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We  introduce  a  novel  decision  procedure  involving  multi-dimensional  iterative  reasoning,
in which  a player  decides  separately  on the  various  features  of  his  strategy  using  an  iterative
process.  This  type  of strategic  reasoning  fits  a range  of  complicated  situations  in  which  a
player  faces  a large  and  non-ordered  strategy  space.  In  this  paper,  the  procedure  is  used  to
explain  the  results  of  a large  web-based  experiment  of a tournament  version  of  the  Colonel
Blotto game.  The  interpretation  of  the  participants’  choices  as  reflecting  multi-dimensional
iterative  reasoning  is supported  by  an  analysis  of their response  times  and  the  relation
between  the  participants’  behavior  in this  game  and  their  choices  in  another  game  which
triggers standard  k-level  reasoning.  Finally,  we reveal  the  most  successful  strategies  in  the
tournament,  which  appear  to reflect  2–3  levels  of  reasoning  in the  two  main  “dimensions”.

© 2012 Elsevier B.V. All rights reserved.

. Introduction

Our interest is in exploring the behavior of human beings in relatively complicated strategic situations. Most experimental
esearch on strategic reasoning has focused on behavior in simple games in which the set of strategies is either small or
aturally ordered. These games often trigger attractive decision rules such as playing the (pure strategy) Nash equilibrium,
liminating iteratively dominated strategies or implementing level-k  reasoning. We wish to discover schemes of strategic
easoning used in situations in which it is hard to assess the strategy space due to its size and structure. In such situations,
here there is no simple mental representation of the strategy space, the player is forced to formulate his strategy by

hoosing several features of a strategy. Furthermore, the player’s payoff depends in a non-trivial way on the features chosen
y the other player. A theory of choice in such situations could supply the instruments to construct new models of behavior

n a variety of contexts.
In this paper we explore the experimental behavior of a large sample of participants in a variant of the renowned Colonel

lotto game. The game itself is interesting per se and has been applied to study a variety of economic and political situations.
Previous theoretical and experimental studies of the Blotto game will be discussed in Section 7.) The game also resembles

ther strategic scenarios such as allocation of funds between tasks, multi-characteristic product races and multi-object
uctions. However, its main role in this paper is to serve as a platform for studying a novel strategic scheme that consists of
easoning about features, which can be relevant for analyzing other game situations as well.

∗ Corresponding author at: School of Economics, Tel Aviv-University, Tel Aviv 69978, Israel. Tel.: +972 544235347; fax: +972 36420446.
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1.1. The Colonel Blotto game

Imagine you are a colonel in command of an army during wartime. You and the colonel of the enemy’s army each command
120 troops. Your troops will engage the enemy in 6 battles on 6 separate battlefields.

It is the night before the battles and each of you must decide how to deploy your forces across the 6 battlefields. In the morning,
you will win a battle if the number of troops you have assigned to a particular battlefield is higher than that assigned by your
opponent. In the case that you have both allocated the same number of troops to a particular battlefield, the outcome of the battle
will be a loss for both of you.

You will be playing this game against each of the other participants in the tournament. You need to choose one deployment of
troops that will be matched against the deployments of the other participants. Your total score will be the number of battles you
win. The three participants with the highest scores will be announced as the winners.

How will you deploy your 120 troops?

Please pause for a second and try to devise a strategy. How would you play such a game?
The first possibility that comes to mind is the simple strategy of allocating the 120 troops evenly across the six battlefields.

This instinctive strategy is likely to be chosen by other participants as well. If you choose this strategy, you will score no
points against these participants. Furthermore, if some of the players will choose this strategy, and the marginal distribution
of the other players’ assignments in each battlefield will be symmetric around 20, the instinctive strategy will score less than
3 points on average. You speculate that winning the tournament requires scoring more than 3 points and thus choosing this
strategy does not seem promising.

This may  lead you to consider concentrating your troops in only some of the battlefields. But in how many? By allocating
your troops evenly across five battlefields, you will win 5 battles and score 5 points against any opponent who chooses the
instinctive strategy. However, what if the other players have the same thought and concentrate their troops in only five
fields? In that case it might be better for you to assign a larger number of troops to only four battlefields, hoping to score 4
points against these players. It is not obvious where to stop this chain of arguments.

Suppose you have decided to deploy your troops in a certain number of battlefields and to abandon the others. Should
you completely abandon those battlefields? Other players might also abandon them and therefore assigning even a small
number of troops to these fields would score some easy victories. Other players are likely to go through a similar reasoning
process and you need to decide on the exact number of troops to be assigned to the almost abandoned battlefields.

You might also doubt that the six fields are treated symmetrically. Is it possible that other players will systematically
deploy more troops in some fields than in others? If so, you will gain more points by assigning larger masses to specific
fields.

As you can see, the game is simple to describe but quite complicated to analyze since numerous considerations arise. At
this point you are probably hoping that a game-theoretical analysis of the situation will provide some guidance in formulating
a strategy. Calculating the equilibrium of this tournament is extremely complicated. Even a best response for simple non-
degenerated distributions of strategies (like the uniform distribution) is far from obvious. Nash equilibrium sometimes
provides a reasonable prediction for games that are played by the same players many times. However, it seems unlikely that
the results will be close to the game’s Nash equilibrium when each player participates in the tournament only once (see, for
example, Holt and Roth (2004): “Experiments make clear that players often do not conform to equilibrium behavior when
they first experience a game, even if it is a game in which behavior quickly converges to equilibrium as the players gain
experience.”)

Our goal in this paper is to advance our understanding of how people behave in a game of this type when playing for
the first time. We  will present the results of two experiments of the Blotto tournament, conducted with a huge number of
participants, and will suggest a decision procedure that many of the participants appear to have followed.

A strategy in the Blotto game consists of an allocation of 120 troops across six battlefields. The number of possible
strategies is around 250 million. A permutation is a set consisting of all strategies obtained by permuting a particular
strategy (ignoring the labels of the battlefields). There are about 400 thousand permutations in the game. Indeed, thousands
of strategies and almost a thousand permutations were actually chosen by the participants in our experiments. Thus, it is a
challenge to identify and interpret common patterns of behavior in the data of such a game.

Unlike some other well-known simple games, it is hard to imagine a simple decision rule (such as successive elimination
of dominated strategies) that could be used by a player in the Blotto tournament. It is also reasonable to assume that players
do not adopt a process which involves finding a best response to a well-defined belief. This is because given the huge strategy
space it is implausible that participants hold “single point” beliefs (which assume that most of the other participants will
choose a particular strategy). If participants hold non-single point beliefs, then calculating the best response is enormously
difficult, even if the belief’s support consists of only a few strategies.

Our hypothesis is that the large size of the strategy space and its structure force a player to think in terms of features of
strategies rather than thinking about strategies per se (henceforth, we use the terms features and dimensions interchange-

ably). The paper presents a new decision procedure by which a player decides on each of the various features of his strategy
separately and then integrates his choices in the various dimensions to formulate a strategy.

We discuss the decision procedure in Section 2. In Section 3 we describe the large-scale web-based experiment of the
Blotto game which we carried out. In Section 4 we suggest that participants consider three particular features of a strategy and
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how that indeed many of the participants used our procedure and referred to these features. In Section 5 we  further support
he interpretation of choices in the Blotto game as reflecting multi-dimensional iterative reasoning by using additional data.
inally, in Section 6, we open Colonel Blotto’s “top secret files”, which reveal the salient strategies and the most successful
trategies. We  promise a surprise!

