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Appendix	A:	Additional	Information	and	Results	

	

A.1.	Analysis	of	the	Three	Types	of	Problems	in	Parts	A	and	B	(T0	and	Tp)	

We	begin	with	the	analysis	of	T0.	Examining	each	of	the	36	decision	problems	separately	

in	Parts	A	and	B	of	T0	 suggests	 that	 left-biased	choices	are	more	prevalent	 than	right-

biased	ones	 in	 all	 but	 two	of	 the	problems.	 Let	us	order	 the	 rules	 from	 the	most	 left-

biased	one	to	the	most	right-biased	one	such	that	𝑙𝑙	is	the	first	and	𝑟𝑟	is	the	last.	In	Part	

A,	 the	 median	 choice	 was	 𝑙	 (at	 least	 50%	 of	 the	 participants	 chose	 𝑙𝑙	 or	 𝑙)	 in	 all	 18	

problems.	 In	 Part	 B,	 the	 median	 choice	 in	 most	 problems	 was	 s	 (and	 l	 in	 the	 rest),	

suggesting	a	weaker	tendency	toward	left-biased	rules	than	in	Part	A.		

Even	within	each	part,	there	are	some	differences	between	the	problems	in	the	

extent	 of	 choosing	 left-biased	 rules.	 We	 now	 examine	 how	 the	 type	 of	 problem	 (i.e.,	

whether	the	loss	or	gain	is	fixed)	affects	the	tendency	to	choose	left-biased	rules.	Table	

S1	presents	 two	 indications	of	 this	 tendency	 in	each	of	 the	 three	 types	of	problems	 in	

Parts	 A	 and	 B	 and	 compares	 this	 tendency	 to	 the	 tendency	 of	 choosing	 right-biased	

rules.	These	results	establish	that	left-biased	choices	are	more	common	in	Part	A	than	in	

Part	B,	regardless	of	the	type	of	problem.	Further,	we	find	that	the	tendency	toward	left-

biased	choices	in	the	fixed-loss	problems	is	greater	than	this	tendency	in	the	fixed-gain	

problems	 in	Part	A	 (the	average	number	of	 left-biased	choices	 is	4.4	vs.	3.67,	 𝑡(66) =

2.78,	𝑝 = 0.007),	 while	 the	 opposite	 pattern	 obtains	 in	 Part	 B	 (2.58	 vs.	 3.16,	 𝑡(66) =

−1.95,	𝑝 = 0.055).1	

In	Part	A,	left-biased	rules	are	common	in	the	fixed-loss	problems.	Intuitively,	as	

the	participants	cannot	control	 the	size	of	 the	 loss,	 they	 focus	on	 the	 likelihood	of	 the	

loss.	 In	 the	 fixed-gain	problems,	 participants	 can	 control	 the	 size	 of	 the	potential	 loss	

and	 trade	 off	 the	 probability	 of	 winning	 for	 a	 smaller	 potential	 loss;	 thus,	 a	 smaller	

proportion	 of	 participants	 choose	 left-biased	 rules.	 Nonetheless,	 the	 majority	 of	

participants	 choose	 left-biased	 rules	 in	 all	 types	 of	 problems	 in	 Part	 A.	 This	 finding	

suggests	that	when	the	odds	are	not	on	their	side,	many	participants	focus	on	reducing	

the	probability	of	the	potential	loss	rather	than	reducing	the	size	of	that	loss.		

	

	

 
1 All	the	results	in	Section	A.1	are	robust	to	nonparametric	testing. 
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Table	S1.	The	tendency	toward	left-biased	rules	in	the	three	types	of	questions	in	Parts	A	and	B	
of	T0.	The	third	row	presents	the	proportion	of	participants	who	tended	to	choose	right-biased	
rules.	

	 Part	A	(𝒑 < 0.5)	 Part	B	(𝒑 > 0.5)	

	 Fixed	loss	 Fixed	gain	 Not	fixed	 Fixed	loss	 Fixed	gain	 Not	fixed	

Range	of	proportion	of	

participants	choosing	left-

biased	rules	

66%–79%	 55%–64%	 55%–69%	 34%–51%	 48%–54%	 42%–49%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

left-biased	rules	

63%	 52%	 60%	 37%	 48%	 37%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

right-biased	rules	

12%	 24%	 19%	 36%	 28%	 27%	

	

By	contrast,	in	Part	B,	where	the	odds	are	on	the	participants’	side,	it	seems	that	

some	of	the	participants’	focus	shifts	toward	the	potential	gain.2	We	suggest	that	when	

participants	 face	 the	 fixed-gain	 problems,	 they	 focus	 on	 increasing	 the	 probability	 of	

winning	(as	they	cannot	control	the	size	of	the	gain)	by	choosing	left-biased	rules.	In	the	

fixed-loss	problems,	they	can	also	control	the	size	of	the	potential	gain	and	hence	some	

of	them	opt	for	right-biased	rules	more	often.	

As	 for	 Tp,	 Table	 S2	 presents	 two	 measures	 of	 the	 participants’	 tendency	 to	

choose	 left-biased	 rules	 in	 each	 of	 the	 three	 types	 of	 problems	 and	 compares	 this	

tendency	 to	 the	 tendency	 to	 choose	 right-biased	 rules.	 The	 results	 suggest	 that	 left-

biased	choices	are	common	in	Tp	as	well.	Furthermore,	we	observed	a	“mirror”	pattern	

similar	to	that	observed	in	T0:	in	Part	A	the	tendency	toward	left-biased	choices	in	fixed-

loss	problems	is	greater	than	this	tendency	in	fixed-gain	problems	(the	average	number	

of	 left-biased	 choices	 is	 4.87	 vs.	 3.02,	 𝑡(46) = 4.8,	 𝑝 < 0.001),	 whereas	 in	 Part	 B	 the	

reverse	tendency	obtains	(1.96	vs.	3.94,	𝑡(46) = −5.09,	𝑝 < 0.001).	

	
	

 
2	The	participants’	explanations	provide	some	indications	that,	in	Part	B,	they	shift	attention	and	
focus	 more	 on	 the	 potential	 gains	 than	 on	 the	 potential	 losses.	 For	 example,	 keywords	 were	
classified	into	the	following	categories:	probability	of	winning,	probability	of	losing,	gain	size,	and	
loss	size.	Accounting	for	the	use	of	these	categories	in	participants’	explanations	suggests	that	the	
ratio	of	the	probability	of	winning	to	the	probability	of	losing	increases	in	Part	B	(54:29	in	Part	A	
and	64:14	in	Part	B)	as	does	the	size	of	the	gain	vs.	the	size	of	the	loss	(66:65	in	Part	A	and	54:39	
in	Part	B).	
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Table	S2.	Two	measures	of	a	tendency	toward	left-biased	rules	in	the	three	types	of	questions	in	
Parts	A	and	B	of	Tp.	The	third	row	presents	the	proportion	of	participants	who	tended	to	choose	
right-biased	rules.	

	 Part	A	(𝒑 < 0.5)	 Part	B	(𝒑 > 0.5)	

	 Fixed	loss	 Fixed	gain	 Not	fixed	 Fixed	loss	 Fixed	gain	 Not	fixed	

Range	of	proportion	of	

participants	choosing	left-

biased	rules	

68%–87%	 43%–57%	 47%–55%	 23%–45%	 57%–75%	 40%–57%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

left-biased	rules	

77%	 40%	 45%	 23%	 64%	 38%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

right-biased	rules	

2%	 26%	 23%	 47%	 15%	 15%	

	

The	above	observations	suggest	that	the	patterns	of	behavior	in	Tp	are	similar	to	

those	found	in	T0.	In	fact,	there	are	no	significant	differences	between	the	treatments	in	

the	number	of	left-biased	choices	in	any	of	the	three	types	of	questions.		

	

A.2.	Directional	Bias	in	a	Simple	Context	(Part	D)	
Recall	 that	 in	Part	D,	 the	participants	 faced	18	decision	problems	 (Q40–Q57).	 In	 each	

problem	they	chose	between	two	binary	 lotteries	with	known	probabilities	of	 loss	and	

gain.	The	 two	 lotteries	were	 “mirror	 images”	of	each	other	 (i.e.,	– 𝑥	with	probability	𝑝	

and	+𝑦	with	probability	1 − 𝑝	vs.	– 𝑦	with	probability	1 − 𝑝	and	+𝑥	with	probability	𝑝),	

one	negatively	skewed	and	one	positively	skewed,	and	had	an	expected	value	of	roughly	

0.		

