in Version 1. In fact, there are no significant differences between the 
distribution of choices in the two versions (chi-square=25.85 and p=0.31 were 
obtained in a test comparing the data collected through the didactic website and 
chi-square=31.75 and p=0.11 were obtained in a test comparing the data from the 
experiment that used monetary incentives). As to the explanations of the subjects, 

                                                 
27 The US, Mexico, Brazil, Chile, India, Switzerland, Moldova, Ecuador, France, Brunei 
Darussalam,    Germany, Portugal, Spain and Israel. 
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the proportions of the various categories were similar to those in Study 1. Thus, 
the “guidance” provided by the scoring system and the relative cognitive 
simplicity of this version of the game did not significantly increase the use of 
iterated reasoning. Recall that in Version 2, D(S) was the unique best response to 
the belief that “the most frequent choice will be S” which includes the belief that 
“all other coaches will choose S”. Hence, the resemblance of the results in the two 
versions provides further support for the plausibility of the definition of types in 
Version 1. 
  
  
4. Concluding Remarks 

 
The Tennis Coach problem captures various strategic real-life interactions. 
Examples include:  allocating troops among a number of battlefields, choosing the 
order of R&D projects to be undertaken, promises in election campaigns, 
assigning workers to projects in a competitive environment and, of course, 
assigning players in sports games. The paper's theoretical analysis provides a 
complete characterization of equilibria in the coach problem. In an attempt to 
explain the experimental behavior in the game, the equilibrium solution concept is 
replaced by an adapted level-k model, which is based on a natural specification of 
iterated reasoning in this setting.  
 Although level-k thinking seems to be highly appropriate in the coach 
problem, the adapted model explains only part of the experimental results and 
many of the choices seem to be the result of other decision rules not based on 
level-k thinking. Perhaps the most striking result is the low frequency of types that 
use high levels of iterated reasoning. Even the first step of iterated reasoning is 
not very common in the two versions of the game and higher steps of reasoning 
are almost totally absent. These findings are supported by the subjects' 
explanations. Furthermore, their explanations hint that many of them do not hold 
a concrete belief over other subjects' choices and certainly do not best respond to 
the belief that most of the subjects are level-k types.    

The results in this paper differ from those obtained in previous studies, 
which found high frequencies of level-k reasoning among subjects in various 
games. I suggest two reasons for this: First, the pure strategies attributed to level-k 
reasoning in the coach problem are only a small fraction of the possible choices in 
the game. Second, the rich structure of the game triggers other kinds of strategic 
thinking based on partial beliefs over the opponents' strategies. Further research is 
needed in order to more clearly identify the circumstances in which the level-k 
approach is successful at explaining the data.  
 Although iterated reasoning was not triggered as often in the coach 
problem as in other games reported in the literature, the level-k concept may have 
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important roles in this context. Thus: (1) understanding the empirical features of 
level-k reasoning in this game makes it possible to predict the optimal strategy. 
The robust findings that L0 and L1 are the most frequent strategies and that the rest 
of the strategies are significantly less common, suggest that also in other samples 
the winning strategy will be L1 or L2 (depending on the relative frequency of L0 
and L1). This prediction does not rely on the exact frequencies of level-k strategies 
and other choices. It is due to the game's structure and the qualitative properties of 
the empirical distribution. 
 (2) Even these low frequencies of level-k choices may affect dramatically 
the long run play of the game. Although the distributions of strategies in both 
studies was far from equilibrium, if subjects were to play the game repeatedly and 
in each round would internalize the distribution of strategies in the previous 
round, they might converge to one of the equilibria of the one-shot game. Since 
subjects may notice the patterns based on iterated reasoning in earlier rounds, they 
might modify their choices in later rounds accordingly. In particular, I conjecture 
that in later rounds subjects’ choices would be concentrated in the first cycle. 
Thus, level-k reasoning may turn out to influence not only outcomes of one-shot 
games, but also the selection of equilibrium in the long run. 
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5. Appendix  
 
 
Figure 1: The score matrix 
 
The matrix is partitioned. The second part of the matrix appears in the next page. 
 
