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Abstract 

We experimentally examine how individuals commit to a cutoff stopping rule when facing a 

sequence of independent lotteries. We identify two main behavior patterns: (1) a small share 

of participants consistently choose stopping rules whose gain bound (i.e., the accumulated 

gain at which the sequence stops) is larger than the loss bound, and (2) a larger share of 

participants consistently choose rules whose loss bound is larger than the gain bound. We 

introduce a procedural decision-making model that accounts for these patterns and show that 

the behavior of most of our participants is inconsistent with prominent theories of decision 

under risk. 
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1. Introduction  

Stopping problems appear in numerous contexts in economics and finance, ranging from 

option pricing and job search to experimentation, technology adoption, and gambling. In 

these problems, an individual observes a sequence of realizations of a stochastic process 

and decides when to stop it. According to several prominent theories of decision-making 

under risk (e.g., expected utility), an optimal stopping plan can be described by a simple 

cutoff rule, namely, stopping the process once an individual’s payoff reaches a threshold. 

 Our main research objective is to experimentally examine how individuals make 

binding stopping plans and what forces shape these plans. Understanding to which plans 

individuals commit is important not only because such commitment is relevant in 

practice but also because it reveals individuals’ preferences over the induced outcomes of 

dynamic play in situations where there is no commitment (e.g., casino gambling). To see 

this, note first that commitment to a cutoff rule turns a dynamic stopping problem into a 

static one, which may simplify it and help individuals better understand certain aspects 

of the problem. Second, such commitment enables individuals to choose their preferred 

stopping plan without worrying about their ability to implement it. Finally, from the 

researcher’s perspective, observing an individual’s binding stopping plan enables 

learning about her preferences without the data being contaminated by biases and 

inconsistencies that may arise during a dynamic play.1  

 In order to understand our setting, consider a decision-maker (DM) who faces an 

infinite sequence of lotteries, where each lottery pays 1 with probability 𝑝 and −1 with 

probability 1 − 𝑝. Under various theories of decision-making under risk, the DM’s optimal 

 
1 For example, the negative feelings associated with realizing losses may lead investors 

to hold on to badly performing stocks (Shefrin and Statman, 1985). 
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stopping plan can be described by an upper bound ℎ > 0 and a lower bound 𝑙 ≤ 0 such that 

the DM stops the process once her payoff hits one of these bounds.  The higher ℎ is, the less 

likely the process is to reach ℎ before it reaches 𝑙; the lower 𝑙 is, the less likely the process is 

to reach 𝑙 before it reaches ℎ. Thus, when choosing these bounds, the DM trades off between 

two aspects: the probability of winning and the size of the potential gain/loss.2  This tradeoff 

is at the heart of our experimental design. 

 As an illustration, consider the two cutoff rules given in Figure 1. Under both rules, 

the sequence stops once the DM accumulates a net loss of 20. Under 𝑎 (resp., 𝑏), the 

sequence stops once the DM accumulates a gain of 10 (resp., 30). We refer to cutoff rules for 

which the upper bound is smaller (resp., larger) in absolute value than the lower bound as 

left-biased (resp., right-biased). The likelihood that the sequence ends with a loss is smaller 

under the left-biased rule 𝑎, while the potential gain is greater under the right-biased rule 𝑏. 

Thus, when the DM chooses between the two rules, she trades off between the potential gain 

and the probability of a gain.   

[Figure 1 here] 

To obtain intuition, consider a risk-neutral expected utility maximizer who has to 

choose between stopping rules with a fixed lower bound, as in Figure 1. When the baseline 

lottery is unfavorable (i.e., 𝑝 < 0.5), she will obtain a higher expected utility under the left-

biased rule. To see this, note that the left-biased rule induces a smaller expected number of 

negative expected value lotteries: the two rules induce the same number of lotteries if the 

process reaches −20 before reaching +10 and rule 𝑏 results in a larger number of lotteries 

 
2 When 𝑝 ≠ 0.5, the probability of stopping the process at a gain is !"#

!"

!"##!"
, where 𝑞 = !"$

$
 

(Feller, 1970).  
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otherwise.3 In a symmetric manner, when the baseline lottery is favorable (i.e., 𝑝 > 0.5), she 

will choose the right-biased rule b. Now consider the case of a risk-neutral expected utility 

maximizer who has to choose between two cutoff rules that share the same upper bound, as in 

Figure 2. She will prefer the left-biased rule 𝑑 if 𝑝 > 0.5 and the right-biased rule 𝑐 if 𝑝 <

0.5 as she would like to maximize the expected number of baseline lotteries in the former 

case and minimize it in the latter case. We can conclude that expected value maximization 

can lead to a choice of left-biased rules or right-biased rules, depending on the context. 

[Figure 2 here] 

In our experiment, each participant faced 36 choice problems in this spirit. In each 

problem, the participants had to choose one rule out of five rules: two right-biased ones, 

two left-biased ones, and a symmetric rule. The problems varied in the probability of 

winning in the baseline lottery (𝑝 < 0.5 in the first part of the experiment and 𝑝 > 0.5 in 

the second part), and in terms of whether the upper bound, the lower bound, or neither 

was fixed within a problem. We ran two treatments: in our main treatment, 𝑇%, the 

stopping rules’ induced winning probabilities were not provided to the participants, 

whereas in the second treatment, 𝑇$, they were provided. We now focus on 𝑇% and later 

discuss the findings in 𝑇$ and their implications. 

Our main finding is a general tendency to either consistently choose left-biased rules 

or consistently choose right-biased ones, across qualitatively and quantitatively different 

choice problems. We find that the share of participants who consistently choose left-biased 

rules is larger than the share of participants who consistently choose right-biased ones. The 

participants’ choices suggest that many of them categorize the rules into right- and left-biased 

 
3 Formally, when 𝑝 ≠ 0.5	the expected number of lotteries played given a lower bound of 𝑙 

and an upper bound of ℎ is "&
!"'$

− "&()
!"'$

∗ !"#!"

!"##!"
,	where	𝑞 = !"$

$
	(Feller, 1970).	 
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rules: they tend to choose either a left- or a right-biased rule, but not necessarily the most 

biased rule in the respective direction. This apparent categorization is in the spirit of the 

binary bias, which suggests that people tend to categorize items into two main distinct 

categories, for example, positive and negative reviews (for recent documentation of this bias 

in the psychology literature see Fisher and Keil, 2018, and Fisher et al., 2018). This binary 

categorization seems natural in our setting due to the simplicity of splitting the set of rules 

according to their directional bias (i.e., right-biased or left-biased). Moreover, as expressed in 

the participants’ written explanations of their choices, each category reflects prioritizing one 

of the two main aspects of the problem: choosing right-biased rules reflects prioritizing high 

prizes while choosing left-biased rules reflects prioritizing the probability of winning. 

The participants’ behavior, together with their explanations, suggests that most of 

them try to solve a simple tradeoff between the likelihood of winning or losing and the size of 

the prizes. The particular way in which this tradeoff is solved depends on the favorability of 

the baseline lottery. Indeed, choices of left-biased rules are more common in problems in 

which the baseline lottery is unfavorable, whereas choices of right-biased rules are more 

common in problems in which the baseline lottery is favorable. A potential explanation for 

this pattern is that when the baseline lottery becomes favorable, participants feel that they are 

more likely to finish with a gain and hence they shift their attention from the probability of 

not losing to the size of the potential gain. 

Although the participants’ choices differ between the two parts of the experiment (i.e., 

favorable vs. unfavorable baseline lotteries), they are strongly correlated. In fact, for most 

participants in our main treatment, the solution of the prize–probability tradeoff is virtually 

unaffected by the specific details of each problem (e.g., the exact probabilities and expected 

value of the stopping rules’ induced lotteries). In Section 5, we show that participants have a 

qualitative understanding of the prize–probability tradeoff that arises in stopping problems 
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and suggest that this understanding makes them reason in qualitative terms, focusing on this 

tradeoff rather than considering the fine details of the decision problem. 

In light of the above findings, we treat left-biased rules and right-biased rules as two 

distinct categories, and study the participants’ behavior within each category. We find that 

there are three groups of participants of (roughly) equal size: participants who tend to 

consistently choose the extreme stopping rule within each category (i.e., the most right-biased 

rule or the most left-biased rule), participants who tend to consistently choose the moderate 

rule within a category (i.e., the second-most right- or left-biased rule), and participants who 

diversify with different intensities between extreme and moderate rules across problems.  

To account for the experimental results, we suggest a decision procedure according to 

which individuals operate in two stages. They begin with “the big picture”: resolving the 

fundamental prize–probability tradeoff between the two categories of left-biased and right-

biased rules. They then continue to the “finer details”: resolving the more incremental prize–

probability tradeoff between extreme and moderate rules within a category. We formalize the 

procedure using a simple qualitative model that consists of two key parameters (and a noise 

term): one parameter captures a participant’s tendency to choose left- or right-biased rules, 

and one parameter captures a participant’s tendency to choose extreme or moderate rules 

within a category. We refer to this procedure as the two-stage qualitative tradeoff resolution 

(2S-QTR) model. 