. Multi-dimensional reasoning

We propose a new decision procedure that fits not only the Blotto game but also other games that are characterized
y a rich structure. According to this procedure, a player has in mind some essential dimensions (features) of a strategy.
hat these dimensions are depends on the structure of the game. The player makes a decision (chooses a value) for each

imension separately. He then picks a strategy that is consistent with the choices he made for each dimension.
The use of such a procedure is not uncommon in real life situations. Consider, for example, two  competing manufacturers

f fashion clothing, A and B, which produce a similar product. Each firm decides on the price and design of its product before
t knows what the other firm has decided. In the previous year, both firms chose a price of $12 and produced a similar design.
n one of its meetings, A’s management decides to reduce the price to $10 since it expects firm B to reduce its price to $11
A speculates that B anticipates that A will not be altering the price). Thus, in this dimension, A follows a decision rule in the
pirit of level-k  reasoning. In a separate meeting, A’s management decides to adopt a new and more modern design for the
roduct since it expects firm B to stick to last year’s design. Given these two  decisions, the planning department must come
p with a new design that can be cheaply produced and has a modern look. The outcome might be a provocative design
ade out of cheap material. Of course, this outcome might not be a best response to firm B’s strategy.
Note that in this example a strategy is defined as a vector and players view the components of the vector as the dimensions

or their strategic reasoning. However, even when a strategy is presented as a vector, players may  have in mind dimensions
hat differ from those directly implied by the description of the strategy. As we  will see later, this seems to be the case in
he Blotto tournament.

We  now give the procedure a more formal and detailed presentation. Let 〈S, u〉 be a symmetric game, where S is a set of
trategies and u(s, s′) is the payoff (score) of playing the strategy s against a player who plays the strategy s′. We  suggest
hat the choice of a strategy in complex games (i.e. when S is very large and lacks a clear ordering or a simple structure) is
ccomplished in two stages:

.1. The editing stage

In this stage, a player performs a transformation of the game into a simplified framework in which he will later conduct
is strategic deliberations. We  propose that in this stage a player recognizes two  elements:

(1) Dimensions.
The player has in mind a set of dimensions (features) of the game strategies. Dimension i must take a value from the set

i. For every dimension i, let Ti(s) be a function that assigns to any s ∈ S a unique element in Zi. Ti(s) is the value of the i’th
imension of the strategy s.

Examples:
a) A new firm trying to compete with an established firm in the market might think of the following dimensions in deciding

on its strategy: (i) product price, (ii) distribution area and (iii) advertising budget. A value for dimension (i), for instance,
would be some non-negative number.

b) In a repeated game, one of the dimensions of a strategy might be the number of periods that a current action depends on
and its value will be any non-negative integer. Another example could be the stationarity of the strategy and the value
for this dimension might be “yes” or “no”.

c) In a multi-object auction, one of the dimensions of a strategy might be the sum of all bids made by the player and its
value will be any non-negative number. Another dimension could be the number of objects the player bids on.

(2) Proper response operator.
For each dimension i, a player has in mind a proper response function PRi, which assigns to each value zi ∈ Zi a value

′
i
∈ Zi, with the interpretation that z′

i
is “beneficial” against zi. The proper response function represents a heuristic based on

ither an accurate calculation or a rough approximation.
Examples:

a) For any given z ∈ Zi, a player considers the set {s|Ti(s) = z}, which is the set of all strategies for which the i’th dimension
takes the value z. He identifies a strategy s′ which is a best response to the uniform distribution on this set and assigns
PRi(z) = Ti(s′).
b) The player has in mind a representative strategy s with the value z in the i’th dimension. He calculates a best response s′

to s and assigns PRi(z) = Ti(s′).
c) PRi(z) is a heuristic which approximates a best response to the belief that the vast majority (but not all) of the other

players will choose a strategy whose i’th value is z.
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2.2. The solution stage

The player is now able to implement a solution concept for the edited structure. The solution concept determines the
values that a player will choose for each dimension and then the actual strategy he will play. The two  elements of this stage
are:

(3) The method of choosing the value in each dimension.
Examples:

a) A player has in mind an auxiliary game Gi in which each player chooses the value of the i’th dimension. A player chooses
a value that is a proper response to itself (a fixed point of the proper response operator).

b) The player chooses the value that is a proper response to more values than any other.
(c) The player starts with an initial value zi(0) for the i’th dimension. The initial value can be, for example, a salient value

or the value of a salient strategy. He might end the process at this point and choose that value or alternatively he can
recursively define zi(k) = PRi(zi(k − 1)). In this dimension, he is characterized by an integer ki and chooses zi(ki).
Note that a player might apply different dimensional decision rules in the various dimensions.

(4) Picking a strategy.
Once a player has chosen a vector of values z∗

i
(one value for each dimension), he picks a strategy s such that

Ti(s) = z∗
i

for all i. In this paper, we have not made any particular assumptions concerning the strategy selection crite-
rion. In particular, we do not specify what the player does if there is no strategy that fits his choices in the various dimensions.

We have presented the choice of values in the various dimensions as a simultaneous process. However, in many contexts
it is more likely that the choices are made sequentially and that the choice of a value in one dimension depends on those
made previously in other dimensions. The sequentiality of the process is likely to reduce the complexity of the procedure.
The distinction between simultaneous and sequential activation of the procedure does not matter much in the Blotto game
but might be crucial in other games.

Let us emphasize that the scheme described above is essentially based on heuristics. The application of such a scheme
depends on the context. One may  try to anchor the heuristics in a meta-optimization or to ground it on basic properties of
human reasoning. However, we do not deal with the justification of the scheme here and make do with identifying traces
of such a procedure in our experiment of the Blotto tournament.

Section 4 discusses the dimensions that participants in the Blotto experiments have in mind, the proper response
operator they seem to use and their method of choosing a value for each dimension. We  consider three dimensions of
a strategy (element (1) in the above scheme). The proper response operator (element (2) in the above scheme) will be
based on example 2(c). For the two central dimensions, the method of choosing a value (element (3) in the above scheme)
will be based on iterative reasoning, as in example 3(c). In other words, a player starts with a salient value and might
indeed choose it – this is step 0. Alternatively, he might implement step 1 of the reasoning in this dimension by choos-
ing the value that is a proper response to the step 0 value. If he implements step 2 of the reasoning, he chooses the
value that is the proper response to the step 1 value and so on. Thus, we  call our procedure multi-dimensional iterative
reasoning.

Note both the similarity and differences between this procedure and the k-level reasoning approach (see Stahl and
Wilson (1995)). A k-level model assumes that the population is partitioned into a collection of types, which differ in
their depth of reasoning. Thus, a level-0 type is non-strategic and follows a simple decision rule. It is generally assumed
that he randomizes uniformly (see Crawford and Iriberri (2007) and Arad (2012) for different specifications of the level-
0 type, which take into account the instinctive attraction to salience). A k-level type, for any k ≥ 1, best responds to the
belief that all other players are level k − 1 types, or the belief that other players are level k − 1 or lower level types.
In studies of other games, it was found that the most common types are level-1 and level-2 and it is rare to observe
behavior consistent with a higher level. Our procedure differs from k-level reasoning in two major aspects: first, it
relates to the features of the strategies rather than to the strategies themselves. This enables the level of reasoning to
vary across dimensions. Second, it uses a proper response operator, which is only roughly related to the best response
operator.