 

                  Cycle 1                    Cycle 2                   Cycle 3 
      

2 3 4 1 1 2 3 4 2 3 4 1 
Strategies by 
cycles (row 

player's score) 

4 1 2 3 4 1 2 3 3 4 1 2 
3 4 1 2 3 4 1 2 4 1 2 3 
1 2 3 4 2 3 4 1 1 2 3 4 

2.52 1.52 2 2 2 2 3 2 1 2 1234 
2 1.52 2.52 2 2 2 2 1 2 3 4123 

1.52 2.52 2 2 2 2 1 2 3 2 3412 
2 2.52 1.52 2 2 2 2 3 2 1 2341 

2.52 1.52 3 2 1 2 2 2 2 2 4321 
2 1.52 2.52 1 2 3 2 2 2 2 3214 

1.52 2.52 1 2 3 2 2 2 2 2 2143 
2 2.52 1.52 3 2 1 2 2 2 2 1432 
3 2 1 2 2.52 1.52 2.52 1.52 1324 
2 1 2 3 2 1.52 2.52 1.52 2.54213 
1 2 3 2 1.52 2.52 1.52 2.52 3142 
2 3 2 1 2 2.52 1.52 2.52 1.52431 
2 2 2 2 2.52 1.52 2.52 1.52 4231 
2 2 2 2 2 1.52 2.52 1.52 2.53124 
2 2 2 2 1.52 2.52 1.52 2.52 2413 
2 2 2 2 2 2.52 1.52 2.52 1.51342 
2 1.52 2.51.52 2.52 2.52 1.52 1243 

1.52 2.52 2 2.52 1.52 1.52 2.54132 
2 2.52 1.52.52 1.52 1.52 2.52 3421 

2.52 1.52 2 1.52 2.52 2.52 1.52314 
2 2.52 1.51.52 2.52 2.52 1.52 2134 

2.52 1.52 2 2.52 1.52 1.52 2.51423 
2 1.52 2.52.52 1.52 1.52 2.52 4312 

1.52 2.52 2 1.52 2.52 2.52 1.53241 
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                                    Cycle 4                      Cycle 5                     Cycle 6 
 

3 4 1 2 2 3 4 1 1 2 3 4 
Strategies by 
cycles (row 

player's score) 

2 3 4 1 3 4 1 2 3 4 1 2 
4 1 2 3 1 2 3 4 4 1 2 3 
1 2 3 4 4 1 2 3 2 3 4 1 

2.52 1.52 2.52 1.52 2.52 1.52 1234 
2 1.52 2.52 1.52 2.52 1.52 2.54123 

1.52 2.52 1.52 2.52 1.52 2.52 3412 
2 2.52 1.52 2.52 1.52 2.52 1.52341 

1.52 2.52 1.52 2.52 2.52 1.52 4321 
2 2.52 1.52 2.52 1.52 1.52 2.53214 

2.52 1.52 2.52 1.52 1.52 2.52 2143 
2 1.52 2.52 1.52 2.52 2.52 1.51432 
2 1.52 2.52 2.52 1.52 2 2 2 1324 

1.52 2.52 2.52 1.52 2 2 2 2 4213 
2 2.52 1.52 1.52 2.52 2 2 2 3142 

2.52 1.52 1.52 2.52 2 2 2 2 2431 
2 2.52 1.52 1.52 2.53 2 1 2 4231 

2.52 1.52 1.52 2.52 2 1 2 3 3124 
2 1.52 2.52 2.52 1.51 2 3 2 2413 

1.52 2.52 2.52 1.52 2 3 2 1 1342 
2 2 2 2 3 2 1 2 2 2.52 1.51243 
2 2 2 2 2 1 2 3 2.52 1.52 4132 
2 2 2 2 1 2 3 2 2 1.52 2.53421 
2 2 2 2 2 3 2 1 1.52 2.52 2314 
3 2 1 2 2 2 2 2 2 1.52 2.52134 
2 1 2 3 2 2 2 2 1.52 2.52 1423 
1 2 3 2 2 2 2 2 2 2.52 1.54312 
2 3 2 1 2 2 2 2 2.52 1.52 3241 

31

Arad: The Tennis Coach Problem

Published by De Gruyter, 2012

Brought to you by | University of California - Berkeley (University of California - Berkeley)
Authenticated | 172.16.1.226

Download Date | 6/7/12 6:31 PM



 

5.1 Proofs 
 
 
Proposition 1  A probability distribution P constitutes an equilibrium if and only 
if:  
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Proof.   
The following system of 12 linear equations confirms that in each of the 6 cycles, 
two adjacent strategies in the cycle, S and D(S), both score 0 points. This implies 
that each of the other two adjacent strategies earns 0 points as well. Therefore, the 
system characterizes the game’s set of equilibria in the game. 
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The solution of this system is the 6-dimension space that appears in the 
proposition. Ŷ  
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Proposition 2  If 1>P(S)>0.5 for some S, then D(S) is the best response to P.  
 