In Section 4, we examine the extent to which the 2S-QTR model can explain our 

participants’ behavior. To this end, we performed a leave-one-out prediction exercise for 

each participant separately: we estimated the model using 35 problems and used the estimate 

to predict the participant’s behavior in the remaining problem. A participant’s behavior is 

considered consistent with the 2S-QTR model if the number of correct predictions across the 

36 iterations of the leave-one-out exercise is sufficiently large (the specific threshold was set 
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such that the probability of classifying as consistent a participant who chooses at random is 

less than 1%). In our main treatment, roughly 75% of the participants exhibited behavior 

consistent with the model. We then estimated the model for these participants using the 36 

problems and classified them as types based on their tendency to choose left-biased rules, 

right-biased rules, moderate rules, or extreme rules. The most common tendencies are toward 

left-biased rules and extreme rules. 

Our experimental design enabled us to test whether the above findings can be 

explained by standard “off-the-shelf” theories of decision-making under risk. We examined, 

for each participant, whether her behavior fits the predictions of several prominent decision 

theories: expected utility with (constant relative) risk aversion, cumulative prospect theory 

(Kahneman and Tversky, 1992), disappointment aversion (Gul, 1991), rank-dependent utility 

(Quiggin, 1982; Yaari, 1987), regret aversion (Bell, 1982; Loomes and Sugden, 1982), and 

salience theory (Bordalo et al., 2012).  To do so, we ran a leave-one-out prediction 

competition between all of these theories and the 2S-QTR model. We classified a participant 

into a theory if (i) the theory was able to predict a sufficiently large number of the 

participant’s choices (the threshold was identical to the one chosen for the 2S-QTR model) 

and (ii) no other theory was able to predict a larger number of choices.  In this more 

conservative exercise, the 2S-QTR model accounts for the behavior of 69% of the 

participants in the main treatment. Prospect theory accounts for the behavior of 33% of the 

participants. None of the other theories we examined in this exercise accounts for the 

behavior of more than 3% of the participants.  

Studying our second treatment, 𝑇$, in which the rules’ induced probabilities are 

provided, sheds light on the extent to which the choice patterns observed in 𝑇% are due to the 

participants’ lack of knowledge of these induced probabilities. While the literature on 

stopping problems is not insubstantial, to the best of our knowledge the difference between 
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these two conditions is underexplored. In 𝑇$, the 2S-QTR model accounts for the behavior of 

74% of the participants (51% in the prediction competition exercise). Here again, the most 

common tendencies are toward left-biased rules and extreme rules. The tendency toward 

extreme rules is significantly greater in 𝑇$ than in 𝑇%. We suggest that the knowledge of the 

rules’ induced probabilities makes participants in 𝑇$ more sensitive to the fine details 

compared to the participants in 𝑇%, which leads to different choices in some of the problems. 

In particular, they are better able to recognize situations in which there is a clear-cut way of 

resolving the tradeoff and choose accordingly. For example, in situations where a minor 

deduction of a winning probability leads to a major increase in prizes, they tend to opt for the 

extreme right-biased rule. These findings suggest that knowing the induced probabilities 

changes individuals’ behavior by making them consider the finer details of the problem. 

However, it does not change the way they perceive the big picture, namely, their directional 

bias.  

 

1.1 Related literature 

The present paper is related to a recent strand of the literature that investigates planning in 

dynamic decision-making under risk. Fischbacher et al. (2017) show that stop-loss and take-

gain strategies mitigate the disposition effect in dynamic play. Dertwinkel-Kalt et al. (2020) 

conduct a lab experiment in which they find that plans and dynamic behavior in a stopping 

problem are consistent with the predictions of Bordalo et al.’s (2012) salience theory. Alaoui 

and Fons-Rosen (2021) find that grittier individuals have a higher tendency to overgamble 

relative to their original plans. Perhaps closest to our paper is Heimer et al. (2021) who 

document a discrepancy between investors’ initial plans and their actual behavior: most 

investors plan to choose stopping rules that are right-biased (the modal strategy of 46% of the 

investors is right-biased while the modal strategy of 32% is left-biased), but their subsequent 
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choices follow the reverse pattern. To pin down the mechanism behind this discrepancy, they 

perform an online experiment in which individuals stop a finite sequence of fair binary 

lotteries. In particular, one of their treatments, dubbed “hard plan,” examines how individuals 

commit to a stopping rule in this situation. 

While Heimer et al.’s (2021) elegant design allows them to pin down the mechanism 

underlying the discrepancy between planning and playing, we focus on individual decision-

making with commitment, which requires a richer dataset at the individual level. To this end, 

we recorded 36 choices of a stopping rule (in different contexts) per individual rather than the 

single choice recorded in their hard plan treatment. In addition to the different focus, there are 

several differences between the hard plan treatment and our setting, which may explain the 

differences in the tendency to choose right-biased rules. Perhaps the most significant 

difference is that the baseline lotteries in Heimer et al. have an expected value of zero while 

ours have either a strictly positive or a strictly negative expected value.4 Observe that, given a 

stopping rule, an “almost fair” baseline lottery such as the ones used in our experiment is 

likely to induce winning probabilities that are very far from fair, which means that the 

decision problems the participants faced in the two experiments, ours and Heimer et al.’s, are 

quite different. For example, the rule (−15,+15) induces a fair lottery if the baseline lottery 

 
4 Additional noteworthy differences are that (1) Heimer et al.’s participants choose a stopping 

rule freely while in our setting, to better understand the tradeoffs that participants make and 

to distinguish between the predictions of prominent theories, we let our participants choose 

from various fixed sets of five rules, and (2) the participants in our experiment were STEM 

and management students, who are presumably more familiar with basic statistics and may 

have a better understanding of the implications of different stopping rules compared to the 

typical online subject pool. 
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is fair, but it induces a probability of winning of 30.7% when 𝑝 = 18/37, as in the first part 

of our experiment. 

Other papers study stopping decisions without planning. In Strack and Viefers (2021), 

the participants choose when to stop a multiplicative random walk and exhibit history-

dependent behavior, which is consistent with regret aversion and inconsistent with cutoff 

rules.5 Sandri et al. (2010) examine exit decisions and find that most individuals tend to hold 

on to a badly performing asset longer than is consistent with real option reasoning. 

Stopping plans have been studied indirectly in the experimental literature on dynamic 

inconsistency, which focuses on deviations from planning when individuals face a small 

number of lotteries. Barkan and Busmeyer (1999, 2003) and Ploner (2017) find evidence of 

dynamically inconsistent behavior in settings where individuals decide whether to participate 

in an additional lottery after experiencing one outcome. Cubitt and Sugden (2001) do not 

reject the dynamic consistency hypothesis when participants have to decide how many all-or-

nothing additional gambles to participate in after winning in four mandatory rounds.   

Our work also relates to the literature on skewness-seeking and prudent behavior. 

Skewness corresponds to our notion of left/right-biased stopping rules. The more right-biased 

a rule is, the greater is the skewness of its induced lottery.6 Golec and Tamarkin (1998) find 

evidence of skewness-seeking behavior in horse-race betting. Brunner et al. (2011), Deck and 

Schlesinger (2010, 2014), Ebert and Wiesen (2011, 2014), Ebert (2015), Grossman and Eckel 

(2015), Maier and Rüger (2012), and Noussair et al. (2014) provide evidence for skewness-

 
5 This type of behavior is also consistent with other theories of decision-making under risk 

such as cautious stochastic choice (Henderson et al., 2022).	

6 It should be noted that a left-biased rule can induce a positively skewed lottery when 𝑝 <

0.5 and a right-biased rule can induce a negatively skewed lottery when 𝑝 > 0.5. 
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seeking and/or prudent behavior in lab experiments. Bleichrodt and van Bruggen (2018) find 

prudent behavior in the gain domain and imprudent behavior in the loss domain.  

There are several differences between our setting and the typical setting in this 

literature. The experiments on skewness-seeking and prudent behavior typically examine 

choices between lotteries with identical means and variance. By contrast, the stopping rules 

in our setting induce compound lotteries with different means and variance such that 

prudence does not imply a tendency to choose right-biased rules (e.g., facing the two rules in 

Figure 1, a prudent individual may choose the left-biased rule when 𝑝 < 0.5 as it induces a 

greater expected value and a smaller variance than the right-biased rule). Moreover, the 

stopping rules’ framing is different from the standard lottery framing, even when participants 

are provided with the rules’ induced probabilities (as in our second treatment). The dynamic 

story underlying stopping problems and the participants’ qualitative understanding of the 

prize–probability tradeoff in this context may encourage reasoning in qualitative terms, which 

is less likely to be triggered when choosing between standard binary lotteries.  