At	 the	 aggregate	 level,	 49%	of	 the	 choices	 in	 Part	 D	 are	 of	 negatively	 skewed	

lotteries.	In	almost	all	18	of	the	problems,	the	distribution	of	choices	is	quite	balanced:	

between	40%	and	60%	of	the	choices	are	of	negatively	skewed	lotteries,	where	the	most	

extreme	frequency	of	choices	of	a	negatively	skewed	lottery	is	71%	(in	the	first	problem	

in	Part	D).	At	the	individual	level,	the	number	of	choices	of	negatively	skewed	lotteries	

(which	 ranges	 from	 0	 to	 18)	 is,	 on	 average,	 8.75,	 and	 its	 median	 is	 8.	 Of	 the	 114	

participants	 in	 the	 two	 treatments	 jointly,	 we	 classify	 31%	 of	 the	 participants	 as		

skewness-averse	 and	 38%	 as	 skewness-seeking,	 if	 they	 were	 consistent	 in	 choosing	
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negatively	skewed	or	positively	skewed	lotteries	 in	13	or	more	problems.3	Despite	the	

slightly	 different	 choice	 pattern,	 in	 T0	 the	 number	 of	 choices	 of	 negatively	 skewed	

lotteries	 in	 Part	D	 correlates	with	 the	 number	 of	 left-biased	 choices	 in	 Parts	 A	 and	B	

(Pearson’s	𝑟 = 0.23, 𝑝 = 0.06	and	Pearson’s	𝑟 = 0.32, 𝑝 = 0.009,	respectively).	Similarly,	

the	 number	 of	 choices	 of	 positively	 skewed	 lotteries	 in	 Part	 D	 correlates	 with	 the	

number	 of	 right-biased	 choices	 in	 Parts	 A	 and	 B	 (Pearson’s	 𝑟 = 0.23, 𝑝 = 0.06	 and	

Pearson’s	𝑟 = 0.33, 𝑝 = 0.007,	respectively).		In	Tp,	there	is	a	higher	correlation	between	

the	 behavior	 in	 Part	D	 and	 the	 behavior	 in	 Parts	 A	 and	B.	Nonparametric	 correlation	

measures	paint	a	very	similar	picture.		

In	conclusion,	the	participants	did	not	exhibit	a	preference	for	negatively	skewed	

lotteries	 to	 the	 extent	 that	 could	 explain	 the	 strong	 general	 tendency	 to	 choose	 left-

biased	 rules	 in	 Parts	 A	 and	 B.	 Nonetheless,	 the	 significant	 correlation	 suggests	 that	 a	

preference	for	negative	or	positive	skewness	is	related	to	the	tendency	to	choose	left-	or	

right-biased	stopping	rules.	In	general,	the	participants’	choices	become	more	balanced	

when	 we	 depart	 from	 the	 context	 of	 stopping	 problems	 and	 ambiguous	 winning	

probabilities.	One	possible	interpretation	of	this	finding	is	that	the	context	of	a	stopping	

rule	 and	 the	 unknown	 probabilities	 encourage	 the	 participants	 to	 overweight	 the	

winning	probabilities	in	instances	where	the	true	differences	in	probabilities	(between	

the	five	stopping	rules)	are	rather	small.	This	interpretation	is	also	consistent	with	the	

results	of	Part	C,	namely,	with	a	tendency	to	estimate	the	rules’	induced	lotteries	as	if	the	

baseline	lottery’s	winning	probability	were	closer	to	0.5	than	it	really	is.			

	

Comment:	Relation	to	the	literature	on	skewness-seeking	and	prudence	

The	literature	on	skewness-seeking	and	prudence	documents	a	preference	for	positively	

skewed	lotteries.	Typically,	the	proportion	of	positively	skewed	choices	ranges	between	

60%	and	80%.	Thus,	the	results	in	the	literature	are	closer	to	the	results	in	Part	D	than	

to	the	results	in	Parts	A	and	B.	Nonetheless,	the	proportion	of	positively	skewed	choices	

is	still	higher	in	the	literature	than	in	Part	D.	The	lower	proportion	of	positively	skewed	

choices	may	result	from	the	different	lotteries	that	we	used	(i.e.,	the	two	lotteries	were	

mirror	images	of	one	another,	which	possibly	emphasized	the	direction	bias)	and	from	

order	effects	(Part	D	was	played	after	Parts	A	and	B,	in	which	most	of	the	choices	were	

of	left-biased	rules).	

	

	

 
3	Such	consistency	occurs	with	 less	 than	1.5%	probability	 if	a	participant	chooses	uniformly	at	
random.	
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A.3.	Alternative	Theories	

In	 this	 section,	we	present	 the	 specifications	 of	 the	 theories	mentioned	 in	 Section	4.1	

that	we	used	in	the	estimation.	

	

A.3.1	Expected	Utility	Maximization	with	Risk	Aversion		

We	examined	the	 two	most	prominent	specifications	of	 this	 theory:	one	with	constant	

relative	risk	aversion	(CRRA)	and	another	with	constant	absolute	risk	aversion	(CARA).		

Since	 the	 classification	was	 virtually	 unaffected	 by	 the	 choice	 of	whether	 constant	 or	

absolute	 risk	 aversion	 was	 assumed,	 we	 decided	 to	 present	 the	 CRRA	 specification,	

which	 is	 perhaps	 the	more	 prevalent	 of	 the	 two.	 Recall	 that,	 under	 CRRA,	 individuals	

maximize	

𝑢(𝑥) = !!"#

"#$
,	

where	𝑥	represents	final	wealth.	We	assumed	that	the	individuals’	initial	wealth	was	55	

because	 the	 participants	 in	 the	 experiment	were	 endowed	with	 55	 shekels.	We	made	

sure	that	our	classification	was	robust	to	different	assumptions	about	individuals’	initial	

wealth.		

	 		

A.3.2	Cumulative	Prospect	Theory	

The	 following	 is	Tversky	and	Kahneman’s	 (1992)	unrestricted	version	of	CPT:	given	a	

stopping	 rule	 (𝑈,−𝐿; 𝑞, 1 − 𝑞),	 a	 CPT	 individual	 in	 our	 setting	 assigns	 to	 the	 induced	

binary	 lottery	 a	 value	 of	 	 𝑤%(𝑞)𝑣(𝑈) + 𝑤#(𝑞)𝑣(−𝐿),	 where	 𝑤%(⋅)	 and	 𝑤#(⋅)	 are	

weighting	 functions	that	distort	probabilities	and	𝑣(⋅)	 is	a	value	 function.	Tversky	and	

Kahneman	propose	the	functional	forms	

𝑤%(𝑞) =
𝑞&

(𝑞& + (1 − 𝑞)&)
"
&
														𝑤#(𝑞) =

𝑞'

(𝑞' + (1 − 𝑞)')
"
'
	

for	the	weighting	functions	and		

𝑣(𝑥) = C
−𝜆(−𝑥)( 														𝑓𝑜𝑟		𝑥 < 0
								𝑥) 																			𝑓𝑜𝑟			𝑥 ≥ 0

H	

	for	the	value	function.	Note	that	since	the	induced	lottery	is	binary,	the	decision	weights	

are	equal	to	the	probability	weighting	functions,	𝑤%(⋅)	and	𝑤#(⋅),	and	hence	there	is	no	

need	for	additional	notation	for	the	decision	weights.			

In	 the	 estimation	 reported	 in	 the	 main	 text,	 we	 used	 a	 restricted	 version	 in	

which	𝛼 = 𝛽	and	𝛾 = 𝛿.	In	line	with	the	theory,	we	imposed	that	𝛼 ∈ (0,1], 𝛿 ∈ (0,1],	and	

𝜆 ≥ 1.	That	 is,	we	assumed	that	participants	are	 loss-averse,	put	relatively	high	(resp.,	
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low)	weight	on	low	(resp.,	high)	probabilities,	and	have	diminishing	sensitivity	to	gains	

and	losses.	In	Appendix	A.6,	we	show	that	the	unrestricted	version	is	less	successful	in	

explaining	our	participants’	behavior.	

	

A.3.3	Disappointment	Aversion		

The	 idea	behind	disappointment	aversion	 is	 that	 individuals	may	experience	disutility	

when	a	prospect	yields	results	that	are	worse	than	its	certainty	equivalent.	Recall	that	a	

stopping	 rule	 induces	 a	 binary	 lottery	 in	 our	 setting,	where	 a	 loss	 is	 interpreted	 as	 a	

disappointing	outcome	and	a	gain	as	an	elating	outcome.	Thus,	according	to	Gul’s	(1991)	

representation,	 given	 an	 endowment	 of	 𝑒	 and	 a	 lottery	 that	 induces	 a	 loss	 of	 𝑙	 with	

probability	 𝑞	 and	 a	 gain	 of	 ℎ	 with	 probability	 1 − 𝑞,	 the	 disappointment-averse	

individual	obtains	a	payoff	of	

Q1 + ("#+))
"%+)

R 𝑞𝑢(𝑒 − 𝑙) + Q1 − +)
"%+)

R (1 − 𝑞)𝑢(𝑒 + ℎ).	