Proof.   
Assume without loss of generality that 1>P(L0)>0.5. We need to show that no 
strategy earns as high a score as L1. It is sufficient to show that for 

any 1X Lz , )3(),( 0 tLXscore �  implies that tYLscoreYXscore d� ),(),( 1  for 

any Y. In other words, X cannot compensate for its inferiority to L1 against L0 by 
its superiority when playing against some other strategies. The proof continues by 
considering all the possible strategies X and confirms that the condition on the 
payoffs is satisfied for all of them: 

(I) The case of X=L3 is straightforward: 1),( 03  LLscore , 

and 2),(),( 13 d� YLscoreYLscore  since the lowest possible score is 1 point and 

the highest is 3 points. 

(II) If 2),( 0  LXscore , assume to the contrary that 1),(),( 1 !� YLscoreYXscore . 

This implies that 1),( 1  YLscore or 1.5 and thus Y can only be L2 or S2(i), for 

i=3,4,5,6. However, the only strategies that score 2.5 or 3 points against L2 or 
S2(i) are S3(i) and L3, which do not tie with L0, a contradiction. 

(III) In the case of X=S1(i), for i=3,4,5,6, 5.2),( 0  LXscore . Since S1(i) is 

parallel to L1, it scores at most half a point more than L1 against iCycleY �  or 

Cycle 1. S1(i) can score at most 2.5 points against 1cycleoricycleY � , while L1 

scores at least 1.5 points. 5.1),( 1  YLScore  only if Y=S2(j) for j=3,4,5,6, and 

5.2))(),(( 21 �jSiSscore . 

(IV) In the case of X=S3(i), for i=3,4,5,6, 5.1),( 0  LXscore . S3(i) cannot score 2 

points more than L1 against some other strategy Y: 3)),(( 3  YiSscore  only for 

Y=S2(i), and 5.1))(,( 21  iSLscore  and not 1. Ŷ 
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5.2 Experimental results 

 
Table 1 below presents the aggregate quantitative data for each of the experiments 
1-3 in Study 1. In each experiment, the columns from left to right are: the number 
and then proportion of subjects who chose the strategy, and the average score of 
that strategy in the general tournament. 
 
Table 1 
 

Experiment 3 
(N=641) 

Experiment 2 
(N=131) 

Experiment 1 
(N=113) Strategies & 

Notation 
Score% # Score% # Score% # 

           
1.9422% 1411.87 10.7%141.87 18.6% 21 L0 1234 
2.2210.1% 65 2.1 19.1%252.12 9.7% 11 L1 4123 
2.063.3% 21 2.23 4.6% 6 2.10 4.4% 5 L2 3412 
1.783.6% 23 2 2.3% 3 1.84 3.5% 4 L3 2341 
1.968.7% 56 2.02 7.6% 101.94 12.4% 14 S0(2) 4321 
2.063.6% 23 2.06 5.3% 7 2.03 1.8% 2 S1(2) 3214 
2.042.8% 18 2.07 6.1% 8 2.03 5.3% 6 S2(2) 2143 
1.942.7% 17 2.04 0.8% 1 -- 0% 0 S3(2) 1432 
1.945.2% 33 1.98 1.5% 2 1.90 1.8% 2 S0(3) 1324 
2.163.9% 25 2.06 1.5% 2 2.03 6.2% 7 S1(3) 4213 
2.061.7% 11 2.12 3.1% 4 2.06 6.2% 7 S2(3) 3142 
1.841.6% 10 2.04 3.8% 5 -- 0% 0 S3(3) 2431 
1.953.6% 23 1.91 2.3% 3 1.90 6.2% 7 S0(4) 4231 
2.122.8% 18 2.1 3.1% 4 2.12 2.7% 3 S1(4) 3124 
2.053.6% 23 2.18 2.3% 3 2.06 4.4% 5 S2(4) 2413 
1.882.2% 14 2 3.1% 4 1.85 0.9% 1 S3(4) 1342 
2.012.3% 15 ---- 0% 0 1.90 0.9% 1 S0(5) 1243 
2.082% 13 2.04 3.8% 5 2.03 4.4% 5 S1(5) 4132 
1.991.3% 8 2.14 2.3% 3 2.06 1.8% 2 S2(5) 3421 
1.924.2% 27 2.06 1.5% 2 1.93 1.8% 2 S3(5)2314 
1.963% 19 1.99 5.3% 7 1.99 3.5% 4 S0(6) 2134 
2.071.7% 11 2.1 3.1% 4 2.03 1.8% 2 S1(6) 1423 
2.041.6% 10 2.11 3.8% 5 -- 0% 0 S2(6) 4312 
1.932.7% 17 2 3.1% 4 1.93 1.8% 2 S3(6)3241 
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Table 2 below presents the distribution following the normalization discussed on 
page 26 for each of the experiments 1-3. 
 