Recent work by Ebert and Karehnke (2021) characterizes the skewness preferences 

implied by a large number of theories of decision-making under risk. They find that prudent 

expected utility, disappointment aversion, rank-dependent utility, regret aversion, and 

salience theory imply skewness-seeking (of different orders), and that cumulative prospect 

theory with the conventional S-shaped value function can imply both skewness-seeking and 

skewness aversion, depending on the parameters.  We estimate prominent specifications of 

these theories and examine whether they can explain our participants’ behavior.  

Finally, our finding that many participants use qualitative decision rules contributes to 

the behavioral literature that aims to identify and model individuals’ decision-making 

procedures instead of assuming that choices are guided by some utility maximization (see, for 

example, Güth et al., 2009; Arieli et al., 2011; Salant, 2011; Halevy and Mayraz, 2021). In 
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particular, our participants’ category-based behavior is reminiscent of the decision procedure 

suggested in Manzini and Mariotti (2012). 

The paper proceeds as follows. Section 2 presents our experimental design and 

Section 3 describes the results at both the aggregate and individual levels. In Section 4, we 

introduce the two-stage qualitative tradeoff resolution model and classify the 𝑇% participants 

into theory-based types according to their choices. In Section 5, we examine the extent to 

which the participants are able to estimate the stopping rules’ induced probabilities and 

investigate the influence of the lack of probabilities in 𝑇% by analyzing behavior in 𝑇$. 

Section 6 concludes.  

 

2. Experimental Design 

The experiment was carried out in the Interactive Decision-Making Lab at Tel Aviv 

University in April–May 2017. The participants were 114 Tel Aviv University undergraduate 

students in management and STEM, 44% of whom were women. The average age was 25. 

Recruitment of participants was done via ORSEE (Greiner, 2004).  

Each participant received 55 NIS (roughly $15) at the beginning of the experiment. In 

an attempt to make the participants internalize this endowment, one week prior to the session 

we notified them that they would receive this amount and could lose part of it (at most 30 

NIS) or win an additional amount, depending on their choices in the experiment. A reminder 

of that was sent on the day before the session as well. The experiment included 57 

computerized decision problems (we refer to these decision problems as Questions 1–57 or 

Q1–Q57), one of which was randomly selected at the end of the experiment to determine the 

payment for the participants. The amount won (or lost) in that game was added to (or 

subtracted from) the initial endowment. In practice, each participant could win at most an 
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additional 45 NIS and could lose at most 28 NIS of her initial endowment. All sessions were 

completed within an hour. 

 

2.1 Detailed description of the experiment 

In each session, the participants were randomly assigned to two treatments, denoted by 𝑇% 

and 𝑇$, each with four parts, which are described below. Of the 114 participants, 67 

participants were assigned to our main treatment, 𝑇%, and 47 were assigned to 𝑇$.7 The 

complete questionnaire can be found in Appendix B. In short, Part A (respectively, Part B) 

examines the choice of a stopping rule when the baseline lottery has a negative (respectively, 

positive) expected value, and Part C explores the participants’ ability to estimate the rules’ 

induced probabilities. Part D studies the participants’ behavior in a simpler setting to identify 

whether their choices in Parts A and B are related to a preference for skewed lotteries.  

 

Part A. In this part, participants faced a sequence of computerized lotteries, each with an 

18/37 probability of winning 1 NIS and a 19/37 probability of losing 1 NIS. These 

probabilities resemble the win/loss probability in the “Red or Black” European roulette game. 

In each decision problem, the participants were asked to choose a cutoff stopping rule. The 

participants faced 18 decision problems, in each of which they chose one out of five cutoff 

stopping rules. If one of these problems was randomly selected for payment, then the 

stopping rule was automatically and instantaneously implemented by the computer. 

The only difference between the two treatments was that in 𝑇$ the participants were 

informed about the probability of ending the game with a gain given each of the five stopping 

rules, whereas in 𝑇% they were not (in both treatments the participants were informed about 

 
7 Participants were assigned to the main treatment with probability 0.6. 
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the winning probability in the baseline lottery).  This difference allowed us to explore the 

extent to which the patterns in 𝑇% result from the participants’ lack of knowledge of the rule’s 

induced probability. 

We considered three types of decision problems, which are illustrated in Figure 3.  In 

Q1–Q6 (fixed loss), the participants were required to choose between five stopping rules that 

induce the same potential loss and vary in the potential gains they induce. In Q7–Q12 (fixed 

gain), the participants were required to choose between five stopping rules that induce the 

same potential gain and vary in the potential losses they induce. In Q13–Q18 (not fixed), the 

stopping rules vary in both the potential gains and the potential losses they induce.  

In each problem, there were two rules in which the potential loss was greater than the 

potential gain, two rules in which the potential gain was greater than the potential loss, and 

one rule in which the potential gain and the potential loss were equal. We refer to these rules 

as left-biased, right-biased, and symmetric rules, respectively. We refer to the most left-

biased rule (i.e., with the largest loss and the smallest gain) as Rule ll, the second-most left-

biased rule as Rule l, the symmetric rule as Rule s, the most right-biased rule (i.e., with the 

largest gain and smallest loss) as Rule rr, and the second-most right-biased rule as  Rule r.8 

The five stopping rules were presented to the participants either in order from the left-biased 

rule with the largest loss and smallest gain to the right-biased rule with the largest gain and 

smallest loss (as in Figure 3) or in the reverse order.9 Thus, the stopping rules were always 

 
8 The notation 𝑙𝑙, 𝑙, 𝑠, 𝑟, 𝑟𝑟 is for the reader’s convenience and was not presented to the 

participants.  

9  The randomly selected order was used consistently throughout Parts A and B.  The results 

suggest that the order did not affect the choices in the experiment and hence we merged the 

data from the two variations in the analysis.	
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ordered either from the highest probability of a gain to the lowest probability of a gain or the 

other way around.  

[Figure 3 here] 

 

Part B. This part consisted of 18 decision problems (Q19–Q36) and was similar in structure 

to Part A. The main difference between the two parts was that the probabilities of gain and 

loss in the baseline lottery were reversed in Part B (i.e., the probability of winning in a single 

lottery was 19/37). In addition, we tried to diversify the problems in Parts A and B to 

prevent a sense of repetition. Thus, the stopping rules in Part B were similar to the ones in 

Part A, yet they were not identical. 

 

At the end of Parts A and B, the participants were asked to explain the principles that 

guided them in their choices. We examined the participants’ explanations in order to obtain a 

better understanding of their reasoning process. 

 

Part C. This part included three problems (Q37–Q39), where each problem presented a 

different stopping rule. In each of the three problems, the participants were asked to consider 

a baseline lottery that paid 1 NIS with probability 18/37 and -1 NIS with probability 19/37 (as 

in Part A) and to estimate the probability that the game would end with a gain, given the 

stopping rule. In particular, in the first problem, they had to gauge the probability of finishing 

the game with a gain of 25, given that the stopping rule was (-25, +25). The second and third 

problems were similar except that the stopping rules were (-25, +50) and (-25, +100), 

respectively. The correct answers to these three questions were roughly 20.5%, 5%, and 

0.3%, respectively. The payment for each of the problems in Part C (in case one of these 
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problems was selected for payment) was 40 NIS minus the error in the participant’s 

estimation in absolute terms. There was no difference between the two treatments in this part. 

 

Part D. In this part, the participants faced 18 decision problems (Q40–Q57). In each problem 

they chose between two binary lotteries with known probabilities of loss and gain, as 

illustrated in Figure 4. In each problem, the two lotteries were a “mirror image” of each other 

(i.e., – 𝑥 with probability 𝑝 and +𝑦 with probability 1 − 𝑝 vs. – 𝑦	with probability 1 − 𝑝 and 

+𝑥 with probability 𝑝), and had an expected value of roughly 0. In fact, we chose the prizes 

and the probabilities of the lotteries to reflect two stopping rules, one right-biased rule and 

one left-biased rule, with a baseline lottery’s winning probability of 0.5.10 When the baseline 

lottery is fair, right-biased (resp., left-biased) rules induce positively skewed (resp., 

negatively skewed) lotteries. In each problem, the order of appearance of the two lotteries 

was randomly and independently determined. There was no difference between the two 

treatments in this part. 

The participants’ decisions in this part were simpler than those in Parts A and B along 

two main dimensions: the winning probabilities were given and the lotteries were not 

presented as stopping rules. The lotteries’ mirror structure together with the simplicity of the 

setting allowed us to better understand the participants’ preference for skewed prospects and 

 
10 We structured the lotteries as follows: we simulated a stopping problem with a repeated 

lottery that yielded +1 with probability 0.5 and −1 with probability 0.5. We examined what 

would be the induced probabilities of a stopping rule with the bounds −𝑦 and +𝑥, and 

rounded the probabilities to make the problem seem simpler. Then, we did the same for −𝑥 

and +𝑦. 
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connect it to their choices between stopping rules in the main parts of the experiment (Parts A 

and B). This analysis can be found in Appendix A.2.  