As in level-k  studies, our approach leaves a large number of degrees of freedom. Nonetheless, it can still be refuted by
the data. First, we will consider a distribution of strategies roughly consistent with Nash equilibrium as a refutation of our
approach, since that will imply that participants think in terms of strategies rather than features. Second, our approach will
be refuted by a distribution of values within a dimension that differs significantly from the distributions of the corresponding
k-level types found in other studies. In particular, a finding that almost all participants choose strategies with the same value
in a particular dimension may  be considered a refutation of our approach.
3. The experiment

The platform used to conduct the experiment was the didactic website at gametheory.tau.ac.il. Each participant played
our version of the Blotto game once. The participants came from two  separate and distinct populations:

http://gametheory.tau.ac.il
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(i) Classes: teachers of game theory courses occasionally assign their students virtual games and decision-theoretical
roblems from the site’s bank of problems. The results obtained at the site are typically similar to those in laboratories
xperiments using monetary incentives (see Rubinstein (2007)).

Students were asked to participate in a tournament against their classmates; we  will be reporting mainly the aggregated
ata of all the tournaments. The only incentive provided to the participants was that the three tournament winners in each
lass would have their names announced by the teacher. 4605 students had participated in the game. They belong to 129
roups in 25 countries (Argentine, Australia, Belgium, Brazil, Brunei, Canada, China, Denmark, Finland, France, Ireland, Israel,
exico, Moldova, Netherlands, Norway, Slovakia, Spain, Switzerland, Taiwan, Thailand, Turkey, UK, USA and Vietnam).
(ii) Calcalist: “Calcalist” is a Hebrew business daily published in Israel. In the eve of Passover 2009, we  invited Calcalist’s

eaders to experience Game Theory by playing three games posted on our website. The invitation was done through a
ewsletter, a link in a major news website, a link on “Calcalist on-line” and through Calcalist printed version in which the
ames were described. 1928 readers chose to participate. Prior to the Blotto tournament, the readers played two  other new
ames: the Tennis Coach problem (Arad (2012))  and the “91–100” game (a variant of Arad and Rubinstein (2012a)), which
ill be described later in the paper. Both games naturally trigger k-level reasoning. It was promised to the readers that the
ames of the three tournament winners would appear in an article that will report the main findings.

It should be mentioned that the students and the Calcalist readers played versions of the game that differed in one framing
etail: in the game played by the students, the 6 battlefields were arranged vertically, with battlefield 1 on top and battlefield

 on the bottom. In the game played by the Calcalist readers, the battlefields were arranged horizontally with battlefield 1
n the left and battlefield 6 on the right.

Note that in both the Classes and the Calcalist experiment, participants were incentivized to try to win  the tournament,
.e. to obtain the highest score among the participants. Our tournament differs from the standard two-player Blotto game in

hich each player is incentivized to maximize his expected score, although the games are quite similar both theoretically
nd psychologically. In particular, we have shown in a sequel paper (Arad and Rubinstein, 2012b)  that when the number of
layers is very large, the equilibrium of any tournament of this type is close to a symmetric Nash equilibrium of the parallel
wo-player game. In the current study, we decided to use the tournament structure since we felt it would encourage daring
trategies and strategic thinking.

Note also that even as a two-player game, our version is different from the classic variant of the Blotto game analyzed in
he literature since it is not a zero-sum game (a tie in a battlefield is equivalent to a loss).

Given the huge number of possible strategies, as well as the variety of strategies actually chosen, thousands of independent
bservations are needed for a proper analysis of the considerations that arise in a player’s mind. The use of web-based
xperimentation, which provided us with a sample of 6533 participants, overcame this hurdle. It also enabled us to confirm
he robustness of the results through the sampling of two distinct populations: game theory students and readers of a
nancial newspaper, a less conventional group of participants for this kind of experiment. Despite the differences between
he two populations, the results are very similar.

. Multi-dimensional reasoning in the Blotto game

Before demonstrating how the multi-feature procedure can be plausibly applied in the Blotto game, it is worthwhile
eviewing the difficulties involved in applying the standard k-level approach: we begin from the conjecture that the most
rominent starting point for iterative reasoning is the instinctive deployment of troops, i.e., 20 to each battlefield. We  take
his salient strategy to be the natural specification for level-0 behavior since it has the aesthetic features which make it the
rst strategy to come to mind (evidence for which is the particularly low response time associated with this strategy).

The difficulty arises when trying to specify the typical actions of higher-level types. Unlike some other simple games, here
here are many best responses to the level-0 strategy, which makes the specification of the level-1 type unclear. Consequently,
t is not reasonable to assign a single-point belief to the level-2 type. Holding a complex belief, which takes into account all
he possible level-1 strategies, is not plausible either. Furthermore, the calculation of a best response to a non-degenerate
istribution of level-1 strategies is very difficult even if the belief contains only a few strategies in its support.

Taking the level-0 to be a uniform randomization over the strategy space (that is, assigning equal probabilities to all 250
illion strategies) is of no benefit since the calculation of the best response to this behavior is extremely difficult.
Thus, we find it more likely that a participant in the Blotto game employs the multi-dimensional reasoning process

escribed in Section 2. In other words, he chooses his strategy after considering several dimensions and decides on the value
f each dimension independently. For two of the dimensions, it is natural to assume that a player applies iterative reasoning
in the spirit of k-level reasoning) when choosing the value of the dimension.

We focus on three important features of a strategy: the number of reinforced battlefields, the unit digit in a single-field
ssignment and the order of the six single-field assignments. Our intuition is that players often consider the dimensions
equentially roughly in this order (this intuition is supported by comments we received from participants in one of the
lasses).
(a) The number of reinforced battlefields.
Choosing to reinforce x = 0, 1, . . .,  5 battlefields means that the participant has decided to strengthen his forces in x

attlefields by assigning to each of them a large number of troops. We  define the reinforcement of a battlefield as the
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assignment to it of more than 20 troops. This definition is somewhat arbitrary but it allows partitioning the strategies
according to the number of reinforcements and captures the essence of concentrating troops in certain battlefields (for
example the strategy 23–23–23–23–14–14 involves the reinforcement of 4 battlefields).

In this dimension we will adopt the proper response operation PRi(z) (described in 2(c), Section 2) which approximates a
best response to the belief that the vast majority (but not all) of the other players will choose a strategy whose i’th value is z.
The method of choosing the value in this dimension will be based on an iterative process as described in 3(c) from Section 2.
The description of the iterative process requires specifying the starting point and the proper response operator. The starting
point of the iterative process in this dimension is the reinforcement of 0 battlefields since the instinctive strategy, which
assigns 20 troops to each battlefield, involves 0 reinforcements. This strategy is of course the only non-dominated strategy
that involves 0 reinforcements.