Table 2 
 

Normalization for equilibrium analysis 
Strategies & Notation Experiment 3 

(n=283) 
Experiment 2

(n=51) 
Experiment 1

(n=57) 
     

42.4% 15.7% 28.1% L0 1234 
14.8% 43.1% 12.3% L1 4123 

0% 0% 0% L2 3412 
0% 0% 0% L3 2341 

     
13.4% 3.9% 14% S0(2) 4321 
2.1% 11.8% 3.5% S1(2) 3214 
0% 0% 0% S2(2) 2143 
0% 0% 0% S3(2) 1432 
     

7.8% 0% 0% S0(3) 1324 
5.3% 0% 12.3% S1(3) 4213 
0% 3.9% 8.8% S2(3) 3142 
0% 5.9% 0% S3(3) 2431 
     
0% 0% 3.5% S0(4) 4231 

1.4% 0% 3.5% S1(4) 3124 
0% 0% 0% S2(4) 2413 
0% 0% 0% S3(4) 1342 
     

2.5% 0% 0% S0(5) 1243 
0% 5.9% 5.3% S1(5) 4132 
0% 5.9% 1.8% S2(5) 3421 
5% 0% 0% S3(5) 2314 
     

3.2% 3.9% 7% S0(6) 2134 
0% 0% 0% S1(6) 1423 
0% 0% 0% S2(6) 4312 

2.1% 0% 0% S3(6) 3241 
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Table 3 presents the data from Experiments A and B (Version 2, with and without 
monetary incentives, respectively).  

 
Table 3 

 
Experiment B (n=704) Experiment A (n=148)

Strategies & Notation 
% # % # 
      

18.6% 131 10.1% 15 L0 1234 
12.9% 91 18.2% 27 L1 4123 
5.3% 37 6.8% 10 L2 3412 
2.8% 20 2.0% 3 L3 2341 

      
5.8% 41 4.1% 6 S0(2) 4321 
5.4% 38 10.8% 16 S1(2) 3214 
2.4% 17 2.7% 4 S2(2) 2143 
1.7% 12 1.4% 2 S3(2) 1432 

      
3.4% 24 1.4% 2 S0(3) 1324 
4.7% 33 6.8% 10 S1(3) 4213 
2.1% 15 2.0% 3 S2(3) 3142 
1.6% 11 2.7% 4 S3(3) 2431 

      
4.3% 30 3.4% 5 S0(4) 4231 
2.4% 17 5.4% 8 S1(4) 3124 
3.1% 22 8.1% 12 S2(4) 2413 
1.1% 8 2.0% 3 S3(4) 1342 

      
2.6% 18 0.7% 1 S0(5) 1243 
2.4% 17 0.7% 1 S1(5) 4132 
1.1% 8 0% 0 S2(5) 3421 
4.7% 33 2.7% 4 S3(5) 2314 

      
4% 28 3.4% 5 S0(6) 2134 
3% 21 0% 0 S1(6) 1423 

1.6% 11 2.7% 4 S2(6) 4312 
3% 21 2.0% 3 S3(6) 3241 
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5.3 The Experiments 

 
5.3.1 Experiment 1 (translated from Hebrew)   

 
You are a tennis team coach, planning to send your team to a tournament. Each of 
your classmates is a coach of a team participating in this tournament.  
Each team has four players: one of level A+ (the highest level), one of level A, 
one of level B+, and one of level B (the lowest level). 
 
The coach's task is to assign his players to “position 1”, “position 2”, “position 3” 
and “position 4” (one player in each position).  
 
Each team will play against each of the other teams in the tournament. A game 
between two teams includes four matches: a tennis player that was assigned by his 
coach to “position X” will play once against the player in “position X” of the 
other team. You don't know how the other coaches assign their players. 
 