[Figure 4 here] 

 

Discussion: Choosing from restricted sets of rules 

In each of the decision problems in Parts A and B, the participants chose one out of five 

stopping rules. Alternatively, we could have asked them to make a single choice of the 

stopping rule’s upper and lower bounds within a range [𝑋, 𝑌], where 𝑋 < 0 and 𝑌 > 0. We 

decided to let the participants face many problems and varied the sets of rules they faced for 

two reasons. First, this enabled us to focus on the effects of some fundamental properties of 

the stopping rules (e.g., the effect of the favorability of the baseline lotteries, how the choices 

differed given a fixed loss/gain, etc.) on the participants’ choices while keeping the decision 

problems relatively simple. Second, observing choices from varied sets of rules reveals more 

information on the participants’ preferences than a single choice when all rules are available. 

This additional information improved our ability to disentangle different theoretical 

explanations of the observed behavior. 

Our restricted sets of rules resemble risk questionnaires that investment banks often 

use to elicit investors’ preferences over investment strategies. In these questionnaires, 

individual investors often have to choose pairs of cutoffs that represent the maximal loss that 

they are willing to bear in a given time period and the gains that they expect to obtain in that 

period. In practice, investors are often given a fixed set of cutoffs to choose from rather than 

allowed to set the cutoffs themselves. Fixing the set of cutoffs allows the bank to classify the 

investors into a manageable number of categories and implement an investment strategy 

suitable for each category.  
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3. General Description of the Participants’ Choices 

We now focus on the main treatment, 𝑇%, in which the participants were not provided with the 

rules’ induced probabilities. In Section 5.2 we shall present the results obtained in	𝑇$, in 

which the rules’ induced probabilities were provided, and compare them to the results in 𝑇%.  

We categorized the participants’ choices into (i) left-biased rules (𝑙 and 𝑙𝑙) and right-biased 

rules (𝑟 and 𝑟𝑟), and into (ii) extreme rules (𝑙𝑙	and 𝑟𝑟) and moderate rules (𝑙	and 𝑟). An 

additional potential category is that of the symmetric rule. However, the symmetric rule was 

not frequently chosen. These categorizations enabled us to present the participants’ choice 

patterns succinctly. We describe the behavior in Part A and Part B side by side, which allows 

us to observe both differences and similarities in choice patterns. 

 

3.1 Aggregate-level data 

 In the main treatment there were 1,206 choices (67 × 18) in Part A and 1,206 choices 

(67 × 18) in Part B. We found that 66% of the choices in Part A were of left-biased rules and 

only 25% were of right-biased ones. Remarkably, only 9% of the choices were of the 

symmetric rule. In Part B, 46% of the chosen rules were left-biased whereas 35% were right-

biased (see Table 1). The symmetric rule was chosen in 19% of the cases. Thus, the tendency 

to choose left-biased rules was somewhat stronger in Part A than in Part B. Finally, in each 

part, extreme and moderate rules were chosen with roughly similar proportions. 

[Table 1 here] 

 

3.2 Individual-level analysis  

Examining the participants’ choices at the individual level reveals that many of the 

participants were consistent in their tendency to choose either left-biased rules or right-biased 

rules. To measure the extent of this tendency, we consider the number of times each 
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participant chose a left-biased rule, which ranges from 0 to 18 in each of the main parts of the 

experiment, A and B. We refer to this measure as the number of left-biased choices.   In a 

similar manner, we consider the number of times each participant chose a right-biased rule 

and refer to this measure as the number of right-biased choices. It turns out that 70% of the 

participants in Part A and 63% of the participants in Part B chose the same category of rules 

in more than two-thirds of the decision problems. That is, for these participants, either the 

number of left-biased choices or the number of right-biased choices was 13 or higher (out of 

18). The probability of observing such a pattern when a participant chooses uniformly at 

random is less than 1%. 

The number of left-biased choices is higher on average in Part A than in Part B, 

according to a paired-samples t-test (11.9 vs. 8.3, 𝑡(66) = 4.44, 𝑝 < 0.001).11 Figure 5a 

shows that the cumulative distribution of the number of left-biased choices per individual in 

Part A stochastically dominates the corresponding distribution in Part B. The number of 

right-biased choices is higher on average in Part B than in Part A (6.31 vs. 4.54, 𝑡(66) =

−2.57, 𝑝 = 0.012). Figure 5b shows that the cumulative distribution of the number of right-

biased choices per individual in Part B first-order stochastically dominates the corresponding 

distribution in Part A.  

[Figure 5 (panels a and b) here] 

Despite the differences in the participants’ behavior in Parts A and B, their choices in 

these two parts are highly correlated in terms of the number of left-biased choices (Pearson’s 

𝑟 = 0.56, 𝑝 < 0.001) and in terms of the number of right-biased choices (Pearson’s 𝑟 =

0.64, 𝑝 < 0.001). The combination of these findings suggests that there exists an individual 

tendency either to choose left-biased rules or to choose right-biased rules, though the 

favorability of the baseline lottery reduces the tendency to choose left-biased rules. 
 

11 All the statistical results in Section 3 are robust to non-parametric testing. 
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Comment: Directional bias in different types of problems. Examining each of the 36 decision 

problems in Parts A and B separately suggests that left-biased choices are more prevalent 

than right-biased ones in all but two of them. In Appendix A.1, we examine how the type of 

problem (i.e., whether the loss or gain is fixed) affects the tendency to choose left-biased 

rules. Although different decision problems induce different behaviors, it is nevertheless the 

case that for all types of decision problems, there are more participants who consistently 

choose left-biased rules than participants who consistently choose right-biased rules.  

 

Moving on to choices between extreme and moderate rules, we consider the number 

of times each individual chose an extreme rule, which ranges from 0 to 18 in each of the main 

parts of the experiment, A and B. We refer to this measure as the number of extreme choices. 

In a similar manner, we consider the number of times each individual chose a moderate rule 

and refer to this measure as the number of moderate choices.  

Figures 6a and 6b show the cumulative distribution of these measures and suggest 

that the participants’ behavior in Parts A and B is more similar in terms of extreme and 

moderate choices than in terms of left- and right-biased choices. It turns out that 57% of the 

participants in Part A and 47% of the participants in Part B chose the same category of rules 

in more than two-thirds of the decision problems. That is, for these participants, either the 

number of extreme choices or the number of moderate choices was 13 or higher (out of 18).  

The remaining participants diversified between extreme and moderate rules. As before, the 

participants’ behavior in the two parts of the experiment is highly correlated. The number of 

extreme choices in Part A is correlated with the corresponding number in Part B (Pearson’s 

𝑟 = 0.75, 𝑝 < 0.001). The number of moderate choices in Part A is correlated with the 

corresponding number in Part B (Pearson’s 𝑟 = 0.58, 𝑝 < 0.001). 

[Figure 6 (panels a and b) here] 
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3.3 Joint analysis of Parts A and B 

While there are subtle differences between the participants’ behavior in the context of 

favorable and unfavorable baseline lotteries, overall, it seems that their behavior across 

different parts of the experiment is highly correlated. Thus, it makes sense to examine the 

behavior in Parts A and B jointly. Figure 7 presents the cumulative distributions of the 

number of choices of left-biased rules and the number of choices of right-biased rules in the 

two parts of the experiment together. In addition to these distributions, as a benchmark, the 

figure presents the distribution that is obtained if individuals chose a stopping rule uniformly 

at random. This comparison illustrates the participants’ strong tendency to either consistently 

choose left-biased rules or consistently choose right-biased rules across different decision 

problems. While the probability of choosing at least 22 times a rule that is biased in a 

particular direction is less than 1% when choosing uniformly at random, the figure shows that 

roughly 66% of our participants chose either at least 22 left-biased rules or at least 22 right-

biased rules. 

A similar pattern is obtained when we consider the participants’ tendency to choose 

an extremely biased rule or a moderately biased rule. This is illustrated in Figure 8, which 

presents the distribution of the number of choices of extreme and moderate rules against a 

benchmark of choosing uniformly at random. Here too, roughly 66% of the participants are at 

the tails of the benchmark distribution. 

In the next section, we dig deeper into the individual-level behavior and suggest a 

model that is based on these categorizations and accounts for the above behavior.  

[Figure 7 here] 

[Figure 8 here] 
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4. A Model: Two-Stage Qualitative Tradeoff Resolution (2S-QTR) 

Consider an individual who chooses a stopping rule. The further from zero the rule’s upper 

bound is, the higher the potential gain but the more likely the individual is to finish the game 

with a loss. In a symmetric manner, the further from zero the rule’s lower bound is, the higher 

the potential loss but the more likely the individual is to finish the game with a gain. Thus, 

when facing a stopping problem, individuals trade off between prizes and probabilities. As 

this qualitative feature is intuitive and easy to grasp (as we shall establish in the discussion of 

Part C’s results in Section 5.1), we suggest that this tradeoff is solved in a qualitative manner. 

Although the solution may be affected by the context, as explained in the previous section, 

participants appear to be consistent in the way they solve the tradeoff (i.e., they are virtually 

unaffected by the fine details of the problem). However, there are different types of 

individuals who tend to resolve the prize–probability tradeoff in different manners.  

