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1. Introduction 

The concept of quantum tunneling was introduced in 
physics in 1928 in two theoretical papers: by G. Gamow 
(who also invented the term quantum tunneling) for solv-
ing the problem of α-decay in nuclear physics [1], and by 
R.H. Fowler and L.W. Nordheim in their seminal paper on 
field emission [2]. The experiments on emission of elec-
trons from metals in intense electric fields were the first to 
verify the phenomenon of quantum tunneling (see, e.g., 
[3]). The mere fact that the concept of quantum tunneling 
appeared in the very beginning of the «quantum mechani-
cal era» and simultaneously in two different regions of 
physics showed the generality and fundamental character 
of the novel phenomenon. 

Quantum tunneling is the term introduced to describe 
the quantum evolution of a system in classically forbidden 
domains of configurational (or real) space. The very exis-
tence of tunneling is entirely due to the Heisenberg uncer-
tainty principle, which allows one to consider virtual 
processes. In the path integral approach the tunneling is 
described by «trajectories» in imaginary time and their 
contribution is exponentially small if the corresponding 
action tS � . In this sense tunneling is a more simple 
process than quantum evolution in real time, where the 
superposition of different quantum states makes the dy-
namics complicated and intricate. One can consider the 
tunneling of single particles, composite objects, phase 
states (vacuum-to-vacuum tunneling in quantum field 
theory and macroscopic quantum tunneling in condensed 
matter physics) and even the tunneling of the Universe as a 
whole (in quantum cosmology). In modern physics quan-
tum tunneling is considered as one of the basic quantum 
phenomena, inherent in quantum dynamics. 

As a rule the probability of quantum tunneling is small. 
(Nevertheless it is the main effect when the classical pro-
cesses are energetically forbidden.) In most cases the tun-
neling probability depends exponentially on the parameters 
of the effective (or real) potential barrier the system tun-
nels through. A special type of tunneling takes place if the 
quantum transition couples more than two classically al-
lowed states. For instance, one can consider the complex 
process involving two tunneling transitions connecting the 
initial and final states of evolution with an intermediate 
classically allowed state. For such transitions the quantum 
phase coherence should play a crucial role. The tunneling 
probability is radically changed when the phase coherence 
is preserved. It is strongly enhanced for constructive inter-
ference, when it gives rise to the phenomenon known as 
resonant tunneling (first introduced by G. Breit and E. 
Wigner in their theory of slow neutron capture [4]). 

The simplest and most important example of resonant 
tunneling is a single-particle transition through a double 
barrier, in the case when the tunneling through each indi-
vidual barrier is weak and one can consider a set of well 
defined resonance states in a potential well between the 
barriers (see, e.g., [5]). In a single particle scattering theory 

the transition probability at energies around the resonant 
state energy is described by the Breit–Wigner distribution 
function characterized by the energy 0ε  and the width Γ  
of the resonance state (the ratio 0/ 1Γ ε �  for pronounced 
resonant behavior). The intensity of non-resonant transi-
tions is proportional to 2Γ . For tunneling events when the 
energy of the scattering particle falls in an energy window 
of width Γ  around the resonance level, the transition pro-
bability ceases to depend on Γ  for symmetric barriers. 
This fully coherent tunneling process is usually referred to 
as resonant quantum tunneling (RQT). RQT has to be dis-
tinguished from the very important resonant process called 
sequential tunneling (ST) when electrons incoherently tun-
nel to and from the intermediate real state. The probability 
of ST (∝Γ ) is much larger than that for non-resonant 
transitions ( 2∝ Γ ) and the differential conductance peaks 
at voltages equal to the energies of intermediate states. 
However, for given transparencies of the individual bar-
riers, ST can be regarded as a classical process. It is inter-
esting to notice, however, that in the lowest order of per-
turbation theory in Γ  the calculations based on fully quan-
tum-mechanical approaches (for instance, on the Landau-
er–Büttiker approach) lead to the same results as calcula-
tions performed using classical methods (the master equa-
tion approach). 