As for the proper response function, we identify the reinforcement of 5 battlefields to be a proper response to the
reinforcement of 0 battlefields and the reinforcement of 4 battlefields to be a proper response to the reinforcement of 5
battlefields. However, it is not clear that the reinforcement of 3 battlefields can be considered as the third step of reasoning.
It is worthwhile elaborating on this point.

The first iterative step is to reinforce 5 battlefields. (The straightforward strategy of this kind involves deploying 24 troops
in 5 of the battlefields.) If used against the step-0 strategy it will win 5 battles and thus score the maximum number of points
possible in this game. This is the reason that reinforcing 5 battlefields is intuitively the optimal response to the step-0
strategy. Furthermore, if a player believes that a vast majority of participants, but not all, will reinforce 0 battlefields, then
reinforcing 5 battlefields is a necessary condition for him to win the tournament. Given this belief, reinforcing 4 battlefields
or less does not guarantee winning the tournament: if even one player in the tournament reinforces 5 battlefields, that
player will score an average of almost 5 points, which is higher than the average score achieved by anyone who  reinforces
4 battlefields or less.

As intuition suggests, the second step is the reinforcement of 4 battlefields. (The straightforward strategy of this kind
involves deploying 30 troops in each of 4 battlefields.) The second-step type in this dimension believes that a vast majority
of players reinforce 5 battlefields. By reinforcing 4 battlefields, the player expects to score about 4 points against the step-
1 strategies, while the step-1 strategies will score around 3 points against each other. Thus, he will expect to win the
tournament as long as the proportion of step-0 types is not greater than the proportion of step-1 types. Reinforcing less than
4 battlefields yields at most an average score of 3 points and is not successful given his beliefs.

An automatic continuation of the iterative process may  lead to the thought that reinforcing 3 battlefields is a proper
response to the reinforcement of 4 battlefields. Indeed, reinforcing 3 battlefields would generally yield a score of at least
3 points against step-2 strategies, whereas the average score of step-2 strategies against themselves is at most 3 (due to
the possibility of ties, which are counted as losses). However, if in addition to step-2 strategies there are strategies of lower
steps, a step-2 strategy will have the advantage of scoring about 4 points against these strategies. In such cases, reinforcing
3 battlefields may  turn out to be inferior overall. Thus, the third iterative step is not clear-cut. In any case, the iterative
chain stops here. Reinforcing less than 3 battlefields is not optimal against strategies that involve reinforcing 3 or more
battlefields.

Note that in the calculation of a proper response a player uses “an approximation of best response” to the lower step. He
does so ignoring the other dimensions of the strategy and believing that if he reinforces less battlefields than his opponent,
then he is likely to win in each of the reinforced battlefields. This argument makes sense since he has more resources for
each reinforced battlefield. However, this is just an approximation since it does not take into account the possibility that the
opponent’s assignment in each reinforced battlefield can differ in size and some assignments may  be very large.

We proceed into the analysis of the data. Note that whenever we  refer to the score we include all the observations.
However, in the rest of the data analysis (e.g., when we  classify the participants by level of reasoning) we  excluded a few
dozen participants who did not assign all 120 troop.

The following table presents the distribution of the number of reinforced battlefields for each population, as well as the
median response time (MRT) for each category (measured in seconds).

The data on response time supports our intuition regarding the structure of iterative reasoning in this dimension. The
step-0 strategy is associated with exceptionally low response time, indicating that this choice is indeed instinctive. The step-
1 and -2 strategies are associated with a relatively high response time, suggesting the use of a more complex deliberation
process. The response time for the step-2 strategies is somewhat higher than that for step-1 strategies. The response time
of strategies with 3 reinforced battlefields is also high, suggesting that participants who made this choice were involved
in a complex reasoning process as well. It is possible that these participants continued the iterative reasoning process
intuitively, in an attempt to respond properly to step-2 strategies (though it is not clear that their choice is actually a proper
response). Participants who decided to reinforce only 0, 1 or 2 battlefields spent significantly less time in making the decision
than participants who reinforced 3, 4 or 5 battlefields. This suggests that reinforcing 0, 1, or 2 battlefields involves less
deliberation.

In Table 1 there is a difference between the Classes students and the Calcalist readers: the Calcalist readers tended to

reinforce 4 or 5 fields relatively more often and to reinforce 1 or 2 fields less often. This might be because the Calcalist
readers are more sophisticated. Alternatively, having participated in the two other games (the 91–100 game and the tennis
coach problem) prior to the Blotto game may  have triggered deeper iterated reasoning in this dimension among the Calcalist
readers.
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Table 1

# of fields with more than 20 troops Classes Calcalist

Percent Score MRT (�) Percent Score MRT  (�)

0 Step 0 12 2.24 113 s (3.3 s) 11 2.04 79 s (5.2 s)
5  Step 1 8 3.15 182 s (10.1 s) 14 2.92 135 s (6.3 s)
4  Step 2 26 3.08 192 s (5.7 s) 33 3.05 143 s (3.1 s)
3  Step 3 ? 22 2.95 189 s (6.3 s) 22 2.89 128 s (4.7 s)
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2  19 2.59 163 s (4.1 s) 13 2.54 124 s (6.3 s)
1 12 1.73 149 s (6.3 s) 7 1.73 110 s (7.9 s)

Note that the response time of the Calcalist readers was  generally lower than that of the students. The difference may be
xplained by the fact that the Calcalist readers were presented with an Hebrew version of the game, which is much shorter
han the English version presented to the students. Moreover, Hebrew is the Calcalist readers’ mother tongue, whereas

any of the students in the Classes group are not native speakers of English. In any case, we  use the response time for
omparisons within each group separately.

(b) The unit digit in single-field assignments
As in dimension (a), we will adopt here the proper response operator described in 2(c) and the method of choosing a

alue described in 3(c) (Section 2).
A non-complicated and somewhat instinctive allocation of 120 troops across 6 battlefields involves single-field assign-

ents that are multiples of 10 troops. Thus, we  consider the use of the unit digit 0 in all battlefields as reflecting step 0 in
his strategy’s feature.

The most efficient way to win a battlefield is by assigning to that battlefield one troop more than the opponent. Thus,
f a player suspects that a vast majority of the opponents’ single-field assignments involve the use of a certain unit digit,
sing often a unit digit greater by one can be considered a proper response. (Note that the unit digits across the battlefields
re not independent since they must sum up to a multiple of ten.) Of course, the assumption in the background is that the
layer’s choice of tens digit will frequently be the same as his opponents’. Thus, the first iterative reasoning step would be
he use of the unit digit 1 in some of the battlefields. The second step would be using the unit digit 2 and so on. We  doubt,
hough, that the choice of the unit digit 7, for example, is actually an outcome of 7 steps of reasoning. Even in simple games
n which iterative reasoning is natural and straightforward, strategies that reflect more than 3 steps of reasoning were rarely
bserved in the literature (see a discussion in Arad and Rubinstein (2012a)).

Table 2 presents the distribution of unit digits in all the single-field assignments:
A majority of single-field assignments involved the unit digit 0 (almost all of them were either 0, 10, 20, 30 or 40). The

nit digit 1 is heavily used (primarily in the choices 1 and 21). The choice of the unit digit 2 is less frequent (it appears
rimarily in the choices of 2 and 22).