In	our	estimation,	we	assumed	that	𝑢	 is	 linear	and,	 in	 line	with	the	 literature,	 that	 the	

parameter	of	disappointment	aversion,	𝛽,	is	positive	in	order	to	capture	disappointment	

aversion	 (note	 that	 smaller	 values	 of	 𝛽	 capture	 elation-loving	 rather	 than	

disappointment	aversion).	For	𝛽 = 0,	this	theory	coincides	with	expected	utility	theory,	

and	larger	values	of	𝛽	capture	higher	degrees	of	disappointment	aversion.	

	 	

A.3.4	Salience	Theory	

Salience	theory	(Bordalo	et	al.,	2012)	assumes	that	decision	makers	put	more	weight	on	

salient	states	when	they	evaluate	a	prospect.	Note	that	each	prospect	in	our	experiment	

(i.e.,	each	stopping	rule)	has	two	states,	one	that	corresponds	to	finishing	the	game	with	

a	gain	(we	refer	to	this	state	as	gain)	and	one	that	corresponds	to	finishing	with	a	loss	

(which	we	 refer	 to	 as	 loss).	We	 adapt	 salience	 theory	 to	 our	 setting	by	 assuming	 that	

when	 individuals	 evaluate	different	 stopping	 rules	 they	put	more	weight	on	 the	more	

salient	state.	The	salience	of	the	different	states	is	determined	by	the	distribution	of	the	

stopping	rules’	potential	gains	and	losses	in	the	decision	problem.	

	 Formally,	we	assume	that	individuals	are	characterized	by	a	value	function	𝑢(⋅)	

(which we	assume	to	be	linear, following	Bordalo	et	al.,	2012),	a	salience	function	𝜎(⋅),	

and	 a	 parameter	 𝛿 ∈ [0,1].	 The	 salience	 of	 a	 state	 is	 measured	 by	 the	 function	 𝜎(⋅),	

which	depends	on	the	difference	between	the	potential	gain	(resp.,	loss)	induced	by	the	

rule	and	the	potential	gain	(resp.,	loss)	induced	by	each	of	the	other	rules.	We	denote	by	

𝜂- 	the	salience	ranking	of	state	𝑖	according	to	𝜎(⋅),	where	𝜂- <	𝜂. 	implies	that	state	i	is	

more	 salient	 than	 state	 𝑗,	 and	by	𝜋- 	 the	objective	probability	of	 state	 𝑖	 being	 realized.	
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According	to	salience	theory,	an	individual	transforms	the	objective	probabilities	𝜋- 	and	

𝜋. 	to	the	subjective	probabilities		𝜋Y- 	and		𝜋Y. 	using	the	following	formula:		
!!
!"
= 𝛿𝜂!"𝜂" !#!

!#"
.	

Thus,	 the	 lower	𝛿	 is,	 the	greater	 the	departure	 from	expected	utility	 theory	(note	 that	

expected	utility	is	a	special	case	of	salience	theory	for	𝛿 = 1).		

We	use	 	ℎ- 	 and	 	 𝑙- 	 to	denote	 the	potential	 gain	and	 loss	 induced	by	 rule	 𝑖.	We	

assume	that	the	salience	of	the	state	gain	(resp.,	 loss)	given	rule	𝑖	depends	only	on	the	

difference	ℎ- −max{.1-}
ℎ. 	(resp.,		𝑙- −max{.1-}

𝑙.)	and	that	it	is	increasing	in	this	difference.4	

	 It	 is	 possible	 to	 see	 that,	 due	 to	 the	 symmetry	 of	 our	 setting,	 in	 decision	

problems	in	which	the	potential	 loss	(resp.,	potential	gain)	is	fixed	across	the	stopping	

rules,	 the	 state	 gain	 (resp.,	 state	 loss)	 is	more	 salient	 than	 the	 state	 loss	 (resp.,	 state	

gain),	and	in	problems	in	which	neither	the	potential	loss	nor	the	potential	gain	is	fixed,	

both	 states	 are	 equally	 salient.	 Letting	𝑞- 	 denote	 the	probability	of	 finishing	 the	game	

with	 a	 gain	 given	 rule	 𝑖,	 we	 obtain	 that	 the	 expected	 payoff	 induced	 by	 rule	 𝑖	 in	

Questions	1–6	and	19–24	(fixed	potential	loss)	is	

𝑣- =
+$3$

+$%&("#+$)
− &("#+$)4$

+$%&("#+$)
,		

and	the	expected	payoff	induced	by	rule	𝑖	in	Questions	7–12	and	25–30	(fixed	potential	

gain)	is	

𝑣- =
&+$3$

&+$%("#+$)
− ("#+$)4$

&+$%("#+$)
.	

Finally,	in	Questions	13–18	and	31–36	(no	fixing),	the	expected	payoff	induced	by	rule	𝑖	

is	equal	to	its	induced	expected	value.		

	 	

A.3.5	Regret	Theory		

According	 to	 regret	 theory	 (Bell,	 1982;	 Loomes	 and	 Sugden,	 1982),	 individuals	

experience	 regret	 ex	 post	 when	 a	 chosen	 prospect	 turns	 out	 to	 be	 inferior	 to	 an	

alternative	prospect.		

	 While	original	regret	models	are	tailored	to	settings	in	which	individuals	choose	

between	two	prospects,	in	our	setting,	individuals	choose	one	out	of	five	stopping	rules.	

We	 therefore	 adapt	 the	 theory	 by	 assuming	 that	 ex	 post	 regret	 is	with	 respect	 to	 the	

unchosen	alternative	that	turns	out	to	be	the	best	ex	post.	Formally,	denote	by	ℎ- 	and	𝑙- 	

 
4	We	also	considered	a	specification	in	which	the	salience	of	the	gain	(resp.,	loss)	induced	by	rule	

𝑖	 depends	 only	 on	 the	 difference	 ℎ# − 0.25∑
{%&#}

ℎ% 	 (resp.,	 	 𝑙# − 0.25∑
{%&#}

𝑙%).	 Reverting	 to	 this	

specification	does	not	alter	the	classification	into	types.		
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the	 potential	 gains	 and	 losses	 associated	 with	 rule	 𝑖,	 by	 𝑒	 the	 individual’s	 initial	

endowment,	and	by	𝑞- 	the	probability	of	finishing	the	game	with	a	gain	given	rule	𝑖.	Note	

that	given	that	the	individual	chose	rule	𝑖	and	finished	the	game	with	a	gain	(or	with	a	

loss),	 the	 outcome	 of	 having	 chosen	 rule	 𝑗	 instead	 may	 be	 uncertain.	 For	 example,	

suppose	 that	 𝑙- = 𝑙. = ℎ- = 15	 and	 ℎ. = 25.	 If	 an	 individual	 chose	 rule	 𝑖	 and	 finished	

with	a	gain,	she	remains	uncertain	as	to	whether	she	would	have	finished	the	game	with	

a	 gain	 of	25	 or	 a	 loss	 of	15	 had	 she	 chosen	 rule	 𝑗	 instead.	 Therefore,	 to	 adapt	 regret	

theory	 to	our	 setting,	we	 consider	 the	 individuals’	 regret	with	 respect	 to	 the	maximal	

interim	 expected	 value	 of	 the	 other	 five	 rules.	 Formally,	 let	 𝑞-.3 	 (resp.,	 𝑞-.4 )	 denote	 the	

probability	of	finishing	the	game	with	a	gain	had	the	individual	chosen	rule	𝑗	conditional	

on	 choosing	 rule	 i	 and	 winning	 (resp.,	 losing).	 Thus,	 𝑞-.3 	 is	 the	 probability	 that	 the	

individual	would	have	reached	ℎ. 	before	reaching	−𝑙. 	given	that	she	reached	ℎ- 	before	

reaching	−𝑙- .	Similarly,	𝑞-.4 	 is	the	probability	that	the	individual	would	have	reached	ℎ. 	

before	reaching	−𝑙. 	given	that	she	reached	−𝑙- 	before	reaching	ℎ- .	

	 Denote	by	𝑢(⋅)	the	individual’s	choiceless	utility	function,	and	let	𝑅(⋅)	be	a	skew-

symmetric	regret	function.	The	expected	value	of	choosing	rule	𝑖	is		

	𝑞-𝑢(𝑒 + ℎ-) + (1 − 𝑞-)𝑢(𝑒 − 𝑙-) +	

								𝑞-𝑅(𝑢(𝑒 + ℎ-) 	−	max.1-		
{𝑞-.3𝑢_𝑒 + ℎ.` + _1 − 𝑞-.3 `𝑢(𝑒 − 𝑙.)}) +	

										(1 − 𝑞-)𝑅(𝑢(𝑒 − 𝑙-) − max.1-		
{𝑞-.4 𝑢_𝑒 + ℎ.` + _1 − 𝑞-.4 `𝑢(𝑒 − 𝑙.)}).	