The aim of this review article is to discuss different as-
pects of electron resonant transport (coherent and incohe-
rent) in modern nanoelectrical (and nanoelectromecha-
nical) devices: quantum wires (including single-wall car-
bon nanotubes), single electron transistors and molecular 
junctions. We consider the main effects in electron tunne-
ling in these devices (Coulomb blockade, Luttinger liquid 
effects, vibrational effects, electron shuttling) and review 
experimental observations of these phenomena. 

We start (Sec. 2) with a text-book description of reso-
nant transitions of noninteracting electrons through a 
double barrier system (single-level quantum dot weakly 
coupled to the leads) by using two different approaches: (i) 
the Landauer–Büttiker scattering theory (a fully quantum-
mechanical description), and (ii) the «master equation» 
approach (a classical description). In high-temperature 
region T Γ�  both approaches give the same result. In 
particular, a so-called 1/T-scaling (T  is the temperature) of 
the maximum peak conductance is predicted. Recently this 
simple prediction was tested in experiments on carbon na-
notube-based quantum dots (see, e.g., [6]). 

The influence of the electron–electron interaction on re-
sonant tunneling is considered in Sec. 3. This problem has 
in recent years attracted a particularly strong interest from 
theoreticians. Transport properties of single-wall carbon 
nanotubes (SWNT) are known (see, e.g., [7]) to be de-
scribed by Luttinger liquid (LL) theory. The experiment 
[9] on a doubly buckled SWNT, which was supposed to 
behave as a double-barrier Luttinger-liquid system, showed 
disagreement with predictions of the LL model. This ob-
servation stimulated theoreticians to reconsider the reso-
nant tunneling in a LL using different approaches. We dis-
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cuss in Sec. 3 how electron–electron correlations influence 
the temperature dependence of the conductance and, in 
particular, how LL effects modify the «1/T-scaling» of the 
maximum conductance for sequential electron tunneling 
(T Γ).�  

For quantum resonant tunneling (T Γ� ) the conduc-
tance of a fully symmetric junction, as was already shown 
in the seminal paper by Kane and Fisher [8], is not renor-
malized by the interaction and coincides with the conduc-
tance quantum as 0T → . The presence of asymmetry 
changes drastically the low-T  asymptotic behavior of the 
conductance — it scales to zero [8]. In the general case of 
asymmetric junctions, a non-monotonic dependence of the 
conductance on temperature (with a pronounced maximum 
at T Γ∼ ) is the signature of LL effects in quantum reso-
nant tunneling. So far this specific behavior has not been 
observed in experiments. 

In Sec. 4 experiments on electron transport through 
quantum wires are discussed. 

Electron transport in nanodevices is affected not only 
by Coulomb effects but in special cases (molecular junc-
tions, suspended nanotubes) by vibrational effects as well 
(Sec. 5). This area of research is connected with the rela-
tively old field of inelastic electron tunneling spectroscopy 
(including point-contact spectroscopy [10]) and with novel 
physics — nanoelectromechanics. Vibrational effects may 
either enhance electron transport due to contributions from 
additional inelastic channels or suppress the charge current 
because of polaronic effects. The interplay of polaronic 
effects and vibron-assisted tunneling could result in an 
anomalous (non-monotonic) temperature dependence of 
the conductance in the regime of sequential electron tunne-
ling. A spectacular positive (strong enhancement of cur-
rent) influence of vibrational effects on electron tunneling 
is demonstrated by the phenomenon of electron shuttling 
(see the review [11]). In Sec. 5.3 we consider the shuttle 
instability (that is the conditions at which the system un-
dergoes a transition to a new shuttle-like regime of electron 
transport) for the case of a single-electron transistor in the 
regime of strong electromechanical coupling. Experiments 
where nano-electromechanical effects have been observed 
are discussed in Sec. 5.4. 