 To capture the qualitative reasoning described above, we introduce the two-stage 

qualitative tradeoff resolution (2S-QTR) model, which is essentially a qualitative variation of 

the “categorize then choose” model (Manzini and Mariotti, 2012). In our model, individuals 

sort the stopping rules at their disposal into two categories: one that consists of left-biased 

rules and one that consists of right-biased ones. The former category reflects the resolution of 

the prize–probability tradeoff in favor of a high probability of winning (or, consistent with 

the participants’ explanations, a low probability of losing), whereas the latter category 

reflects the resolution of the tradeoff in favor of large potential prizes (and smaller losses). 

After choosing a category, the same tradeoff is then resolved within the category: either in the 

same direction (i.e., choosing the most right-biased rule, 𝑟𝑟, or the most left-biased rule, 𝑙𝑙) or 

in the opposite direction (choosing one of the moderately biased rules: 𝑟 or 𝑙). Thus, 

individuals implement a (two-stage) sequential procedure, starting from “the big picture” 

(resolving the prize–probability tradeoff between the two categories of left-biased and right-
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biased rules), and then deciding about the “fine details” (resolving the prize–probability 

tradeoff between extreme and moderate rules within a category).12  

 The 2S-QTR model captures the above ideas by assuming that each participant 𝑖 can 

be described by three parameters: 𝛼*, 𝛽*, and 𝜖*. The first parameter, 𝛼*, reflects the 

participant’s tendency to choose a left-biased category. The second parameter, 𝛽*, reflects her 

tendency to choose an extreme rule within a category. The third parameter, 𝜖*, is a random 

noise term that reflects the probability that she chooses uniformly at random. Formally, with 

probability 𝜖* participant 𝑖 chooses a rule uniformly at random. Conditional on not choosing a 

rule uniformly at random, she chooses a rule in the left-biased category with probability 𝛼* 

and a rule in the right-biased category with probability 1 − 𝛼* . Within each category she 

chooses an extreme rule with probability 𝛽* and a moderate rule with probability 1 − 𝛽*. 

Thus, Table 2 specifies the probability that participant 𝑖 chooses rule 𝑗 ∈ {𝑙𝑙, 𝑙, 𝑠, 𝑟, 𝑟𝑟}	in a 

given problem.  

[Table 2 here] 

The 2S-QTR formalization is tailored to our experimental setting and may require 

modification to explain individuals’ behavior in other settings. For example, consider a 

choice from a larger set of stopping rules that includes more than two left-biased rules or 

more than two right-biased rules. While the first parameter, 𝛼*, can still capture an 

individual’s tendency to choose a left-biased stopping rule, the role of the parameter 𝛽* has to 

be adapted since the choice within a category may be more nuanced and may depend on the 

size and composition of each category. 

 
12 While we describe a natural order of these two stages, our formalism is independent of that 

order. 
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To examine whether the 2S-QTR model explains the behavior of a large share of our 

participants, we performed a leave-one-out prediction exercise. For each participant and each 

problem i in Parts A and B, we employed a maximum likelihood estimation of the model’s 

parameters based on the participant’s choices in the other 35 decision problems, and based on 

these estimated parameters, we predicted the choice in problem i. We classified a participant 

as a 2S-QTR type if the number of correct predictions in this exercise was 14 or higher (out 

of 36). The guiding principle in choosing the threshold was that the probability of predicting 

14 or more choices when a participant chooses rules uniformly at random is less than 1%. 

Importantly, our results remain virtually the same if we choose a cutoff of 13 or 15 choices. 

Overall, we classified 50 (74.6%) of the participants in our main treatment, 𝑇%, as exhibiting 

behavior consistent with the 2S-QTR model. The mean number of predicted choices for these 

participants was 24.24. 

Next, to study the behavior of the participants who chose consistently with the 2S-

QTR model, we estimated the model’s parameters for each of the participants based on all 36 

decision problems in Parts A and B. We used the estimation to classify the participants into 

types. Participants whose tendency to choose the left-biased rules category, 𝛼, was 

significantly greater (resp., less) than 0.5 (at the 5% level) were classified as L (resp., R) 

types. The remaining seven participants were classified as unbiased. We took a similar 

approach when classifying participants as extreme and moderate. We classified as extreme 

(resp., moderate) types participants whose tendency to choose an extreme rule within a 

category, 𝛽, was significantly greater (resp., less) than 0.5. The remaining participants were 

classified as diversifying. Tables 3 and 4 present this classification, where, for each type, L 

and R, we report the average number of predicted choices in the leave-one-out exercise, the 

average number of choices of left-biased, right-biased, moderate, and extreme rules, and the 

average estimated parameters, 𝛼 and 𝛽. The tables show that estimated parameters for right-
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biased/left-biased/moderate/extreme types are quite far from 0.5, and that their choices in the 

experiment match their classification.  

[Table 3 here] 

As suggested in Table 3, a large share of the participants in 𝑇% exhibited a tendency 

toward left-biased rules. In fact, 30 (45%) participants were classified as L types. While the 

formal selection rule was 14 correct predictions according to our model, on average, the 

number of correct predictions for the 2S-QTR model’s L types was 24.83. Participants who 

were classified as L-extreme and L-moderate exhibited behavior that was consistent with 

their classification as the average number of choices of left-biased rules was 31.83, the 

average number of extreme rules chosen by extreme types was 28.8, and the average number 

of moderate rules chosen by moderate types was 28.1. 

[Table 4 here] 

A smaller share of the participants exhibited a tendency to choose right-biased rules. 

Again, the mean number of predicted choices according to our model was much larger than 

the cutoff of 14 predictions as, overall, the average number of predictions of participants who 

were classified as the 2S-QTR model’s R types was 26.77. As before, the R types exhibited 

behavior that was consistent with their classification, which is reflected in the average values 

of 𝛼 and 𝛽 as well as in the number of choices of right-biased, extreme, and moderate rules.  

 

4.1 Alternative theory-based explanations 

A natural question that arises is whether there is a different, more standard explanation of the 

findings described above. In this section, we address this question by considering leading 

theories of decision-making under risk: expected utility with risk aversion, disappointment 

aversion (DA; Gul, 1991), regret aversion (RA; Bell, 1982; Loomes and Sugden, 1982), 

salience theory (ST; Bordalo et al., 2012), and cumulative prospect theory (CPT; Kahneman 



 
26 

and Tversky, 1992). In the appendix, we also consider several specifications of rank-

dependent utility models (e.g., Goldstein and Einhorn, 1987; Prelec, 1998). 

 Before examining the different theories, it will be useful to examine a relatively 

simple explanation of our findings. To this end, we explore the behavior of a risk-neutral 

expected utility maximizer who faces the decision problems in our experiment. Not only is 

expected value maximization a special case of all the theories we examine, but it can also 

provide clear intuition for the quantitative reasoning in our experimental setting. The next 

observation establishes that expected value maximization implies a completely different 

ranking of the rules, {𝑙𝑙, 𝑙, 𝑠, 𝑟, 𝑟𝑟}, depending on which bound is fixed in the problem and 

whether the baseline lottery is favorable. Expected value maximization is, therefore, 

inconsistent with our findings.13  

 

Observation 1. An expected value maximizer would rank the rules as 𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟 in 

Questions 1–6 and 25–30, and as 𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙 in Questions 7–12 and 19–24.  

Proof. See Appendix A.5. 

 

After establishing that expected value maximization cannot account for the main 

patterns in the data, we consider the more nuanced theories and compare their success rate in 

predicting the data. For each theory, we consider a prominent specification and run a leave-

one-out prediction exercise, per participant, similar to the one performed for the 2S-QTR 

model. That is, for each problem i, we use the estimated parameters given the choices in the 

other 35 problems to predict the choice in problem i. In this exercise, we employ a maximum 

 
13 In the remaining problems in our experiment, in which no bound is fixed, the ranking of 

the rules is more nuanced and remains inconsistent with our findings.  
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likelihood estimation of each participant’s parameters, assuming a multinomial logit choice 

model.14  

We begin by exploring the overall performance of each model separately, allowing 

different participants to be characterized by different model parameters. Aggregating over all 

the participants in 𝑇%, i.e., considering 2,412 (67 × 36) choices between 5 rules, the 2S-QTR 

model predicts 1,290 choices, CPT predicts 1,015 choices, ST predicts 645 choices, DA 

predicts 591 choices, RA predicts 585 choices, and CRRA predicts 443 choices. Thus, 2S-

QTR and CPT predict a substantially larger number of choices than the other theories we 

consider. 

Next, we run a prediction competition between these theories, per participant, and 

classify a participant into a theory if (i) the theory predicts at least 14 of the participant’s 

choices (a criterion that is identical to the one used in the 2S-QTR classification exercise 

above), and (ii) there is no other theory that predicts a higher number of choices. Table 5 

summarizes the prediction competition for participants in T0. It illustrates three main findings. 