Since	 the	 literature	 does	 not	 offer	 one	 “off-the-shelf”	 workhorse	 specification	

that	 is	 suitable	 for	 our	 setting	 (i.e.,	 for	 situations	 in	 which	 there	 are	 more	 than	 two	

alternatives	and	there	is	only	partial	feedback	on	unchosen	alternatives),	we	estimated	

several	 specifications	 of	 preferences	 that	 capture	 regret	 aversion.	 As	 none	 of	 these	

specifications	could	explain	the	behavior	of	a	large	share	of	the	participants,	we	report	

here	 the	 specification	 that	 could	 account	 for	 the	 behavior	 of	 the	 largest	 share	 of	

participants.	In	that	specification,	𝑢(⋅)	exhibits	constant	relative	risk	aversion,	

𝑅(𝑥) = C
𝑔(𝑥)																𝑖𝑓	𝑥 ≥ 0
−𝑔(−𝑥)										𝑖𝑓	𝑥 < 0 ,	

and	𝑔(⋅)	takes	the	form	of	𝛼𝑥) 	where	𝛼 ≥ 0	captures	the	intensity	of	regret	and	𝛽 ≥ 1	

ensures	that	𝑔(⋅)	is	convex,	which	allows	us	to	capture	regret	aversion.	We	assumed	that	

the	initial	wealth	is	55	because	the	participants	in	the	experiment	were	endowed	with	

55	 shekels.	 As	 in	 Section	 A.3.1,	 we	 made	 sure	 that	 our	 classification	 was	 robust	 to	

different	assumptions	about	individuals’	initial	wealth.		
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A.4.	Participants’	Consistency	with	Decision-Making	Theories	

Below	we	report	the	full	results	on	the	consistency	of	the	participants’	choices	with	the	

choices	 predicted	 under	 the	 specifications	 described	 in	 A.3.	 These	 results	 are	

summarized	and	interpreted	in	Sections	4.1	and	5.2.	Recall	that	for	each	individual	and	

each	theory,	we	perform	a	leave-one-out	prediction	competition:	for	each	problem,	we	

use	a	maximum	likelihood	estimation	of	 the	parameters	given	the	choices	 in	the	other	

35	problems,	and	predict	the	individual’s	choice	in	that	problem	given	these	parameters.	

The	total	score	of	a	theory	is	the	number	of	times	in	which	the	prediction	was	correct.	

Table	 S3	 presents	 the	 results	 for	 Treatment	T0	 and	 Table	 S4	 presents	 the	 results	 for	

Treatment	Tp.		

Tables	S5	and	S6	confirm	that	the	conclusions	drawn	in	Sections	4.1	and	5.2	are	

not	 sensitive	 to	 small	 modifications	 in	 the	 classification	 method.	 Recall	 that	 in	 the	

classification	exercise	presented	 in	 the	paper,	we	classify	a	participant	 into	a	decision	

theory	if	(i)	the	theory	predicts	at	least	14	of	the	participant’s	choices,	and	(ii)	there	is	

no	other	theory	that	predicts	a	higher	number	of	choices.	We	now	modify	requirement	

(ii)	 and	 classify	 a	 participant	 into	 a	 theory	 ψ	 if	 (i)	 ψ	 predicts	 at	 least	 14	 of	 the	

participant’s	 choices,	 and	 (ii)	 there	 is	 no	 other	 theory	 whose	 number	 of	 correct	

predictions	 is	 greater	 than	 the	 number	 of	ψ’s	 correct	 predictions	 by	 more	 than	 𝑔 ∈

{0,1,2,3}.	 The	 number	 of	 participants	 who	 are	 classified	 into	 each	 of	 the	 theories	 is	

weakly	increasing	in	g.		However,	as	shown	in	Tables	S5	and	S6,	it	does	not	increase	by	

much	 in	 our	 main	 treatment,	 𝑇6.	 The	 tables	 present	 the	 classification	 for	 g	 =	 1,	 2,	 3	

alongside	 the	results	 for	g	=	0,	which	are	reported	 in	 the	paper.	We	conclude	 that	2S-

QTR	 and	 CPT	 remain	 the	 only	 theories	 that	 can	 account	 for	 the	 behavior	 of	 a	

considerable	share	of	the	participants	in	𝑇6.	 

	

Table	S3.	The	leave-one-out	score	of	each	theory	in	Treatment	T0.	

Subject	 2S-QTR	 CRRA	 DA	 RA	 ST	 CPT	
28	 19	 5	 1	 2	 11	 1	
29	 18	 0	 2	 3	 2	 10	
33	 0	 4	 6	 5	 6	 7	
34	 19	 1	 7	 7	 7	 17	
37	 27	 4	 14	 14	 14	 27	
39	 24	 1	 4	 4	 4	 11	
40	 11	 0	 1	 2	 1	 11	
42	 36	 0	 0	 0	 0	 0	
43	 14	 9	 9	 7	 8	 13	
44	 23	 5	 13	 8	 8	 9	
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45	 36	 18	 24	 25	 30	 36	
46	 18	 4	 6	 6	 6	 18	
50	 19	 11	 12	 11	 16	 15	
51	 13	 2	 2	 3	 2	 1	
57	 24	 30	 29	 35	 30	 35	
58	 14	 3	 2	 1	 2	 1	
59	 27	 16	 13	 9	 9	 22	
60	 23	 19	 21	 12	 19	 27	
61	 25	 12	 24	 24	 18	 24	
63	 0	 15	 18	 15	 14	 15	
64	 22	 16	 16	 7	 16	 24	
65	 0	 1	 9	 9	 9	 15	
67	 16	 4	 4	 4	 4	 13	
68	 36	 18	 24	 25	 30	 36	
69	 11	 0	 14	 15	 14	 12	
70	 28	 0	 0	 2	 0	 1	
71	 15	 6	 7	 6	 8	 5	
72	 0	 2	 7	 6	 7	 18	
73	 24	 2	 4	 4	 4	 12	
74	 0	 0	 0	 2	 2	 1	
75	 15	 0	 3	 2	 3	 1	
76	 32	 10	 10	 10	 10	 32	
81	 24	 7	 13	 14	 13	 24	
82	 0	 1	 8	 9	 8	 13	
83	 21	 5	 5	 5	 5	 6	
85	 19	 8	 8	 11	 10	 9	
86	 34	 0	 0	 0	 0	 1	
87	 0	 0	 6	 5	 9	 6	
88	 0	 0	 1	 4	 3	 2	
89	 24	 16	 15	 15	 24	 24	
91	 12	 20	 18	 12	 20	 18	
94	 0	 0	 4	 3	 4	 4	
95	 30	 8	 12	 12	 12	 30	
96	 30	 18	 24	 25	 25	 30	
97	 23	 0	 1	 2	 1	 7	
99	 18	 12	 12	 13	 17	 13	
100	 13	 3	 5	 6	 5	 13	
102	 26	 0	 1	 1	 1	 5	
107	 23	 17	 11	 8	 8	 26	
109	 23	 11	 4	 4	 4	 22	
110	 19	 2	 7	 7	 7	 19	
111	 31	 3	 4	 5	 7	 4	
112	 28	 9	 11	 11	 11	 28	
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115	 19	 4	 10	 11	 10	 19	
122	 19	 0	 2	 3	 2	 10	
123	 13	 10	 6	 10	 17	 10	
124	 18	 0	 2	 3	 2	 10	
126	 20	 3	 9	 9	 9	 16	
128	 21	 1	 7	 7	 7	 13	
131	 34	 11	 11	 11	 11	 34	
133	 36	 18	 24	 25	 30	 36	
135	 36	 12	 12	 12	 12	 36	
136	 31	 9	 11	 11	 11	 31	
139	 5	 3	 6	 7	 9	 9	
145	 11	 7	 9	 10	 8	 9	
146	 20	 4	 5	 4	 5	 6	
149	 20	 3	 1	 5	 4	 2	

 

	

Table	S4.	The	leave-one-out	score	of	each	theory	in	Treatment	Tp. 