In any match between two tennis players of different levels, the one with the 
higher level wins. When two players with the same level play, the outcome is a 
tie. 
A winner in a match brings his team 1 point, and a player who ends the match 
with a tie brings his team ½ a point. A loss yields 0 points. 
 
The team's score at the end of the tournament is the number of points it gained in 
the games against all other teams (of the other participants in the experiment). The 
winning team is the one with the highest score. 
The coach whose team gained the highest score will win 200 NIS. (In case of 
several winning teams, a lottery will determine who wins the prize.) 
 
How will you allocate the players in your team?  (one player in each position) 
 
 

Position 4 Position 3 Position 2 Position 1  

    A+ 

    A 

    B+ 

    B 
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5.3.2 Version 1 and 2 in Experiment 2 and A, respectively (translated from  

Hebrew)   
 
You are a tennis team coach, planning to send your team to a tournament. Each 
team in the tournament has four players: one of level A+ (the highest level), one 
of level A, one of level B+, and one of level B (the lowest level). 
 
The coach's task is to assign his players to “position 1”, “position 2”, “position 3” 
and “position 4” (one player in each position). 
 Each team will play against each of the other teams in the tournament. A game 
between two teams includes four matches: a player that was assigned by his coach 
to “position X” will play once against the player in “position X” of the other team. 
You don't know how the other coaches assign their players. 
 
In any match between two players of different levels, the one with the higher level 
wins. When two players with the same level play, the outcome is a tie. 
 
[In version 1 - A winner in a match brings his team 1 point, and a player who ends 
the match with a tie brings his team ½ a point. A loss yields 0 points.] 
 
[In version 2 - At the end of any game between two teams, a team gets 1 point 
only if it won three matches out of four. In such a case, the other team gets 0 
points. In case of any other result, none of the teams gets points.] 
 
The team's score at the end of the tournament is the number of points it gained in 
all the games against other teams. 
The winning team is the one with the highest score, and the prize for the winner is 
200 NIS. [In case of several winners, one of them will be selected randomly to 
receive the prize]. 
 
How will you allocate your players? ** 
 

Position 4 Position 3 Position 2 Position 1  

    A+ 

    A 

    B+ 

    B 

 
** Note that other students in your class play the role of other coaches in the 
tournament, so your total score in this game will be your team's total score, after 
playing against each of the other students' teams. 

38

The B.E. Journal of Theoretical Economics, Vol. 12 [2012], Iss. 1 (Contributions), Art. 10

Brought to you by | University of California - Berkeley (University of California - Berkeley)
Authenticated | 172.16.1.226

Download Date | 6/7/12 6:31 PM



 

5.3.3 Version 1 and 2 in Experiment 3 and B, respectively 
 
You are a tennis team coach, planning to send your team to a tournament. Each 
team in the tournament has four players: one of level A+ (the highest level), one 
of level A, one of level B+, and one of level B (the lowest level). 
 
The coach's task is to assign his players to “position 1”, “position 2”, “position 3” 
and “position 4” (one player in each position). 
 Each team will play against each of the other teams in the tournament. A game 
between two teams includes four matches: a player that was assigned by his coach 
to “position X” will play once against the player in “position X” of the other team. 
You don't know how the other coaches assign their players. 
 
In any match between two players of different levels, the one with the higher level 
wins. When two players with the same level play, the outcome is a tie. 
 
[In version 1 - A winner in a match brings his team 1 point, and a player who ends 
the match with a tie brings his team ½ a point. A loss yields 0 points.] 
 
[In version 2 - At the end of any game between two teams, a team gets 1 point 
only if it won three matches out of four. In such a case, the other team gets 0 
points. In case of any other result, none of the teams gets points.] 
 
The team's score at the end of the tournament is the number of points it gained in 
all the games against other teams. The winning team is the one with the highest 
score, and the prize is $10,000. (In case of several winning teams, the prize is 
divided between them.) 
The only goal of players and coaches (including you) is to have their team getting 
the highest score among the teams. 
 
How will you allocate your players in order to achieve this goal?** 
 
** Note that other students in your class play the role of other coaches in the 
tournament, so your total score in this game will be your team's total score, after 
playing against each of the other students' teams.  
 

Position 4 Position 3 Position 2 Position 1  

    A+ 

    A 

    B+ 

    B 
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