We found that 30–38% of the participants used the unit digits 1 or 2 in at least one single-field assignment and half
f them used those unit digits for at least three battlefields. The participants in this group spent significantly more time
n deliberation than other participants: the MRT was  214 s among the students and 153 s among the Calcalist readers. In
ontrast, the MRT  of those participants who chose only multiples of 10 (45% of the total participants) was  137 s among the
tudents and 106 s among the Calcalist readers, reflecting this choice’s instinctive nature. The MRT  of the other participants
ho (i) did not use only multiples of 10 and (ii) did not use the unit digits 1 or 2 at all was somewhere in between (170 s

mong the students and 127 s among the Calcalist readers).
The unit digit 5 was the second/third most frequently used. This is the result of two patterns observed in the data: (i)

ne-fifth of the participants who used the unit digit 5 at least once, used the unit digit 1 five times. (ii) A large number of
articipants used only multiples of 5 (as in the strategy 25–25–25–25–10–10). The unit digit 4 was  used more frequently
han 6, 7 or 8 due to the popularity of allocating 24 troops to 5 battlefields (step 1 in the reinforced battlefield dimension).
he use of the unit digit 9 was clearly a corollary of the use of the unit digit 1.

In Table 2 we find again a difference between the students in the Classes group and the Calcalist readers: the Calcalist

eaders used the unit digits 1 and 2 more frequently and the unit digit 0 less frequently. This difference is in the same spirit
f the difference indicated above regarding the number of reinforced battlefields.

able 2

Unit digit

0 1 2 3 4 5 6 7 8 9

Classes 62% 10% 3% 2% 4% 12% 1% 1% 2% 4%
Calcalist 56% 13% 5% 2% 5% 11% 1% 1% 2% 4%
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Fig. 1. Cumulative distribution of single-field assignments in the six battlefields.

(c) Order of single-field assignments
Once a player has chosen a particular partition of his 120 troops into 6 “divisions”, he also needs to decide how to allocate

the (perhaps) different-sized divisions among the 6 battlefields. Intuitive procedures of allocating the troops may  treat the
battlefields in a non symmetric way. For example, a player could allocate divisions successively, starting with allocating the
strongest division to battlefield 1 and ending with allocating the weakest division to battlefield 6. Alternatively, he could
concentrate the stronger divisions in the middle battlefields and the weaker in the edges (or the opposite).

Note that iterative reasoning is not as natural here as in the other two  dimensions. Since there is more than one intuitive
way to allocate the divisions, there is ambiguity regarding the step-0 value in this dimension. The definition of a proper
response is also not as clear as in the previous dimensions. Suppose, for example, that a player believes that the other player
is concentrating his troops primarily in the middle battlefields. One proper response would be to concentrate more troops
in the middle battlefields and to assign a relatively small number of troops to the edges. Another plausible proper response
would be to abandon the two central battlefields and assign more troops to all other battlefields in order to increase the
chances of winning those battles.

Although an iterative process is less likely to be implemented in this dimension, the choice of value can still be an outcome
of some other deliberation process. We  do not identify a particular decision rule used in the order dimension, but we do
trace in the data some interesting asymmetries that are presented below.

The six battlefields are numbered 1–6. Naturally, we focus on two types of symmetry:
Directional: Are battlefields 1, 2, 3 treated identically to battlefields 6, 5, 4 respectively?
Positional: Is the pair of battlefields in the center (3 and 4) treated the same as the pair of battlefields in the edges (1 and

6) and as the pair of battlefields in the mid-positions (2 and 5)?
Fig. 1 presents the cumulative distribution of the number of troops assigned to each of the six battlefields.
The cumulative distributions are essentially ordered identically in the two populations by first-order stochastic domina-

tion: 3, 4, 2, 5, 1, 6. For convenience, we also present the 33rd, 50th, 67th percentile points for each of the 6 battlefields (see
Table 3).

Most noticeable is the low number of troops assigned to the 6th battlefield and the high number assigned to battlefields
3 and 4. This is in line with some other experimental results which demonstrate a tendency of people to avoid the edges
and to concentrate resources on the center positions (see, for example, Rubinstein et al. (1996)).

There is almost no distinction between right and left. Battlefields 2 and 5 are treated almost symmetrically and the

distributions for battlefields 3 and 4 are also very close. The fact that more troops are assigned to battlefield 1 than to
battlefield 6 is the only directional asymmetry that was observed. A possible explanation is that a participant’s instincts lead
him to over-assign troops. Since allocations are often executed from the first battlefield to the last, battlefield 6 is treated as
the “residual”.

Table 3

Battlefield Classes Calcalist

1 2 3 4 5 6 1 2 3 4 5 6

33rd percentile 10 15 20 20 15 8 10 20 20 20 18 10
Median 20 20 21 20 20 20 20 21 24 22 20 20
67th  percentile 25 25 28 26 24 21 24 25 30 29 25 21
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Table 4

Field Classes Calcalist

Assign. Percent 1 2 3 4 5 6 Percent 1 2 3 4 5 6
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0 14 19% 17% 11% 11% 16% 22% 16 19% 15% 8% 9% 14% 20%
1  4 7% 4% 3% 3% 4% 5% 4 7% 4% 2% 2% 5% 6%

30  15 14% 14% 19% 17% 12% 12% 15 13% 14% 21% 19% 14% 11%

As can be seen in Table 4, some of the most popular single-field assignments appear in a non-symmetric way in the six
elds. For example, the assignments 0 and 1 are twice as frequent in battlefields 1 and 6 as in battlefields 3 and 4 and the

requency of the assignment of 30 to each of the battlefields 3 and 4 is much higher than for the other pairs.

. Support for the presence of multi-dimensional iterative reasoning

At this stage, we wish to introduce the “91–100 game”. Calcalist readers (unlike the Classes group) played this game before
laying the Blotto game. The fact that the same participants played both the 91–100 game and the Blotto game enables us
o examine the relation between their observed behavior in the two  games. This can help in evaluating our interpretation
f participants’ reasoning in the Blotto game. The data in this section is based solely on the Calcalist’s participants.

.1. The 91–100 game

Following is a description of the game as presented (in Hebrew) to the Calcalist readers:
You and another person are playing a game in which each player requests an amount of money. The amount must be an integer

etween 91 and 100 shekels. Each player will receive the amount he requests. A player will receive an additional amount of 100
hekels if he asks for exactly one shekel less than the other player.

What amount of money would you ask for?
In this game it is hard to think of more than one dimension for a strategy. We  find the game in particular suitable for

tudying (one-dimensional) k-level thinking for four reasons:

(i) The level-0 type specification is intuitively appealing: the choice of 100 is a natural anchor for an iterative reasoning process.
It is the instinctive choice when choosing a sum of money between 91 and 100 shekels (100 is the salient number in
this set and “the more money the better”). Furthermore, the choice of 100 is not entirely naive: if a player does not want
to take any risk or prefers to avoid competition, he might give up the attempt to win  the additional 100 shekels and
simply request the highest certain amount.