Subject	 2S-QTR	 CRRA	 DA	 RA	 ST	 CPT	
26	 27	 5	 5	 5	 5	 5	
27	 31	 12	 12	 12	 12	 31	
30	 21	 17	 19	 11	 17	 27	
31	 12	 5	 5	 3	 5	 4	
32	 15	 11	 10	 7	 12	 10	
35	 22	 4	 12	 12	 12	 22	
36	 20	 16	 15	 16	 15	 19	
38	 11	 7	 7	 7	 7	 10	
41	 12	 14	 13	 14	 13	 10	
47	 30	 11	 12	 12	 12	 30	
48	 15	 20	 20	 20	 20	 20	
49	 36	 12	 12	 12	 12	 36	
52	 18	 14	 14	 14	 14	 19	
56	 0	 15	 15	 15	 15	 18	
62	 17	 12	 14	 7	 12	 16	
66	 21	 13	 13	 13	 13	 21	
77	 17	 11	 6	 8	 12	 8	
78	 17	 22	 24	 15	 22	 23	
80	 24	 14	 14	 14	 14	 19	
84	 20	 23	 21	 21	 20	 23	
90	 27	 18	 18	 18	 18	 27	
92	 11	 15	 15	 15	 16	 13	
93	 16	 18	 18	 18	 18	 21	
98	 6	 14	 13	 14	 13	 11	
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101	 31	 9	 12	 12	 12	 31	
103	 16	 20	 19	 17	 18	 18	
104	 36	 12	 12	 12	 12	 36	
106	 24	 5	 11	 11	 11	 24	
108	 16	 19	 18	 19	 18	 18	
113	 14	 6	 11	 14	 8	 14	
114	 17	 18	 20	 15	 18	 19	
116	 0	 16	 13	 12	 17	 13	
117	 25	 13	 21	 17	 17	 25	
118	 27	 9	 10	 10	 10	 27	
125	 16	 9	 9	 9	 9	 16	
127	 0	 16	 15	 15	 16	 13	
132	 0	 22	 23	 22	 22	 23	
134	 13	 4	 3	 4	 3	 8	
137	 25	 12	 12	 12	 12	 25	
138	 16	 8	 8	 8	 8	 16	
140	 24	 12	 16	 18	 18	 24	
141	 26	 13	 20	 19	 22	 26	
142	 19	 10	 5	 9	 12	 8	
143	 16	 21	 22	 16	 21	 24	
144	 0	 10	 9	 10	 8	 7	
147	 18	 19	 18	 18	 18	 22	
148	 9	 15	 16	 16	 16	 13	
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Table	S5.	 The	proportion	and	 the	number	 (in	parentheses)	of	participants	 in	T0	out	of	 the	67	
participants	that	were	classified	into	each	of	the	decision	theories.		
 

Theory	 g	=	0	 g	=	1	 g	=	2	 g	=	3	

2S-QTR	 69%	(46)	 69%	(46)	 70%	(47)	 72%	(48)	

Constant	Relative	Risk	Aversion	 1.5%	(1)	 1.5%	(1)	 1.5%	(1)	 3%	(2)	

Disappointment	Aversion	 1.5%	(1)	 4.5%	(3)	 6%	(4)	 6%	(4)	

Regret	Aversion	 3%	(2)	 4.5%	(3)	 4.5%	(3)	 6%	(4)	

Salience	Theory	 4.5%	(3)	 7.5%	(5)	 7.5%	(5)	 9%	(6)	

Cumulative	Prospect	Theory	 33%	(22)	 36%	(24)	 39%	(26)	 40%	(27)	

	

Table	S6.	 The	proportion	and	 the	number	 (in	parentheses)	of	participants	 in	Tp	out	of	 the	47	
participants	that	were	classified	into	each	of	the	decision	theories.	
 

Theory	 g	=	0	 g	=	1	 g	=	2	 g	=	3	

2S-QTR	 51%	(24)	 53%	(25)	 53%	(25)	 60%	(28)	

Constant	Relative	Risk	Aversion	 15%	(7)	 23%	(11)	 28%	(13)	 36%	(17)	

Disappointment	Aversion	 11%	(5)	 19%	(9)	 23%	(11)	 30%	(14)	

Regret	Aversion	 13%	(6)	 19%	(9)	 21%	(10)	 28%	(13)	

Salience	Theory	 11%	(5)	 15%	(7)	 21%	(10)	 30%	(14)	

Cumulative	Prospect	Theory	 55%	(26)	 66%	(31)	 68%	(32)	 68%	(32)	
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A.5.	Proofs	

We	now	present	the	proof	of	Observation	1.	

Observation	1.	An	expected	value	maximizer	would	rank	the	rules	as	𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟	

in	Questions	1–6	and	25–30,	and	as	𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙	in	Questions	7–12	and	19–24.		

	

Proof.	The	expected	value	from	choosing	rule	𝑖	is	𝑒 × 𝑛- ,	where	𝑒	is	the	expected	value	of	

the	baseline	lottery	and	𝑛- 	is	the	expected	number	of	baseline	lotteries	played	given	rule	

𝑖.	When	𝑒 < 0	(as	in	Part	A)	the	expected	value	of	rule	𝑖	is	decreasing	in	𝑛- 	and	when	𝑒 >

0	 (as	 in	Part	B)	 its	expected	value	 is	 increasing	 in	𝑛- .	Denote	by	 𝑙- < 0	 and	ℎ- > 0	 the	

potential	 loss	and	gain	given	rule	 𝑖,	 respectively.	Consider	two	rules,	 𝑖	and	𝑗,	 such	that	

𝑙- = 𝑙. 	 and	ℎ- > ℎ. .	 Observe	 that	𝑛- > 𝑛. 	 as	 the	 two	 rules	 induce	 the	 same	 number	 of	

lotteries	if	the	process	reaches	𝑙. 	before	reaching	ℎ. ,	and	otherwise	rule	𝑖	results	in	more	

lotteries.	 	This	proves	the	claim	for	Questions	1–6	and	19–24.	Symmetrically,	consider	

two	rules,	𝑖	and	𝑗,	such	that	ℎ- = ℎ. 	and	𝑙. > 𝑙- .	Here	too	𝑛- > 𝑛. 	as	the	two	rules	induce	

the	same	number	of	lotteries	if	the	process	reaches	ℎ. 	before	reaching	𝑙. ,	and	otherwise	

rule	𝑖	results	in	more	lotteries.	This	proves	the	claim	for	Questions	7–12	and	25–30.∎	

	

A.6.	Rank-Dependent	Utility	and	Cumulative	Prospect	Theory	Models	

As	 noted	 in	 the	main	 text,	 recent	 findings	 by	 Ebert	 and	 Karehnke	 (2021)	 provide	 an	

intuition	for	why	CPT	can	explain	the	behavior	of	many	of	our	participants.	Observation	

2	illustrates	this	 intuition	in	our	setting.	The	same	intuition	applies	to	rank-dependent	

utility	models	 (when	 coupled	with	 an	 S-shaped	 utility	 function)	 as	 these	models	 also	

accommodate	 a	 tendency	 to	 overweight	 low	 probabilities	 and	 underweight	 high	

probabilities.	 We	 now	 consider	 two	 prominent	 specifications	 of	 such	 models	 and	

establish	 that	 (i)	 there	 are	 parameters	 that	 capture	 a	 high	 degree	 of	 probability	

distortion	under	which	the	specification	implies	a	preference	for	right-biased	rules,	and	

(ii)	 there	 are	 other	 parameters	 that	 capture	 a	 rapidly	 diminishing	 sensitivity	 to	 gains	

and	losses	under	which	the	specification	implies	a	preference	for	left-biased	rules.	Then,	

we	present	a	number	of	prediction	competitions	in	the	spirit	of	the	one	performed	in	the	

main	text.	In	each	of	these	competitions	we	use	a	different	specification	of	CPT	or	rank-

dependent	 utility.	 Except	 for	 this	 change,	 the	 competition	 is	 identical	 to	 the	 one	

presented	in	the	main	text.		
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Consider	 a	 specification	 of	 rank-dependent	 utility	 coupled	 with	 an	 S-shaped	

utility	function	like	the	one	suggested	in	Tversky	and	Kahneman	(1992).	An	individual	

with	such	preferences	would	assign	a	value	of		

𝑤(𝑞)𝑈$ − (1 − 𝑤(𝑞))𝜆𝐿$ 	 (A6)	

	

to	 the	 binary	 lottery	 induced	 by	 the	 stopping	 rule	 (𝑈,−𝐿; 𝑞, 1 − 𝑞).	 Goldstein	 and	

Einhorn	(1987)	suggest	that		

𝑤(𝑞) =
𝑏𝑞%

𝑏𝑞% + (1 − 𝑞)%
	 (A7)	

	

whereas	Prelec	(1998)	suggests	that			

𝑤(𝑞) = 𝑒"&(" ()(*))( .	 (A8)	

	

Under	both	specifications,	𝑏 > 0,	𝛽 > 0,	𝜆 ≥ 1,	and	0	< 𝛼 ≤ 1.	

	

Observation	3.	Consider	an	individual	whose	preferences	are	represented	by (A6),	where	
𝑤(⋅)	 is	 as	 specified	 either	 in	 (A7)	 or	 in	 (A8),	 and	 an	 arbitrary	 problem	 from	 our	

experiment.	