First, even when we allow for alternative explanations, the share of individuals whose 

behavior is best explained by the 2S-QTR model is 69%. This suggests that there is no better 

explanation of our participants’ behavior among the prominent specifications of decision-

making under risk theories. Second, a considerable share of the participants (33%) were 

classified as CPT types, where about two-thirds of them were also classified as 2S-QTR types 

 
14 The descriptions of the theories’ specifications appear in Appendix A.3. For some of the 

theories, there is more than one workhorse specification. In such cases, we estimated more 

than one specification and reported the results for the specification that was consistent with 

the behavior of the largest share of participants. 
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(i.e., the two theories tie for those participants). Third, only a small share of the participants 

were classified into one of the other theories.15  

[Table 5 here] 

Let us take an even more conservative approach and classify participants into the 2S-

QTR model only if it predicts a strictly greater number of the participants’ choices than any 

of the other theories. Under this approach, 30 participants (45%) are classified as 2S-QTR 

types, 26 (39%) are classified into one of the quantitative theories considered, and 11 (16%) 

are unclassified. It is noteworthy that for the 30 participants classified as 2S-QTR types, the 

quantitative theories’ predictions are substantially less successful (e.g., for 24 of these 

participants, the difference in the number of predictions is at least 4). 

A potential limitation of our classification method is that a theory is disqualified as an 

explanation of a participant’s behavior if it is only slightly outperformed by another theory. 

In Appendix A.4, we modify our classification method in a manner that relaxes the 

competition between the different theories. In this robustness exercise we consider a theory to 

be a plausible explanation of a participant’s behavior if it is the best at predicting that 

participant’s behavior or if it is only slightly less successful than the best predicting theory. 

The results of this exercise are similar to those presented in Table 5. 

Recent findings by Ebert and Karehnke (2021) provide an intuition for why CPT 

seems to be the best explanation of our participants’ behavior among the quantitative theories 

we considered. Ebert and Karehnke show that among the leading theories of decision-making 

under risk, CPT is essentially the only theory that can imply both skewness-seeking and 

 
15 As a “placebo test,” we generated a synthetic dataset at random and performed a similar 

prediction competition between the 2S-QTR, CPT, and DA models. We did not find 

significant differences between the models in the number of correct predictions on this 

dataset. 
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skewness-averse behavior, depending on the parameters. To see the connection, let 𝑠𝑘𝑒𝑤* be 

the skewness of the lottery induced by rule 𝑖 ∈ {𝑟𝑟, 𝑟, 𝑠, 𝑙, 𝑙𝑙} and note that, in all of the 

problems in Parts A and B, it holds that 𝑠𝑘𝑒𝑤++ > 𝑠𝑘𝑒𝑤+ > 𝑠𝑘𝑒𝑤, > 𝑠𝑘𝑒𝑤& > 𝑠𝑘𝑒𝑤&& . Thus, 

skewness-seeking is closely related to choosing right-biased rules and skewness aversion is 

closely related to choosing left-biased rules. As for CPT, Ebert and Karehnke (2021) suggest 

that skewness-seeking follows from probability weighting that overweights small 

probabilities and underweights large probabilities, whereas skewness aversion follows from a 

diminishing sensitivity to gains and losses. 

 In a similar vein, Ebert and Karehnke’s findings also suggest that a rank-dependent 

utility model (see Wakker, 2010, for a comprehensive review of such models) coupled with 

an S-shaped utility function has the potential to explain the behavior of a large share of our 

participants. In the appendix, we consider prominent specifications of such models as well as 

two CPT specifications. In the prediction competition reported in the main text, we use the 

specification that performed best within this set, which is the CPT specification suggested by 

Barberis and Huang (2008) and Barberis (2012).  

We now consider the latter CPT specification and show that (i) there are parameters 

that capture a high degree of probability distortion under which the specification implies a 

preference for right-biased rules, and (ii) there are parameters that capture a rapidly 

diminishing sensitivity to gains and losses under which the specification implies a preference 

for left-biased rules.16 

  Consider a stopping rule with an upper bound of 𝑈	and a lower bound of – 𝐿. The 

rule induces a binary lottery in which the participant earns 𝑈 with some probability 𝑞 and 
 

16 In the appendix, we consider rank-dependent utility models and establish that there are 

parameters of these models that induce choices of right-biased rules and other parameters that 

induce choices of left-biased rules. 
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loses 𝐿 with probability 1 − 𝑞. We denote this rule by (𝑈,−𝐿; 𝑞, 1 − 𝑞). A CPT individual 

assigns to this induced lottery a value of 

𝑤((𝑞)𝑈- −𝑤"(1 − 𝑞)𝜆𝐿.. (1) 

Note that since the induced lottery is binary, the decision weights that CPT assigns to 

probabilities are equal to the probability weighting functions, 𝑤((⋅) and 𝑤"(⋅), and hence 

there is no need for additional notation for the decision weights.  We impose that 𝛼 = 𝛽 and 

𝑤!(𝑞) = 𝑤"(𝑞) =	𝑤(𝑞) = 𝑞#/	(𝑞# + (1 − 𝑞)#)
!
".	Thus, (1) becomes 

		 #$

(#$((!"#)$)
%
$
𝑈- − (!"#)$

(#$((!"#)$)
%
$
𝜆𝐿-. (2) 

The functional form of 𝑤(⋅) was suggested by Tversky and Kahneman (1992) and the 

restrictions were later suggested by Barberis and Huang (2008) and Barberis (2012).17 In line 

with the theory, we imposed that 𝛼 ∈ (0,1], 𝛿 ∈ (0,1], and 𝜆 ≥ 1. 

There are parameters under which specification (2) implies a preference for right-

biased rules. For instance, an individual who is characterized by 𝛼 = 1, 𝛿 = 0.1, and 𝜆 = 1 

would rank the rules as  𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙 in every problem in our experiment. Intuitively, 

when the winning probabilities are heavily distorted (due to the small value of 𝛿), the 

differences between the rules in this respect become less important, which leads the 

individual to rank the rules according to their potential gains and losses. It is also possible to 

find parameters under which specification (2) implies a preference for left-biased rules. For 

instance, an individual who is characterized by 𝛼 = 0.1, 𝛿 = 1, and 𝜆 = 1 would rank the 

rules as   𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟 in every problem in our experiment. Intuitively, the rapidly 

 
17 In the appendix, we also estimate the unrestricted specification and find that it is less 

successful in explaining our participants’ behavior than the restricted version. 
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diminishing sensitivity to gains and losses (due to the low value of 𝛼) makes the differences 

between the rules’ prizes less important, which leads the individual to rank the rules 

according to their winning probabilities. The following observation summarizes this 

discussion. 

 

Observation 2. Consider an individual whose preferences are represented by (2).  

(i) There exist parameters (𝜆′, 𝛼′, 𝛿′) such that an individual who is characterized by 

these parameters would rank the rules as  𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙 in all the problems in 

parts A and B 

(ii) There exist parameters (𝜆′′, 𝛼′′, 𝛿′′) such that an individual who is characterized by 

these parameters would rank the rules as  𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟 in all the problems in 

parts A and B. 

 

We illustrated that there are extreme values of 𝛿 (resp., 𝛼) that induce consistently 

choosing right-biased rules (resp., left-biased rules) in our setting. We wish to point out that 

indeed for some of the 22 CPT types in our classification exercise, the estimated parameters 

are of extreme values that are inconsistent with the range of parameters usually estimated in 

the literature (Stott, 2006). If we restrict CPT parameters to a more conventional range 

(0.15 < 	𝛼 < 1, 0.15 < 	𝛿	 < 1, 1 < 	𝜆	 < 5), then CPT explains the behavior of only 11 

participants (16%) in T0. Under this approach, the 2S-QTR model becomes the single best 

explanation of 39 participants’ behavior (58%).  

 

5. The Absence of the Rules’ Probabilities and Its Implications 

In this section, we examine to what extent the choices of the participants in the main 

treatment, T0, were affected by not knowing the rules’ induced winning probabilities. Not 



 
32 

knowing the induced probabilities should have no effect if the participants can infer these 

probabilities from the likelihood of winning a single baseline lottery. Thus, the first step of 

the analysis must examine the participants’ ability to make such an inference. Part C of the 

experiment explores this question and shows that the participants’ inferences are very far 

from the true winning probabilities (consistent with Gneezy, 1996, and Halevy, 2007). In the 

second part of this section, we present the results of our second treatment, 𝑇$, in which the 

induced probabilities were explicitly given to the participants. A comparison of the two 

treatments sheds light on the effects of the unknown probabilities on the participants’ 

behavior.    

 

5.1 Can the participants infer the rules’ induced winning probabilities? (Part C) 

In each of the three problems in Part C, we presented the participants with a stopping rule. 

The rules were (−25,+25), (−25,+50), and (−25,+100) in the first, second, and third 

problems, respectively. The participants were asked to assess the rules’ induced winning 

probabilities given that the probability of winning a single baseline lottery is 18/37, as in 

Part A. The correct induced winning probabilities were 20.5%, 5%, and 0.3%, respectively. 