In the Conclusion section the perspectives for the de-
velopment and applications of this novel area of research 
are discussed. 

2. Resonant tunneling of noninteracting electrons 

We start by considering the simplest possible theoretical 
model of resonant electron transport in metallic structures. 
This model describes a one-dimensional double-barrier 
structure connected to reservoirs of noninteracting electrons. 
Electron transport inside the structure is assumed to be 
phase-coherent and ballistic. The left (L) and right (R) elec-
tron reservoirs (leads) are characterized by equilibrium dis-
tribution functions 

1
( , ) = exp( / ) 1j j jf T T

−
⎡ ⎤μ ε −μ +⎣ ⎦  

where T  is temperature and ( = , )j j L Rμ  are the chemi-
cal potentials ( = L ReV μ −μ  is the driving voltage). 

2.1. Landauer–Büttiker approach and the Breit–Wigner 
formula 

The Landauer–Büttiker approach [12] (see also Ref. 13) 
relates the average current through the system to the 
transmission coefficient (probability) ( )tT ε  for an electron 
emerging with energy ε  from the reservoir to traverse the 
structure («conductance is transmission» [14]) 

 
0

2( ) = ( )[ ( ) ( )].t L R
eJ V d T f f

h

∞
ε ε ε − ε∫  (1) 

In the linear response regime, 0V → , one readily gets 
from Eq. (1) the famous Landauer formula for the conduc-
tance = /G J V ,  

 0
0

( ) = ( ) ,t
fG T G d T

∞ ∂⎛ ⎞ε ε −⎜ ⎟∂ε⎝ ⎠∫  (2) 

where 2
0 = 2 /G e h  is the conductance quantum (the fac-

tor 2 is due to spin projection degeneracy) and / =f−∂ ∂ε  
2= 1/ 4 cosh [( ) / 2 ]T Tε −μ . 

For weak tunneling (small barrier transparencies) the 
electron energies in the well form a discrete set of broa-
dened levels = / 2n n tE iε − Γ , where =t L RΓ Γ +Γ  is the 
level width ( tΓ δε� , where δε  is the characteristic level 
spacing). The transmission coefficient for the double-
barrier structure resonances near =r nε ε  and it is well 
approximated by the Breit–Wigner formula (see, e.g., [5]) 

 2 2( ) = .
( ) ( / 2)

L R
BW

r t
T

Γ Γ
ε

ε − ε + Γ
 (3) 

The total level width tΓ  determines the decay rate, /tΓ , 
of the resonant state; the partial widths =j jDΓ ν  are 
determined by the barrier transparencies 1jD �  and the 
attempt frequency ( ),rν ε  which for rectangular barriers is 

= 2 / ( ),rL vν ε  where L  is the distance between the bar-
riers and ( )rv ε  is the electron velocity at the resonance 
energy. 

For an energy-independent level width in Eq. (3), the 
integral in Eq. (1) can be evaluated exactly. The result can 
be expressed in terms of the psi-function ( ( )xψ ≡  

ln ( ),x x≡ ∂ Γ  where ( )xΓ  is the gamma-function). By 
using an integral representation of the imaginary part of 
ψ-function, 

 1Im =
2

x iy⎛ ⎞ψ + +⎜ ⎟
⎝ ⎠

  

 
2 2 ( ) 2 ( )

0

1 1= ,
1 e 1 e 1xt y xt y

dt
t

∞

π − π +
⎡ ⎤

−⎢ ⎥
+ + +⎣ ⎦

∫  (4) 

one readily represents the current of noninteracting elec-
trons through a resonant level as  
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= 1