(i) There	exist	parameters	(	𝛼, 𝛽⋆, 𝜆, 𝑏)	such	that	for	every	𝛽 < 𝛽⋆	an	individual	who	

is	characterized	by	(𝛼, 𝛽, 𝜆, 𝑏)	would	rank	the	rules	as		𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙.		

(ii) There	exist	parameters	(𝛼⋆, 𝛽, 𝜆, 𝑏)	such	that	for	every	𝛼 < 𝛼⋆	an	individual	who	

is	characterized	by	(𝛼, 𝛽, 𝜆, 𝑏)	would	rank	the	rules	as		𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟.		

Proof.	Consider	two	rules,	(𝑈- , −𝐿-; 𝑞- , 1 − 𝑞-)	and	(𝑈. , −𝐿.; 𝑞. , 1 − 𝑞.),	such	that	𝑈- ≥ 𝑈. 	

and	𝐿. ≥ 𝐿- 	with	at	least	one	strict	inequality.		

Part	(i).	Fix	𝛼, 𝜆	and	𝑏.	Consider	specification	(A7)	and	observe	that	 lim
)→6

𝑤(𝑞) = 𝑏/(𝑏 +

1).	Thus,	in	the	𝛽 → 0	limit,	rule	i	is	preferred	to	rule	j if	and	only	if		
	

Q 9
9%"

R𝑈-( − Q
"

9%"
R 𝜆𝐿-( > Q 9

9%"
R𝑈.( − Q

"
9%"

R 𝜆𝐿.( .	
	

The	 latter	 inequality	 holds	 as	𝑈- ≥ 𝑈. 	 and	 𝐿. ≥ 𝐿- 	 with	 at	 least	 one	 strict	 inequality.	

Consider	specification	(A8)	and	observe	that	 lim
)→6

𝑤(𝑞) = 1/𝑒9 .	Thus,	in	the	𝛽 → 0	limit,	

rule	i	is	preferred	to	rule	j	if	and	only	if		
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(1/𝑒9)𝑈-( − (1 − 1/𝑒9)𝜆𝐿-( > (1/𝑒9)𝑈.( − (1 − 1/𝑒9)𝜆𝐿.( .	
	

The	latter	inequality	holds	as	𝑈- ≥ 𝑈. 	and	𝐿. ≥ 𝐿- 	with	at	least	one	strict	inequality.	To	

complete	the	proof	of	part	(i),	note	that	𝑤(⋅)	is	continuous	in	𝛽	and	the	preference	for	

rule	i	over	rule	j	implies	that		𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙.	

Part	(ii).	Fix	𝛽, 𝜆	and	𝑏.	In	the	𝛼 → 0	limit,	(A6)	becomes	𝑤(𝑞) − _1 − 𝑤(𝑞)`𝜆.	Since	𝑞. >

𝑞- ,	it	holds	that	𝑤(𝑞.) > 𝑤(𝑞-).	Hence,	in	the	𝛼 → 0	limit,	the	ranking	of	the	rules	is	𝑙𝑙 ≻

𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟.	The	continuity	of	the	value	function	in	𝛼	guarantees	part	(ii).∎	

	

The	observation	shows	that	there	are	parameters	that	explain	a	preference	for	

right-biased	 rules	 in	 each	 problem	 in	 our	 setting.	 Since	 the	 set	 of	 problems	 is	 finite,	

there	exist	a	range	(0,𝛽p)	such	that	an	individual	who	is	characterized	by	(𝛼, 𝛽, 𝜆, 𝑏)	with	

𝛽 ∈ (0, 𝛽p)	 would	 consistently	 choose	 right-biased	 rules	 in	 all	 problems	 in	 the	

experiment.	Analogously,	 there	exist	a	set	of	parameters	 (0,𝛼Y)	such	 that	an	 individual	

who	is	characterized	by	(𝛼, 𝛽, 𝜆, 𝑏)	with	𝛼 ∈ (0, 𝛼Y)	would	consistently	choose	left-biased	

rules	in	all	problems	in	the	experiment.	

Next,	we	perform	a	series	of	prediction	competitions	like	the	one	performed	in	

the	main	text.	For	each	model,	we	perform	a	leave-one-out	exercise	as	described	in	the	

main	text.	We	classified	a	participant	 into	a	model	 if	 that	model	generated	at	 least	14	

predictions	and	there	was	no	other	model	with	a	larger	number	of	predictions.		

We	considered	 five	 specifications	 for	 the	CPT/RD	model.	We	used	 the	same	S-

shaped	 utility	 function	 with	 loss	 aversion	 in	 all	 specifications	 and	 varied	 the	 way	

probabilities	 are	 distorted	 between	 them.	 The	 first	 specification	 corresponds	 to	 the	

specification	 studied	 in	 the	 main	 text	 (equation	 (2)).	 The	 second	 specification	

corresponds	to	Tversky	and	Kahneman’s	(1992)	unrestricted	version	of	CPT	(equation	

(1)).	The	third	specification	corresponds	to	the	RD	specification	(Goldstein	and	Einhorn,	

1987)	 in	 (A6)	 and	 (A7).	 The	 fourth	 specification	 corresponds	 to	 the	 RD	 specification	

(Prelec,	 1998)	 in	 (A6)	 and	 (A8).	 Finally,	 the	 fifth	 specification	 corresponds	 to	 the	RD	

specification	in	(A6)	with	the	probability	distortion	function	𝑤(𝑞) = +%

		:+%%("#+)%;!/%	
	 	as	

suggested	by	Tversky	and	Kahneman	(1992).			

	 Tables	S7	and	S8	summarize	this	exercise	and	show	the	results	for	the	CPT/RD	

specifications	 as	 well	 as	 for	 the	 2S-QTR	 model.	 The	 results	 for	 the	 remaining	

specifications	we	examined	(regret	aversion,	salience	theory,	disappointment	aversion,	

expected	 utility	 with	 constant	 relative	 risk	 aversion)	 are	 not	 reported	 for	 brevity.	 It	
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should	 be	 stressed,	 however,	 that	 regardless	 of	 the	 CPT/RD	 specification	 used,	 these	

theories	explain	the	behavior	of	only	a	few	participants	in	our	main	treatment.			
	

	

Table	S7.	 The	proportion	and	 the	number	 (in	parentheses)	of	participants	 in	T0	out	of	 the	67	

participants	that	were	classified	into	each	of	the	models	(2S-QTR	vs.	RD/CPT).	

	

Specification	 RD/CPT	 2S-QTR	

CPT	with	𝛾 = 𝛿	, 𝛼 = 𝛽	
Tversky	and	Kahneman	(1992);	Barberis	(2012)	

33%	(22)	 69%	(46)	

CPT	without	restrictions	
Tversky	and	Kahneman	(1992)	

13%	(9)	 67%	(45)	

RD,	Goldstein	and	Einhorn	(1987)	 22%	(15)	 69%	(46)	

RD,	Prelec	(1998)	 19%	(13)	 70%	(47)	

RD,	Tversky	and	Kahneman	(1992)	 13%	(9)	 70%	(47)	

	

 

Table	S8.	 The	proportion	and	 the	number	 (in	parentheses)	of	participants	 in	Tp	out	of	 the	47	

participants	that	were	classified	into	each	of	the	models	(2S-QTR	vs.	RD/CPT).	

	

Specification	 RD/CPT	 2S-QTR	

CPT	with	𝛾 = 𝛿	, 𝛼 = 𝛽	
Tversky	and	Kahneman	(1992);	Barberis	(2012)	

55%	(26)	 51%	(24)	

CPT	without	restrictions	
Tversky	and	Kahneman	(1992)	

49%	(23)	 38%	(18)	

RD,	Goldstein	and	Einhorn	(1987)	 40%	(19)	 43%	(20)	

RD,	Prelec	(1998)	 30%	(14)	 49%	(23)	

RD,	Tversky	and	Kahneman	(1992)	 28%	(13)	 51%	(24)	
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Appendix B: Experiment’s Instructions and Questionnaire* 

* Translated from Hebrew 

Experiment’s Introductory Instructions     [were read out loud] 

In this experiment, you will play 57 games, one after the other.  

As an example, in some of the games you will be asked to choose which lottery out of a 
number of lotteries you prefer to participate in. 

At the end of the experiment, the computer will randomly select for you one of the 57 
games. For this game only, you will get a payment according to your choice in the game. 

For example, if in the selected game you choose to participate in a particular lottery, at the 
end of the experiment you will actually participate in that lottery and win a monetary prize 
according to the lottery’s outcome. 

Thus, you should seriously consider any decision you make: any game out of the 57 games 
could be the one that determines the amount of money you will receive at the end of the 
experiment. 