(ii) Best-responding is easy: given the anchor 100, best-responding to any level-k  action is very simple and leaves no room
for errors.

iii) Robustness to the level-0 specification: the type-1 action, i.e. choosing 99, is the unique best response to a wide range of
reasonable beliefs including (a) all distributions in which 100 is the most frequent choice and (b) the uniform distribution
and a class of beliefs that are close to it. This makes the analysis robust to the specification of the level-0 behavior.

iv) Clear payoffs: unlike other games that trigger iterative reasoning (for example, the Centipede Game and the Traveler’s
Dilemma), in this game social preferences are not likely to be prominent. In particular, if a player believes that his
opponent has chosen a number n > 91, choosing n − 1 will reward him with $100 but not at the expense of the other
player. Social preferences can appear in our game only in the extreme case in which a player would like the other player
to get the bonus.

Assuming that all players wish to maximize the expected amount of shekels they receive, the game has a unique
symmetric mixed-strategy Nash equilibrium (which yields an expected payoff of 100).

As shown in Table 5, the behavior of participants is very far from the Nash equilibrium. Most notable is the low percentage
f participants who chose 91 relative to the equilibrium prediction. The choice of 100, which in equilibrium appears only

arely, was chosen by 14% of the participants. The actions 97–98–99 that seems to exhibit 1–2–3 levels of reasoning were
hosen by 49% of the participants, whereas in equilibrium they should have been chosen by only 9%. As noted above, higher
evels of iterative reasoning are almost never observed in other studies of k-level reasoning. In our results, the actions 92–96
re also rare and appear much less often than expected by equilibrium.

able 5

Action 91 92 93 94 95 96 97 98 99 100

Equilibrium 55% 9% 8% 7% 6% 5% 4% 3% 2% 1%
Experiment 18% 19% 10% 21% 18% 14%
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In a parallel experiment of this game, about 160 students provided ex-post explanations for their choices. An analysis of
their explanations suggests that the actions 92–96 are generally not an outcome of 4- to 8-level of reasoning but of simpler
decision rules. It also validates the classification of 97–98–99 as the 1–2–3 levels of reasoning.

5.2. Association between behavior in “91–100” and “Blotto”

In this section, we seek support for our interpretation of some of the choices in the Blotto game as an outcome of multi-
dimensional steps of reasoning. This is done by investigating the association between standard k-level iterative behavior in
the 91–100 game and behavior in the Blotto game which seems to exhibit iterative reasoning in the various dimensions. More
precisely, we examine the link between the choices 97–98–99 in the 91–100 game and either reinforcing 4 or 5 battlefields
or using the unit digits 1 or 2 in the Blotto game. Given that the choices 99–98–97 clearly reflect 1–2–3 levels of reasoning in
the 91–100 game (whereas the rest of the strategies are attributed to other decision rules), evidence of such an association
will provide support for our intuition that these Blotto game choices emerge from iterative reasoning.

In analyzing the relation between the use of dimensional iterative reasoning in the Blotto game and k-level reasoning in
the 91–100 game, we combined the 97–99 choices into one category. In our experience, the level of reasoning for a particular
player is rarely the same in two different games not from the same class. Moreover, for any two  players, the relative ordering
of their levels is not stable between two games from different classes. This is supported by the findings in Georganas et al.
(2010). Thus, the most we can hope for is correlation between some use of level-k  reasoning in the 91–100 game and iterative
reasoning in a particular dimension in the Blotto game.

Table 6 shows the distributions of choices in the 91–100 game as a function of the participants’ choice of the number of
reinforced battlefields:

Participants who did not reinforce any of the battlefields (i.e. 0 reinforcements) tended to choose 91 and 100 more often
and to choose 97–99 dramatically less often than the other participants. Of those who reinforced 4 or 5 battlefields, 55–56%
chose 97–99 (� = 2%) whereas of those who reinforced 2 or less battlefields the proportion was only 42% (� = 2%). The behavior
of participants who reinforced 3 battlefields resembled more that of the participants who reinforced 4 or 5 battlefields: 50%
of them chose 97–99 (� = 2%). This finding supports our conjecture that strategies involving 3 battlefields reinforcements
are the result of an intuitive continuation of the iterative reasoning process in this dimension.

Table 7 presents the mean number of battlefields with the unit digits 1 or 2 in the Blotto game as a function of the choices
in the 91–100 game.

Table 7 demonstrates that participants who chose 97–99 in the 91–100 game tended to use the unit digits 1 or 2 signifi-
cantly more often than the rest. Another way to see it: more than 57% of the participants who  used the unit digits 1 and 2
at least once chose 97–99, while only 45% of those who did not use those digits chose 97–99.

A total of 47% of the Calcalist’ participants reinforced 4 or 5 battlefields in the Blotto game and 38% of the participants
used the unit digits 1 and 2 at least once. The choices of 25% of the participants exhibit iterated reasoning in both dimensions.
We found that 59% (� = 2%) of them chose 97–99, whereas among those who reinforced fewer than 3 battlefields and did
not use the digits 1 or 2, only 39% (� = 2%) made those choices.

Incidentally, the choices of 97–99 are also associated with a high score in the Blotto game. Table 8 demonstrates this
by comparing the 91–100 choices of the highest-performing 20% in the Blotto game with the choices of the rest of the

Table 6

# of fields with more than 20 troops Action in 91–100

91 92–96 97–99 100

0 Step 0 25% 19% 35% 21%
5  Step 1 17% 13% 56% 13%
4  Step 2 16% 17% 55% 12%
3  Step 3 ? 16% 19% 50% 15%
2  20% 25% 42% 13%
1  16% 21% 42% 21%

Table 7

Action in 91–100 91 92–96 97–99 100

Percent 18% 18% 49% 15%
Blotto: mean # of fields with digit 1 or 2 (�) 0.82 (0.08) 0.97 (0.09) 1.20 (0.06) 1.03 (0.10)

Table 8

91 92–96 97–99 100

Blotto’s top 20% 10% 20% 60% 11%
The  rest 20% 19% 46% 15%
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participants. Of the Blotto game’s top scoring players, 60% (� = 2.5%) chose 97–99, whereas only 46% (� = 1%) of the rest of
the players chose these actions.

To summarize, we find that participants who exhibit 1–3 levels of reasoning in the 91–100 game tend to more often
choose a strategy using 1 or 2 steps of reasoning in each of the two  dimensions (i.e. the number of reinforced battlefields and
the unit-digit numbers). This finding provides support for our interpretation of the reinforcement of five or four battlefields
and the use of the unit-digit 1 and 2 as reflecting multi-dimensional iterative reasoning.

6. The secret files: popularity and success in the Blotto game

6.1. The popular strategies

Nine of the 250 million strategies were chosen by at least one percent of the participants. The strategies and their average
scores are presented in Table 9. The nine most popular strategies were together used by around 30% of the participants in
each of the populations.

Recall that a permutation is a set consisting of all strategies obtained by permuting a particular strategy (ignoring the
labels of the battlefields). Table 10 presents the permutations that were chosen by at least 2% of the participants in each of
the populations. Apparently, there were eight permutations that were the most popular in both populations and all together
were chosen by 41–45% of the participants. (A permutation’s average score is calculated as the average for all participants
whose strategies were within that permutation.)

The most popular strategies and permutations were not very successful and scored well below the best-performing
strategies in the tournament (which scored around 3.8 points on average).

6.2. Attentiveness of the participants

Participants were not forced to assign all the 120 troops across the battlefields. This was a device for checking their
attentiveness. Among the students, only 5.4% of the participants chose such a dominated strategy. Among Calcalist’s readers,
the proportion dropped to 3.0%.