4 1 2( , ) = Im ,
2 4 4

te eVJ V T i
h T Tη ±

Γ Δ + η⎛ ⎞Γ ηψ + +⎜ ⎟π π⎝ ⎠
∑  (5) 

where = /L R tΓ Γ Γ Γ  and = r FΔ ε − ε  (see, e.g., Ref. 15). 
In an experiment the energy of the resonance level is 

controlled by the gate voltage gV . Exactly on resonance 
= ( ) = 0r g FVΔ ε − ε  and it is easy to obtain from Eq. (5) 

the general expression for the temperature dependence of 
the peak (maximum) conductance. It is more convenient, 
however, to find the low- and high-temperature asymp-
totics of ( )G T  directly from Eqs. (2) and (3)  

 
0

0

,4
( )

, .
2

t
t

m

t

G T
G T

G T
T

Γ⎧ Γ⎪ Γ⎪
⎨
π Γ⎪ ≥ Γ⎪⎩

�
�  (6) 

The width, W, of the resonance peak is temperature inde-
pendent tW Γ�  (Lorentzian line-shape) at low tem-
peratures tT Γ� , while at high temperatures the width 
depends linearly on T (exponential line-shape). 

The main assumptions in deriving the Landauer formula 
are: (i) noninteracting electrons, (ii) equilibrium distribution 
functions for electrons in the leads, and (iii) phase-coherent 
transport between the leads. The last assumption is crucial 
for getting the low-T result (quantum-mechanical resonant 
tunneling). It is evident that in a «classical regime» (totally 
incoherent electron transmission through a double-barrier 
structure) the total resistance 1

1 2R G R R−≡ = +  is the sum 
of the resistances 1(2)R  connected with the voltage drop on 
each individual barrier. Both coherent and incoherent elec-
tron transmissions in a double-barrier structure were consi-
dered in Ref. 16 in an approach where inelastic processes 
were modeled by the scattering of particles inside the po-
tential well to an additional electron reservoir with a chem-
ical potential adjusted to have no net current flowing to 
this electrode. Inelastic channels lead to an additional wi-
dening of the total level width =t t iΓ Γ + Γ  ( /iΓ  is the 
decay rate through the inelastic channels) and to a suppres-
sion of the maximum conductance at low temperatures, 

/m m t tG G Γ Γ�  (see Ref. 16). 
Notice that for noninteracting electrons the transition 

region from a low-T  to a high-T  behavior of the conduc-
tance is of order tTδ Γ∼ . In Ref. 17 resonant transmission 
of particles with generalized (exclusion) statistics [18] was 
considered. It was shown that the transition region depends 
on the statistical parameter g  ( = 0g  for bosons and 

= 1g  for fermions) 1
gT g−δ Γ∼  (in Ref. 18 the sym-

metric double-barrier structure was considered). It follows 
that for 1g �  the crossover from low-T to high-T beha-
vior takes place over a wide temperature interval 

1< <T g−Γ Γ , where the conductance decreases almost 
linearly with the temperature growth. 

Next we will show that the formula for the average cur-
rent at high temperatures is identically the same in the 
Landauer–Büttiker approach (coherent electron transport) 
and in the sequential electron tunneling model. 

2.2. Sequential electron tunneling and 1/T-scaling of 
conductance 

In the regime of sequential (incoherent) electron tunne-
ling through a double-barrier system one can use the mas-
ter (rate) equation approach [24] to calculate the average 
current and current–current correlation functions. The 
problem is equivalent to the evaluation of the transport 
characteristics of a single-level quantum dot weakly 
coupled to leads [22] and has repeatedly been discussed in 
the literature (see, e.g., the reviews in Ref. 23). 