Recall that each participant received 55 shekels for participating in the experiment. In the 
following games, you could win an additional amount or lose part of the initial amount. 
Nevertheless, it is guaranteed that at the end of the experiment, each participant will be left 
with at least 25 shekels (out of the 55 shekels). 

The experiment consists of 4 parts. At the beginning of each part you will receive 
instructions for the particular part. 
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Instructions for Part A 

In Part A, you will be presented with a “red or black” gamble (roulette) of the following type: 

A participant in the gamble has a probability of 18/37 (0.486) to win 1 shekel and a 
probability of 19/37 (0.514) to lose 1 shekel. 

Each time you participate in the gamble, the computer will implement a lottery (that is, will 
pick a color for you and will spin a virtual roulette) that determines the outcome, namely, 
whether you win or lose 1 shekel. 

We will let you participate in this gamble over and over again, but will ask you to determine 
in advance when would you like to stop participating in these gambles. 

A “stopping rule” defines the accumulated gain or loss at which you wish to stop 
participating. 

For illustration, if the stopping rule that you chose is  

 

 

 

the computer will implement the gamble for you again and again until you accumulate a 
gain of 2 shekels or until you accumulate a loss of 3 shekels. 

 

Here are a number of possible scenarios: 

- If you win the gamble twice in a row, the game will end with a gain of 2 shekels. 
- If you lose the gamble 3 times in a row, the game will end with a loss of 3 shekels. 
- If you win the gamble once, then lose twice, and then win 3 times, the game will end 

with a gain of 2 shekels. [This scenario was demonstrated on a graph on the board.] 
- If you lose the gamble twice, then win once, and then lose twice, the game will end 

with a loss of 3 shekels. 
- There are additional possible scenarios. 

 

 

Any questions? 

 

Now enter your ID number on the screen to start the experiment. 

  

gain loss 
+2 -3 



 20 

Computerized Questionnaire 

Part A 

 

Instructions: 

In this part, you are given the opportunity to participate over and over again in the following 
roulette gamble: 

- You win 1 shekel with a 18/37 probability (0.486).  
- You lose 1 shekel with a 19/37 probability (0.514). 

 

In each of the following 18 games, you are required to choose a “stopping rule,” that is, to 
decide when you wish to stop participating in the gambles (in the case where the game is 
selected for you for payment in the experiment). You will not be able to change your 
decision during the course of play. 

 

[Only in TP: “To ease your choice, the probability of finishing the game with a gain or with a 
loss will be displayed next to each stopping rule.”] 

 

Note that there are no right or wrong answers here; each participant may have different 
preferences over the gambles.  

 

continue 

 

 

[The instructions of Part B are almost identical, with the difference that the probabilities of 
gain and loss in the single roulette gamble are reversed.] 

 

[At the end of Parts A, B, and D, the participants were asked “How would you advise 
someone else to play for you the games you have just played? Try to explain the principles 
that guided you in your choices.”] 
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The following is the structure of the questions in Part A and B of T0: 

[ In TP, there was an additional sentence next to each rule: “The probability of finishing the 
game with a gain is x% and the probability of finishing the game with a loss is (100-x)%.”] 

 

Part A [B] – Game x 

Choose your preferred stopping rule out of the following 5 rules:  

 

a. 

 

 

b. 

 

 

c. 

 

 

d. 

 

 

e. 

 

 

Reminder: The probability of winning a single gamble is 18/37 (0.486) and the probability of 
losing a single gamble is 19/37 (0.514) in Part B. 

 

continue 

 

 

 

gain loss 
+8 -24 

gain loss 
+16 -24 

gain loss 
+8 -24 

gain loss 
+16 -24 

gain loss 
+16 -24 
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18 in Part A–Questions 1 

[In all questions in Parts A and B, the 5 available rules appeared in one of two orders 
(consistently throughout the two parts): from a to e or from e to a. 
The probabilities on the right column are for the reader’s convenience. They were not given 
to the participants.] 

 

Part A – Question 1 

Rule  Loss Gain Probability of gain 

a -21 +9 52% 

b -21 +15 35% 

c -21 +21 24% 

d -21 +27 17% 

e -21 +33 12% 

 
Part A – Question 2 

Rule  Loss Gain Probability of gain 

a -15 +5 64% 

b -15 +10 44% 

c -15 +15 31% 

d -15 +20 22% 

e -15 +25 16% 

 
Part A – Question 3 

Rule Loss Gain Probability of gain 

a -24 +8 57% 

b -24 +16 35% 

c -24 +24 21% 

d -24 +32 14% 

e -24 +40 9% 
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Part A – Question 4 

Rule  Loss Gain Probability of gain 

a -27 +9 55% 

b -27 +18 32% 

c -27 +27 19% 

d -27 +36 11% 

e -27 +45 7% 

 
Part A – Question 5 

Rule  Loss Gain Probability of gain 

a -14 +4 69% 

b -14 +9 46% 

c -14 +14 32% 

d -14 +19 23% 

e -14 +24 17% 

 
Part A – Question 6 

Rule  Loss Gain Probability of gain 

a -20 +12 42% 

b -20 +16 32% 

c -20 +20 25% 

d -20 +24 20% 

e -20 +28 16% 
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Part A – Question 7 

Rule  Loss Gain Probability of gain 

a -25 +17 33% 

b -21 +17 31% 

c -17 +17 29% 

d -13 +17 25% 

e -9 +17 20% 

 
Part A – Question 8 

Rule Loss Gain Probability of gain 

a -20 +12 42% 

b -16 +12 39% 

c -12 +12 34% 

d -8 +12 28% 

e -4 +12 18% 

 
Part A – Question 9 

Rule Loss Gain Probability of gain 

a -25 +15 37% 

b -20 +15 35% 

c -15 +15 31% 

d -10 +15 25% 

e -5 +15 16% 
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Part A – Question 10 

Rule Loss Gain Probability of gain 

a -28 +20 29% 

b -24 +20 27% 

c -20 +20 25% 

d -16 +20 23% 

e -12 +20 20% 

 
Part A – Question 11 

Rule Loss Gain Probability of gain 

a -26 +18 31% 

b -22 +18 30% 

c -18 +18 27% 

d -14 +18 24% 

e -10 +18 20% 

 
Part A – Question 12 

Rule Loss Gain Probability of gain 

a -22 +14 38% 

b -18 +14 35% 

c -14 +14 32% 

d -10 +14 27% 

e -6 +14 20% 
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Part A – Question 13 

Rule Loss Gain Probability of gain 

a -25 +5 70% 

b -20 +10 48% 

c -15 +15 31% 

d -10 +20 18% 

e -5 +25 8% 

 
Part A – Question 14 

Rule Loss Gain Probability of gain 

a -27 +15 38% 

b -24 +18 31% 

c -21 +21 24% 

d -18 +24 19% 

e -15 +27 14% 

 
Part A – Question 15 

Rule Loss Gain Probability of gain 

a -24 +8 57% 

b -20 +12 42% 

c -16 +16 30% 

d -12 +20 20% 

e -8 +24 12% 
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Part A – Question 16 

Rule Loss Gain Probability of gain 

a -26 +10 51% 

b -22 +14 38% 

c -18 +18 27% 

d -14 +22 19% 

e -10 +26 12% 

 
Part A – Question 17 

Rule Loss Gain Probability of gain 

a -21 +9 52% 

b -18 +12 41% 

c -15 +15 31% 

d -12 +18 22% 

e -9 +21 15% 

 
Part A – Question 18 

Rule Loss Gain Probability of gain 

a -25 +9 54% 

b -21 +13 40% 

c -17 +17 29% 

d -13 +21 19% 

e -9 +25 12% 
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18 in Part B–Questions 1 

 

Part B – Question 1 

Rule Loss Gain Probability of gain 

a -19 +9 82% 

b -19 +14 77% 

c -19 +19 74% 

d -19 +24 71% 

e -19 +29 69% 

 
Part B – Question 2 

Rule Loss Gain Probability of gain 

a -14 +6 80% 

b -14 +10 73% 

c -14 +14 68% 

d -14 +18 65% 

e -14 +22 62% 

 
Part B – Question 3 

Rule Loss Gain Probability of gain 

a -24 +10 86% 

b -24 +17 82% 

c -24 +24 79% 

d -24 +31 77% 

e -24 +38 75% 
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Part B – Question 4 

Rule Loss Gain Probability of gain 

a -27 +15 86% 

b -27 +21 83% 

c -27 +27 81% 

d -27 +33 80% 

e -27 +39 79% 

 
Part B – Question 5 

Rule Loss Gain Probability of gain 

a -20 +8 85% 

b -20 +14 79% 

c -20 +20 75% 

d -20 +26 72% 

e -20 +32 70% 

 
Part B – Question 6 

Rule Loss Gain Probability of gain 

a -16 +8 80% 

b -16 +12 74% 

c -16 +16 70% 

d -16 +20 68% 

e -16 +24 65% 
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Part B – Question 7 