One popular permutation, which may  be the outcome of players not paying sufficient attention to the game, is the
assignment of 120 to one of the battlefields. This permutation was  chosen by 4.7% of the participants in the Classes and
2.4% among the Calcalist readers. The choice of the homogenous strategy is instinctive but does not necessarily imply that
insufficient attention was paid to the game. It was chosen by 11% of our participants. To scale this fact, in the Avrahami and
Kareev (2009)’s Blotto experiment (described below), which was carried out in a laboratory with monetary incentives, 25%
of the participants chose the homogenous strategy in the first round of the game.

Table 9

Strategies Classes Calcalist

Battlefields n = 4605 n = 1928

# 1 2 3 4 5 6 Percent Score Percent Score

1 20 20 20 20 20 20 11.4 2.33 11.1 2.09
2  30 30 30 30 0 0 4.4 2.87 4.6 2.86
3  0 0 30 30 30 30 3.4 2.97 4.6 2.91
4  120 0 0 0 0 0 1.9 0.98 1.1 0.99
5  21 21 21 21 21 15 1.5 3.19 3.3 2.80
6  24 24 24 24 24 0 1.4 3.08 1.6 2.90
7  0 30 30 30 30 0 1.3 2.93 1.2 2.86
8  40 40 40 0 0 0 1.2 2.76 1.6 2.79
9  0 24 24 24 24 24 1.0 3.16 1.9 2.94

Table 10

Permutation Classes Mean score Calcalist Mean score
n  = 4605 n = 1928

1 20–20–20–20–20–20 11.4% 2.33 11.1% 2.09
2  30–30–30–30–0–0 11.2% 2.92 13.3% 2.90
3  120–0–0–0–0–0 4.7% 0.99 2.4% 0.99
4  40–40–40–0–0–0 4.1% 2.78 4.5% 2.81
5  30–30–20–20–10–10 2.9% 2.74 2.0% 2.66
6  24–24–24–24–24–0 2.8% 3.12 4.0% 2.94
7 30–30–29–29–1–1 2.2% 3.27 2.5% 3.18
8 21–21–21–21–21–15 2.0% 3.20 4.8% 2.81
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Fig. 2. Distribution of average scores in the Classes and the Calcalist groups.

6.3. Relation to Nash equilibrium

By the definition of Nash equilibrium in the tournament, all pure strategies should have the same score. This is also the
case if we think of an equilibrium as a distribution of behavior patterns in the population where each strategy is a best
response to a large sample of strategies from the population. As can be seen in Fig. 2, the distribution of scores in both the
Classes and Calcalist groups reveals high level of variance and a large gap between the winning strategy and most of the
others, implying that the results are far from the Nash equilibrium of the tournament.

6.4. The winning strategies

And now to the surprising result: the winning strategy in the Classes’ grand tournament and in the Calcalist tournament
was the same: 2–31–31–31–23–2 (and needless to say, was chosen by two  different people...). Furthermore, there was
also significant overlap in the lists of the top 10 strategies in the two  tournaments (see Table 11). Four strategies are
common to both lists and, up to a permutation, 7 out of the top 10 strategies on the Classes list appear on the other list as
well.

The features of the winning strategy 2–31–31–31–23–2 are illuminated by the explanation provided by the Calcalist
winner:

“In the first stage, I decided that I would “surrender” on two battlefields, but not so easily. I thought that other people
would assign a few troops to some of the battlefields and perhaps none to others. Thus, I figured I could win  on an “abandoned”
battlefield at the low cost of only one troop. Eventually, I decided to deploy two troops on the weak battlefields in order to
defeat anyone who thought like me  and had placed one troop on each of the weak battlefields. I was  left with 116 troops

to allocate among four battlefields, which is an average of 29 troops per battlefield. I decided to reinforce three of the
four remaining battlefields with two troops – that is, to deploy 31 troops – in order to defeat those who  had allocated the
remaining troops equally. In this way, I would also defeat those who  had allocated 30 troops to each of the four battlefields.

Table 11

Classes’ grand tournament Calcalist tournament

1 2 3 4 5 6 Score 1 2 3 4 5 6 Score

1 2 31 31 31 23 2 3.83 1 2 31 31 31 23 2 3.77
2  3 31 31 31 21 3 3.80 2 2 32 31 31 22 2 3.76
3  3 31 3 31 31 21 3.76 3 2 23 31 31 31 2 3.75
4  1 31 31 31 25 1 3.76 4 1 1 32 32 32 22 3.72
5  2 27 31 31 27 2 3.75 5 1 1 31 31 31 25 3.71
6 2 31 23  31 31 2 3.74 6 2 27 31 31 27 2 3.71
7 1  1 31 31 31 25 3.73 7 2 31 1 31 31 24 3.70
8  2 21 32 32 2 31 3.72 8 1 31 31 31 25 1 3.70
9 1  1 31 31 25 31 3.71 9 1 25 31 31 31 1 3.69

10  1 31 31 25 31 1 3.69 10 1 1 34 31 31 22 3.69
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ith respect to the location of the weak battlefields, it seemed logical to me  that the weak battlefields would be on the
dges.”

Here are some of the features characterizing the ten leading strategies:

(a) Two battlefields were essentially abandoned. In fact, all 30 leading strategies in the two tournaments used a low number
of troops (1, 2 or 3) in exactly two single-field assignments.

(b) The most often almost abandoned battlefields are 1 and 6. This is profitable since these battlefields tended to be
abandoned in the population much more than the middle ones.

(c) Battlefields 2 and 5 were treated rather symmetrically (and, in particular, the strategy 2–23–31–31–31–2 does almost
as well as the winning strategy).

d) 30+troops are generally assigned to the middle battlefields. This is beneficial since the assignments to battlefields 3 and
4 tended to be the highest.

It is interesting to look at the winning strategies in the 11 tournaments of the largest classes, which contained at least
0 participants. In 4 of these classes (Argentine (2) and Canada (2)), a permutation of 1–35–1–31–31–21 was the win-
ing strategy. In the other 4 (Switzerland (2), Thailand and Slovakia), a permutation of 31–1–31–1–31–25 was the winning
trategy. In the remaining 3 large classes (Switzerland and Argentina), the winning strategies were 31–31–31–21–3–3,
–21–3–31–21–21 and 7–33–33–7–33–7. Note that 8 out of the 11 winning strategies belong to the same two  permu-
ations. All winning strategies in the 11 large classes, like the overall leading strategies (in the two grand tournaments),
nvolved the reinforcement of 4 battlefields and the avoidance of multiples of ten. The winning strategies in the large
lasses performed well in the grand tournament as well. While the top 10 strategies in the grand tournament scored
n average 3.7–3.83, the winning strategies in the large classes achieved an average score of 3.6–3.76 in the grand
ournament.

Finally, we were curious whether there exists another strategy that was  not chosen which could have outperformed
he others. The strategy that would do best against the Classes sample is exactly the winning strategy in the experiment
–31–31–31–23–2 and against the Calcalist sample is 3–2–31–31–31–22, which would achieve a score slightly higher than
he actual winning strategy.