The participants’ average estimates in 𝑇% were 39.6%, 24.3%, and 17.4%. The mean 

errors in absolute terms were 23.2%, 20.6%, and 17.4%. Moreover, only 26.8% of the 

answers were within a range of 5% of the correct answer (e.g., an estimate of 15.6%–25.6% 

in the first problem in Part C).18 While most of the participants failed to estimate the winning 

 
18 In Tp, where the participants observed the probabilities of the stopping rules in Parts A and 

B, the average estimates in Part C were 37%, 22.7%, and 12.3%, and the average error size 

slightly decreased in all three problems. Only 29.8% of the answers in Tp were within a range 

of 5% of the correct answer. 
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probabilities correctly, they did exhibit a qualitative understanding of the prize–probability 

tradeoff, where 86.8% of them provided monotone estimates (an estimate is monotone if the 

estimate for (−25,+25) is weakly greater than the estimate for (−25,+50) and the latter is 

weakly greater than the estimate for (−25,+100)). The fact that the vast majority of the 

participants failed to estimate the induced winning probabilities provides additional 

motivation for our investigation of the 𝑇$ treatment, in which the participants were provided 

with the rules’ induced winning probabilities. 

Our findings in Part C complement Gneezy’s (1996) findings, which relate to positive 

expected value lotteries. He finds that individuals use the stage-by-stage probability as an 

anchor and adjust insufficiently: estimations are biased toward the direction of the single-

lottery probability, resulting in an underestimation of the overall probability of winning. The 

combination of these findings and our results can have significant implications for situations 

in which processes are perceived to be “almost fair.” It could lead to overoptimism and 

overparticipation in situations where the baseline drift is slightly negative (e.g., casino 

gambling) and overpessimism and underparticipation in situations where the baseline drift is 

slightly positive (e.g., stock market trading).   

 

5.2 Known vs. missing induced winning probabilities (𝑻𝒑 vs. 𝑻𝟎	)  

We briefly describe the behavior in 𝑇$, in which the participants were provided with the 

stopping rules’ induced probabilities of winning and losing.  We show both similar and 

different patterns from those observed in 𝑇% and compare the behavior statistically.  

At the aggregate level, the behavior patterns that are exhibited by the participants in 

𝑇$ are mostly similar to those that are exhibited by the participants in 𝑇%. First, when the 

baseline lottery is unfavorable, there is a tendency to prefer left-biased stopping rules to right-

biased ones. Second, this tendency is weaker when 𝑝 > 0.5. We found that in Part A, 62% of 
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the 846 choices (47 × 18) were of left-biased rules and 28% were of right-biased ones, 

whereas in Part B, 49% of the choices were of left-biased rules and 37% were of right-biased 

ones (see Table 6). A prominent difference between 𝑇% and 𝑇$	is the higher ratio of extreme 

to moderate rules in the latter: in both parts, extreme rules are more frequent than moderate 

rules both within the category of left-biased rules and within the category of right-biased 

rules. 

[Table 6 here] 

At the individual level, the mean number of choices of left-biased rules in Part A of 

𝑇$ is higher than that in Part B of 𝑇$, according to a paired-samples t-test (11.09 vs. 8.74, 

𝑡(46) = 2.96, 𝑝 = 0.005).19 The mean number of choices of right-biased rules in Part A of 

𝑇$ is lower than that in Part B of 𝑇$, according to a paired-samples t-test (4.98 vs. 6.6, 

𝑡(46) = −2.26, 𝑝 = 0.028). Nonetheless, the participants’ choices in Part A and Part B are 

correlated in terms of the number of left-biased choices (Pearson’s 𝑟 = 0.62, 𝑝 < 0.001) and 

the number of right-biased choices (Pearson’s 𝑟 = 0.57, 𝑝 < 0.001). A comparison of the 

number of left-biased choices across the two treatments, 𝑇% and 𝑇$ , reveals that there are no 

significant differences in either part or overall (when the two parts are analyzed jointly). 

Similarly, there are no significant differences between the treatments in the number of right-

biased choices.  

By contrast, there are significant differences between the two treatments in the 

number of extreme and moderate choices. In particular, participants in 𝑇$ tended to choose 

the extreme stopping rules more often than participants in 𝑇% in both parts and overall (the 

mean number out of 36 choices was 21.13 vs. 15.45, 𝑡(112) = −2.88, 𝑝 = 0.005). 

Accordingly, the mean number of moderate rules was lower in 𝑇$ than in 𝑇% (10.28 vs. 15.6, 

 
19 All the results in Section 5.2 are robust to nonparametric testing. 
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𝑡(112) = 3.43, 𝑝 < 0.001). Thus, the uncertainty over the induced lotteries in 𝑇%	mitigated 

the individuals’ extreme choices. 

The above observations suggest that the directional (left-biased vs. right-biased) 

tendencies in 𝑇$ are similar to those found in 𝑇%. A comparison of the two treatments 

indicates that in both parts, the distribution of our measures of the number of the participants’ 

left-biased or right-biased choices is not significantly different between the treatments. 

Furthermore, there are no significant differences between the treatments in the number of 

left-biased or right-biased choices for any of the three types of decision problems, as 

described in Appendix A.1. The only significant difference in behavior between the 

treatments is the tendency mentioned above of choosing more extreme stopping rules in 𝑇$ 

(i.e., rules 𝑙𝑙 and 𝑟𝑟 are more common than rules 𝑙 and 𝑟). 

Consequently, roughly 74% of the participants in 𝑇$ exhibited behavior consistent 

with the 2S-QTR model, as in 𝑇%. Table 7 presents the classification into theory-based types 

in 𝑇$, based on a leave-one-out prediction competition, as in Section 4.1. It appears that the 

main difference between the two treatments is that in 𝑇$ a larger share of the participants 

were classified as CPT types (𝑝 < 0.017, 𝜒' = 5.73), while a somewhat smaller share of the 

participants were classified as 2S-QTR types (𝑝 = 0.058, 𝜒' = 3.61).20 Of the 24 

participants (51%) who were classified as 2S-QTR types, 17 were L types, 5 were R types, 

and 2 were unbiased. A possible interpretation of these differences is that when the 

probabilities of gains and losses are provided, the participants better recognize situations in 

which the tradeoff between prizes and probabilities is clear-cut and adjust their choices 

accordingly. For example, in situations where a minor decrease in a winning probability is 

accompanied by a major increase in prizes, they tend to opt for the most right-biased rules. 

 
20 We modify our classification method in the robustness exercise reported in Appendix A.4.  
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Symmetrically, in situations where a major increase in the probability of winning is 

accompanied by a minor decrease in prizes, they tend to opt for the most left-biased rules. 

This may explain why the quantitative theories we considered, such as CPT, account for the 

behavior of a larger share of the participants in 𝑇$. 

[Table 7 here] 

CPT accounts for the behavior of 55% of the participants in 𝑇$. As in 𝑇%, for some of 

the CPT types, the estimated parameters are inconsistent with the range of parameters usually 

estimated in the literature. If we follow the literature and restrict CPT’s parameters to a more 

conventional range (0.15 < 	𝛼 < 1, 0.15 < 	𝛿	 < 1, 1 < 	𝜆	 < 5), then only 18 participants 

(38%) in 𝑇$ can be classified as CPT types. 

We conclude that there are both similarities and differences between the patterns of 

behavior observed in 𝑇$ and 𝑇%. First, the participants’ tendency to consistently choose left- 

or right-biased rules is quite similar between the two treatments. Recall that the participants 

in 𝑇$ and 𝑇% received the same experimental instructions. Moreover, the stopping rules’ 

framing in the two treatments was identical: each alternative was presented as a lower and an 

upper bound rather than as a standard lottery. The only difference between the treatments was 

an additional sentence in 𝑇$ that provided, for every alternative, the induced probabilities of 

reaching the lower and the upper bound given 𝑝.  We suggest that the stopping rules’ framing 

and the qualitative understanding of the prize–probability tradeoff in this context (established 

in Section 5.1) makes many participants reason in qualitative terms when trading off between 

prizes and probabilities even when the probabilities are known.  

Second, the participants’ resolution of the tradeoff between extreme and moderate 

rules is different between the two treatments: the participants in 𝑇$  tend to opt for extreme 

rules more than the participants in 𝑇%. The tendency to choose extreme rules results in a 

larger share of participants who behave in a manner that is consistent with CPT, which also 
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results in fewer 2S-QTR types in this more standard exercise (nonetheless, more than half of 

the participants were classified as 2S-QTR types). However, the results of 𝑇% suggest that in 

situations where participants lack information about the induced probabilities of stopping 

with a gain or a loss, as often occurs in reality, a larger share of them reason qualitatively. 

 

6. Conclusion 

We examined individuals’ preferences over stopping rules when they have commitment 

power. We suggest a simple qualitative model whereby individuals tend to trade off between 

the size of the prize and the probability of winning in a consistent manner, either in favor of 

right-biased stopping rules or in favor of left-biased stopping rules. Then, they resolve this 

tradeoff again in favor of either the extreme or the moderate rule within the category of left- 

or right-biased rules. Our model accounts for behavior patterns in the data that cannot be 

explained by prominent theories of decision-making under risk.  