Rule Loss Gain Probability of gain 

a -23 +15 82% 

b -19 +15 76% 

c -15 +15 69% 

d -11 +15 59% 

e -7 +15 45% 

 
Part B – Question 8 

Rule Loss Gain Probability of gain 

a -27 +21 83% 

b -24 +21 80% 

c -21 +21 76% 

d -18 +21 71% 

e -15 +21 65% 

 
Part B – Question 9 

Rule Loss Gain Probability of gain 

a -18 +12 78% 

b -15 +12 72% 

c -12 +12 66% 

d -9 +12 57% 

e -6 +12 45% 
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Part B – Question 10 

Rule Loss Gain Probability of gain 

a -27 +17 85% 

b -22 +17 79% 

c -17 +17 71% 

d -12 +17 60% 

e -7 +17 43% 

 
Part B – Question 11 

Rule Loss Gain Probability of gain 

a -28 +22 84% 

b -25 +22 80% 

c -22 +22 77% 

d -19 +22 72% 

e -16 +22 66% 

 
Part B – Question 12 

Rule Loss Gain Probability of gain 

a -24 +16 82% 

b -20 +16 77% 

c -16 +16 70% 

d -12 +16 61% 

e -8 +16 48% 
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Part B – Question 13 

Rule Loss Gain Probability of gain 

a -23 +7 89% 

b -19 +11 80% 

c -15 +15 69% 

d -11 +19 56% 

e -7 +23 39% 

 
Part B – Question 14 

Rule Loss Gain Probability of gain 

a -27 +11 88% 

b -23 +15 82% 

c -19 +19 74% 

d -15 +23 64% 

e -11 +27 51% 

 
Part B – Question 15 

Rule Loss Gain Probability of gain 

a -18 +6 86% 

b -15 +9 76% 

c -12 +12 66% 

d -9 +15 53% 

e -6 +18 38% 
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Part B – Question 16 

Rule Loss Gain Probability of gain 

a -28 +12 88% 

b -24 +16 82% 

c -20 +20 75% 

d -16 +24 65% 

e -12 +28 54% 

 
Part B – Question 17 

Rule Loss Gain Probability of gain 

a -20 +8 85% 

b -17 +11 77% 

c -14 +14 68% 

d -11 +17 57% 

e -8 +20 45% 

 
Part B – Question 18 

Rule Loss Gain Probability of gain 

a -23 +11 85% 

b -20 +14 79% 

c -17 +17 71% 

d -14 +20 63% 

e -11 +23 53% 
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Part C (T0 & TP) 

 

Instructions: 

 

In this part, you will be asked 3 questions about the gamble from Part A. 

In each question, a different “stopping rule” will be presented. For each stopping rule, you 
will be asked to estimate the probability of finishing the game with a gain, given that this 
stopping rule is implemented. 

In contrast to Part A, in this part there is one correct answer to each question.  

For example, if the gamble you can play again and again is 

- With a probability of 49%, you win 1 shekel 
- With a probability of 51%, you lose 1 shekel 

and the stopping rule is  

 

 

then the probability that the game will end with a gain (of 1 shekel) is exactly 49%. 

 

The closer your answer is to the correct one, the higher the payment you will get for this 
question (if the question is selected for your payment). The payment you receive will be 40 
shekels minus the size of the error in your estimate (in absolute terms).  

If, for instance, you estimate that the probability of finishing the game with a gain in the 
above example is 65%, then the amount of money you could get for this question is 40-|49-
65|=24. 

 

 

continue  

 

 

 

gain loss 
+1 -1 
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Questions 1–3 in Part C  
 

Part C – Question 1 

Assume that as in Part A, a participant in the gamble has a probability of 18/37 (0.486) of 
winning 1 shekel and a probability of 19/37 (0.514) of losing 1 shekel. 

If the stopping rule that the participant chooses and that the computer implements is  

 

 

then what is the probability that the participant will end the game with a gain of 25? 

[the correct answer is about 20.5%] 

 

Part C – Question 2 

Assume that as in Part A, a participant in the gamble has a probability of 18/37 (0.486) of 
winning 1 shekel and a probability of 19/37 (0.514) of losing 1 shekel. 

If the stopping rule that the participant chooses and that the computer implements is  

 

 

then what is the probability that the participant will end the game with a gain of 50? 

[the correct answer is about 5%] 

 

Part C – Question 3 

Assume that as in Part A, a participant in the gamble has a probability of 18/37 (0.486) of 
winning 1 shekel and a probability of 19/37 (0.514) of losing 1 shekel. 

If the stopping rule that the participant chooses and that the computer implements is  

 

 

then what is the probability that the participant will end the game with a gain of 100? 

[the correct answer is about 0%] 

  

gain loss 
+25 -25 

gain loss 
+50 -25 

gain loss 
+100 -25 
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Part D (T0 & TP) 

 

Instructions: 

 

In this part, you will play 18 games. 

 

In each game, you will be asked to choose between two lotteries. 

 

For simplicity, a lottery in which there is a probability of 63% of winning 13 shekels and a 
probability of 37% of losing 26 shekels will be presented in the following manner: 

 

63% 37% Probability 
+13 -26 Amount 

 

As explained before, if a particular game is selected for you for payment, the computer will 
implement your chosen lottery.  

 

 

 continue 
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Questions 1–18 in Part D  
 
[ In each question below, the two available lotteries appeared in a random order, one above 
the other.] 

 
 

Part D – Question 1 
 
 
 
 
 
 
 
 
 
 
 

Part D – Question 2 
 
 
 
 
 
 
 
 
 
 

Part D – Question 3 
 
 
 
 
 
 
 
 
 
 
 
 

Part D – Question 4 
 

 
 
 
 
 
 
 
 

65% 35% Probability 
+12 -22 Amount 

35% 65% Probability 
+22 -12 Amount 

Probability 24% 76% 
Amount -25 +8 

Probability 76% 24% 
Amount -8 +25 

Probability 32% 68% 
Amount -15 +7 

Probability 68% 32% 
Amount -7 +15 

Probability 19% 81% 
Amount -22 +5 

Probability 81% 19% 
Amount -5 +22 



 38 

 
Part D – Question 5 

 
 
 
 
 
 
 
 
 
 
 

Part D – Question 6 
 
 
 
 
 
 
 
 
 
 
 

Part D – Question 7 
 
 
 
 
 
 
 
 
 
 

Part D – Question 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability 40% 60% 
Amount -24 +16 

Probability 60% 40% 
Amount -16 +24 

Probability 37% 63% 
Amount -19 +11 

Probability 63% 37% 
Amount -11 +19 

Probability 25% 75% 
Amount -24 +8 

Probability 75% 25% 
Amount -8 +24 

Probability 35% 65% 
Amount -17 +9 

Probability 65% 35% 
Amount -9 +17 
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Part D – Question 9 

 
 
 
 
 
 
 
 
 

Part D – Question 10 
 
 
 
 
 
 
 
 
 

Part D – Question 11 
 
 
 
 
 
 

 
 
 
Part D – Question 12 

 
 
 
 
 
 
 
 
 
 

Part D – Question 13 
 
 
 
 
 
 
 

 
 

Probability 17% 83% 
Amount -19 +4 

Probability 83% 17% 
Amount -4 +19 

Probability 29% 71% 
Amount -20 +8 

Probability 71% 29% 
Amount -8 +20 

Probability 38% 62% 
Amount -16 +10 

Probability 62% 38% 
Amount -10 +16 

Probability 22% 78% 
Amount -21 +6 

Probability 78% 22% 
Amount -6 +21 

Probability 37% 63% 
Amount -25 +15 

Probability 63% 37% 
Amount -15 +25 
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Part D – Question 14 
 
 
 
 
 
 
 
 
 

Part D – Question 15 
 
 
 
 
 
 
 
 
 

Part D – Question 16 
 
 
 
 
 
 
 
 
 

Part D – Question 17 
 
 

 
 
 
 
 

 
 

Part D – Question 18 
 
 

 
 
 
 

 

 

 

Probability 25% 75% 
Amount -18 +6 

Probability 75% 25% 
Amount -6 +18 

Probability 20% 80% 
Amount -16 +4 

Probability 80% 20% 
Amount -4 +!6 

Probability 29% 71% 
Amount -24 +10 

Probability 71% 29% 
Amount -10 +24 

Probability 37% 63% 
Amount -20 +12 

Probability 63% 37% 
Amount -12 +20 

Probability 33% 67% 
Amount -16 +8 

Probability 67% 33% 
Amount -8 +16 