.5. The components of success

In order to evaluate the relative contribution of each of the three features of a strategy to a participant’s score, we  ran
 regression in which a participant’s score is explained by dummy  variables corresponding to the main values of the three
eatures observed in the data:

A1 = 1 if the participant reinforces 5 fields, A2 = 1 if he reinforces 4 fields.
B1 = 1 if the unit digit 1 or 2 appears once, B2 = 1 if the unit digit 1 or 2 appears twice and B3 = 1 if the unit digit 1 or 2

ppears more than twice.
C = 1 if the number of troops allocated to each of the extreme fields (1 and 6) is strictly less than the number allocated to

ach of the middle fields, i.e. 2, 3, 4 and 5.
The results for the two populations are remarkably similar:
ScoreClasses = 2.39 + 0.49A1 + 0.52A2 + 0.26B1 + 0.33B2 + 0.37B3 + 0.19C
(R2 = 0.36, 95% confidence intervals for the seven coefficients respectively: (2.37, 2.40), (0.44, 0.54), (0.49, 0.55), (0.20,

.31), (0.28, 0.38), (0.33, 0.41) and (0.13, 0.24)).
ScoreCalcalist = 2.45 + 0.39A1 + 0.47A2 + 0.30B1 + 0.32B2 + 0.38B3 + 0.14C
(R2 = 0.44, 95% confidence intervals for the seven coefficients respectively: (2.43, 2.47), (0.36, 0.44), (0.43, 0.51), (0.23,

.36), (0.27, 0.38), (0.33, 0.42) and (0.07, 0.21)).
This might not be the best regression one could run to explain the data (e.g., we ignore the possible interaction between

he dimensions’ values) but even here the results imply that all three features play a significant role in explaining a player’s
uccess in the game. It appears that the number-of-reinforced-fields dimension has a somewhat larger effect than the
nit-digit dimension and both have a larger effect than the order-of-the-single-field assignments.

.6. Time and performance

Does an investment of more thought in the Blotto game translate into a better performance?
A standard regression affirms that response time contributes significantly and positively to performance in the Blotto

ame. Thus, for the Classes group we obtain the equation: score = 2.07 + 0.12ln(response time) and for the Calcalist sample we
btain a similar equation: score = 1.99 + 0.15ln(response time).
In order to better understand the correlation, we  divided the two  populations into ten deciles according to their response
ime. Fig. 3 plots the average score and the two  standard errors for each decile. We  find that the mean score of the three
ottom deciles is dramatically lower than that of the two  top deciles. On the other hand, the average performance in the
–8th deciles is almost identical.
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Fig. 3. Mean score by response time deciles.

7. Bibliographic notes

The classic version of the Blotto game was suggested in Borel (1921).  The equilibrium of its continuous version was
characterized by Roberson (2006).  The equilibrium of the discrete case, with B troops allocated to K battlefields, was charac-
terized by Hart (2008).  Both concluded that in an equilibrium, players treat the battlefields symmetrically and the marginal
distribution of the troops in each battlefield is essentially uniform in the interval [0, 2B/K]. Our non-constant-sum version of
the game is somewhat different from these versions since two players who tie on a particular battlefield do not split a point
but rather get nothing. We  are not aware of any analysis of the Nash equilibria of our version of the game.

The Blotto game has received widespread attention due to its interpretation within the political economics literature as
a game between two presidential candidates who  have to allocate their limited budgets to campaigns in the “battlefield”
states (see Brams (1978)). Myerson (1993) suggested another interpretation of the Blotto game as a vote-buying game.

Only a few experiments of Blotto games have been conducted. Partington reports in his website
(http://www.amsta.leeds.ac.uk/ pmt6jrp/personal/blotto.html) on a Blotto game tournament conducted in 1990.
In his version, the participants had to allocate 100 troops across 10 battlefields. The winning strategy was
17–3–17–3–17–3–17–3–17–3.

Avrahami and Kareev (2009) report on an experiment of a “lottery version” of the constant-sum game. Each participant
played 8 times in a row against a single player. In each round, once the two  players have chosen their allocation of troops,
one battlefield per player was randomly selected and the winner of the round was  determined by comparing between the
assignments in the two selected battlefields. This design prevents framing effects induced by the ordering of the battlefields.
Among other things, the authors studied the case in which each player assigns 24 troops across 8 battlefields. In this case,
the theory predicts that the marginal distribution of the assignment in each battlefield will be uniform in [0, 6]. In the vast
majority of observations, 2–4 troops were assigned to each battlefield and a significant number of participants allocated the
troops homogeneously (3 troops to each battlefield). For other recent experiments of variants of the game, see Chowdhury
et al. (in press), Ç inar and Göksel (2012), Hortala-Vallve and Llorente-Saguer (2010) and Modzelewski et al. (2009).

8. Conclusion

In the paper we focused on a version of the Blotto game. We  consider the game to be an example of an interesting
complicated game, in which the set of strategies is large and it is difficult to calculate (or even to approximate) a best-
response function. We  have argued that in such games (and not only the Blotto game itself) it is natural to decide about
each of the various features of strategies separately rather than about strategies per se. Often, the deliberation over a feature
naturally involves an iterative process. The decision procedure we have proposed captures this sort of strategic reasoning.

The following are three classes of strategic situations in which using the procedure seems natural:
(i) Variations of the Blotto game. Each player has limited resources that he has to assign to various “tasks” (battlefields).

The features of a strategy in such a context might be similar to those referred to in our discussion of the Blotto game.

(ii) Multi-object auctions. A set of objects is put up for auction. Players simultaneously place bids on each one. In this case,

the features could be, say, the sum of the bids, the number of objects not to be bid on, and the number of objects on
which to place high bids. The starting points of the iterative process in the various dimensions could be, say, “a sum of
bids as determined by convention”, “bidding on all objects” and “bidding very high on only half of the objects”.

http://www.amsta.leeds.ac.uk/~pmt6jrp/personal/blotto.html
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iii) Product races. Consider two competing car producers who bring out a new model of executive car each year. Relevant
features might be the timing of the launch, what generation to upgrade the technology to, investment in advertising
and price. Last year’s choices might serve as the initial values for the iterative process.

Note that we do not claim that people always use the multi-dimensional iterative reasoning scheme. All we  argue is that
n some games there is a significant group of people who  choose their strategy based on a procedure of this type. People use

 variety of decision procedures even in very simple situations and thus we  do not think that one can hope for a universal
rocedure that would explain the behavior of all people in such games.

It is worthwhile discussing the difficulties in applying the multi-dimensional procedure to explain behavior in other
ames. The procedure has many degrees of freedom: the dimensions of a strategy, the starting point of the iterative process
n each dimension and the proper-response operator. The identification of these elements is “ad-hockish” and might depend
n the context and the framing of the situation. Future research may  uncover principles for identifying these elements in
ny situation. However, we believe that at this stage, common sense could be used to point out these elements in particular
trategic interactions of interest.

To conclude: to the best of our knowledge, this paper is the first attempt to define and identify in the data a process
nvolving several non-inclusive forms of iterative reasoning. We  believe that our findings shed light on major considerations
hat arise in contexts similar to the Blotto game. Incorporating multi-dimensional reasoning in theoretical models and
nalyzing experimental data of other games in light of such a decision procedure are topics for future research.
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