Our analysis suggests that many individuals use qualitative decision procedures even 

when the stopping rules’ induced winning probabilities are known. These individuals 

consistently focus either on the winning probability or on the size of the potential gains and 

losses. More generally, our results provide indications of qualitative reasoning: individuals 

think in relative terms and are not responsive to a decision problem’s fine numerical details. 

An interesting direction for future research would be to examine whether qualitative 

reasoning arises in stopping problems in other contexts, such as job search and 

experimentation in R&D, as well as when choosing between other kinds of prospects. 
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Rule Lower bound Upper bound 

a -20 +10 

b -20 +30 

Figure 1. Two cutoff rules with the same lower bound. 
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Rule Lower bound Upper bound 

c -10 +20 

d -30 +20 

Figure 2. Two cutoff rules with the same upper bound. 
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Type (i): Fixed loss 

 Loss Gain Probability of gain 

Rule 𝑙𝑙 -21 +9 52% 

Rule 𝑙 -21 +15 35% 

Rule 𝑠 -21 +21 24% 

Rule 𝑟 -21 +27 17% 

Rule 𝑟𝑟 -21 +33 12% 

 

Type (ii): Fixed gain 

 Loss Gain Probability of gain 

Rule 𝑙𝑙 -20 +12 42% 

Rule 𝑙 -16 +12 39% 

Rule 𝑠 -12 +12 34% 

Rule 𝑟 -8 +12 28% 

Rule 𝑟𝑟 -4 +12 18% 

 

Type (iii): Not fixed 

 Loss Gain Probability of gain 

Rule 𝑙𝑙 -27 +15 38% 

Rule 𝑙 -24 +18 31% 

Rule 𝑠 -21 +21 24% 

Rule 𝑟 -18 +24 19% 

Rule 𝑟𝑟 -15 +27 14% 

 

Figure 3. The three types of decision problems in Part A. The probability of a gain for each 

stopping rule is provided for the reader’s convenience. Only participants in Tp received 

information on the probability of a gain and a loss for each stopping rule, which was 

presented in a sentence below the description of the rule’s upper and lower cutoffs (see 

Appendix B). 
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Part D: Game 2 

Choose your preferred lottery from the following two lotteries:  

 

a. 

 

 

b. 

 

 

Figure 4. An example of a decision problem in Part D. 

  

probability 24% 76% 

amount -25 +8 

probability 76% 24% 

amount -8 +25 
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 Part A (𝒑 < 𝟎. 𝟓) Part B (𝒑 > 𝟎. 𝟓) 

Rule 𝑙𝑙 31% 23% 

Rule 𝑙 35% 23% 

Rule 𝑠  9% 19% 

Rule 𝑟 10% 19% 

Rule 𝑟𝑟 15% 16% 

Table 1. The proportions of choices in 𝑇%, out of 1,206 (67 × 18) choices that were made in 

each part.  
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Figure 5a. Cumulative distribution of the 

number of left-biased choices per participant 

in Part A vs. Part B.  

Figure 5b. Cumulative distribution of the 

number of right-biased choices per 

participant in Part A vs. Part B.  
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Figure 6a. Cumulative distribution of 

the number of extreme choices per 

participant in Part A vs. Part B.  

Figure 6b. Cumulative distribution of 

the number of moderate choices per 

participant in Part A vs. Part B.  
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Figure 7. The percentage of participants with each number of right-biased and left-biased 

choices in Parts A and B together and the probability of observing each number (per 

participant) given a binomial process with 0.4 probability of a right-biased (left-biased) 

choice in each problem.  
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Figure 8. The percentage of participants with each number of extreme and moderate choices 

in Parts A and B together and the probability of observing each number (per participant) 

given a binomial process with a 0.4 probability of an extreme (moderate) choice in each 

problem.  
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Rule Probability 

𝒍𝒍 0.2𝜖* + (1 − 𝜖*)𝛼*𝛽* 

𝒍 0.2𝜖* + (1 − 𝜖*)𝛼*(1 − 𝛽*) 

𝒔 0.2𝜖* 

𝒓 0.2𝜖* + (1 − 𝜖*)(1 − 𝛼*)(1 − 𝛽*) 

𝒓𝒓 0.2𝜖* + (1 − 𝜖*)(1 − 𝛼*)𝛽* 

 Table 2. The probability that participant 𝑖 chooses rule 𝑗 ∈ {𝑙𝑙, 𝑙, 𝑚, 𝑟, 𝑟𝑟}	in a given problem 

in the 2S-QTR model.    
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L types Extreme Moderate Diversifying Overall 

Proportion (n) 24% (16) 12% (8) 9% (6) 45% (30) 

Mean alpha (SD) 0.93 (0.09) 0.98 (0.05) 1 (0) 0.96 (0.08) 

Mean beta (SD) 0.84 (0.10) 0.12 (0.14) 0.47 (0.01) 0.57 (0.34) 

No. of predicted choices (SD) 26.25 (4.95) 27 (5.37) 18.16 (2.64) 24.83 (5.84) 

No. of left-biased choices (SD) 32 (3.66) 31.62 (4.50) 31.66 (4.41) 31.83 (3.86) 

No. of right-biased choices (SD) 3.12 (3.58) 1.75 (2.55) 1.16 (2.04) 2.36 (3.06) 

No. of moderate choices (SD) 6.31 (3.74) 28.12 (5.36) 17.33 (3.61) 14.33 (10.49) 

No. of extreme choices (SD) 28.81 (4.36) 5.25 (5.44) 15.5 (3.21) 19.86 (11.38) 

Table 3. A description of the 2S-QTR model’s L types: the proportions of extreme, 

moderate, and diversifying L types; the estimated parameters 𝛼 and 𝛽; the number of 

predicted choices; the mean number of choices of left-biased, right-biased, moderate, and 

extreme rules.  
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R types Extreme Moderate Diversifying Overall 

Proportion (n) 10% (7) 4% (3) 4% (3) 19% (13) 

Mean alpha (SD) 0.06 (0.12) 0.12 (0.08) 0.04 (0.04) 0.07 (0.1) 

Mean beta (SD) 0.95 (0.07) 0.04 (0.06) 0.36 (0.08) 0.6 (0.41) 

No. of predicted choices (SD) 30.14 (5.84) 27 (6.66) 18.67 (0.58) 26.76 (7.05) 

No. of left-biased choices (SD) 2.71 (4.46) 4.66 (3.21) 1.66 (2.08) 2.92 (3.68) 

No. of right-biased choices (SD) 32.28 (4.79) 25.66 (8.14) 31 (3) 30.46 (5.64) 

No. of moderate choices (SD) 3.14 (4.34) 28 (3.46) 20.33 (1.53) 12.85 (11.75)  

No. of extreme choices (SD) 31.85 (5.49) 2.33 (1.53) 12.33 (3.06) 20.53 (13.84) 

Table 4. A description of the 2S-QTR model’s R types: the proportions of extreme, 

moderate, and diversifying R types; the estimated parameters 𝛼 and 𝛽; the number of 

predicted choices; the mean number of choices of left-biased, right-biased, moderate, and 

extreme rules. 
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Theory Proportion (n) 

2S-QTR 69% (46) 

Constant Relative Risk Aversion 1% (1) 

Disappointment Aversion 1% (1) 

Regret Aversion 3% (2) 

Salience Theory 4% (3) 

Cumulative Prospect Theory 33% (22) 

Table 5. The proportion and the number (in parentheses) of participants in T0 out of the 67 

participants that were classified into each of the decision theories. 
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 Tp  T0 

 Part A (𝒑 < 𝟎. 𝟓) Part B (𝒑 > 𝟎. 𝟓)  Part A (𝒑 < 𝟎. 𝟓) Part B (𝒑 > 𝟎. 𝟓) 

Rule 𝑙𝑙 44% 32%  31% 23% 

Rule 𝑙 18% 17%  35% 23% 

Rule 𝑠 11% 15%  9% 19% 

Rule 𝑟 10% 13%  10% 19% 

Rule 𝑟𝑟 18% 24%  15% 16% 

Table 6. The proportions of choices in Tp out of the 846 choices (47 × 18) that were made in 

each part, presented next to the proportions of choices in T0 out of the 1,206 choices (67 ×

18) in each part. 
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Theory 
Tp (N=47) 

Proportion (n) 

T0 (N=67) 

Proportion (n) 

2S-QTR 51% (24) 69% (46) 

Constant Relative Risk Aversion 15% (7) 1% (1) 

Disappointment Aversion 11% (5) 1% (1) 

Regret Aversion 13% (6) 3% (2) 

Salience Theory 11% (5) 4% (3) 

Cumulative Prospect Theory 55% (26) 33% (22) 

Table 7. The proportion and the number (in parentheses) of participants in Tp who were 

classified into each of the decision theories, next to the corresponding results for participants 

in T0. 

 

 