The rate equation for the probability np  for n  elec-
trons to occupy dot levels takes the form  

, 1 1 , 1 1 , 1 , 1= ( ) ,n
n n n n n n n n n n n

dp
p p p

dt + + − − + −Γ + Γ − Γ + Γ  (7) 

where ,n mΓ  are the transition rates (in the case of a single-
level quantum dot and «spinless» electrons = 0, 1n ). 
These quantities can be calculated in perturbation theory 
using the tunneling amplitudes as small parameters. The 
starting point is the Fermi «golden rule»  

 
22 ˆ= | | ( )if t f if H iπ

Γ 〈 〉 δ ε − ε  (8) 

with the tunneling Hamiltonian ˆ
tH  given as  

 
; = ,

ˆ = ( † h.c.).t j kj
k j L R

H t a c +∑  (9) 

Here ( )f iε ε  are the energies of final (| )f 〉  and initial 
(| )i〉  states, ( )kL Ra  is the electron annihilation operators in 
the left (right) lead, †c  is the creation operator for an elec-
tron in the dot, and jt  are the tunneling amplitudes. 

Standard calculations (see, e.g., Ref. 24) yield an ex-
pression for conductance [22,24] 

2
0

( )1( , ) = ,cosh
2 2

r gL R
g

L R

V
G V T G

T T
−

μ − ε⎡ ⎤Γ Γπ
⎢ ⎥Γ + Γ ⎣ ⎦

 (10) 

which exactly coincides with the corresponding formula 
derived at T Γ�  in the Landauer–Büttiker approach. In 
Eq. (10) the partial level widths are determined by the elec-
tron density of states jρ  in the leads (assumed to be inde-
pendent of energy near the Fermi energy) and the tunneling 
probability, 2| |jt , by the simple relation  

 2= 2 | | .j j jtΓ πρ  (11) 

At first glance this exact coincidence seems to be a sur-
prising result since Eq. (3) and Eq. (10) are derived under 
different assumptions about the physics. The formal expla-
nation is straightforward: for tT Γ�  the asymptotic be-
havior of the integral Eq. (2) is linear in Γ  and therefore 
the high-T  behavior of the conductance is the result of a 
perturbation caused by the tunneling amplitudes. In pertur-
bation theory the tunneling of electrons through the left 
and right potential barriers are independent events and co-
herent and non-coherent particles cannot be distinguished. 
Sequential electron tunneling is from the very beginning a 
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perturbation approach and the formula derived for the tem-
perature dependence of the conductance, Eq. (10), is valid 
only when tT Γ� . The exact coincidence of the high 
temperature predictions in the two considered approaches 
is a consequence of perturbation theory. The same reason-
ing holds also for the resonant current [19,20] calculated at 

, teV T Γ�  for the coherent (Landauer–Büttiker approach) 
and non-coherent (sequential tunneling) electron transport 
through a double-barrier structure (see also Ref. 21). 

In the next section we show how electron–electron cor-
relations affect resonant tunneling of electrons. 

3. Effects of electron–electron interaction 

In Sec. 2 we studied resonant electron transport through 
a nanosystem (quantum dot) modeled as a double-barrier 
structure. The principal assumption we made is that the 
electrons can be treated as noninteracting particles. If the 
nanosystem is attached to macroscopic (3D or 2D) leads 
the model of noninteracting electrons works very well for 
the metallic leads due to the screening there of the Cou-
lomb interaction. On the contrary, in the quantum dot, 
when it is well separated from the metallic electrodes by 
potential barriers, Coulomb effects are always significant 
at sufficiently low temperatures and the most robust effect 
is the Coulomb blockade [24]. 

3.1. Coulomb blockade and conductance oscillations 

Here we will only briefly outline the main features of 
the Coulomb blockade phenomenon since there is a vast 
literature on the subject, including review papers (see, e.g., 
Ref. 23) and textbooks (see, e.g., Refs. 25, 26). 

The addition of one extra electron to a quantum dot 
(QD) has an energy cost in terms of the charging energy 

2= / 2C e Cε , where C  is the dot capacitance ( C Lε∼ ; 
L  is the characteristic size of the QD and ε  is the dielec-
tric constant). It means that at temperatures CT ε�  the 
current through the QD is blocked at low biases < CeV ε  
(Coulomb blockade). The Coulomb blockade can be lifted 
by tuning a gate voltage (the «gate» is a massive electrode 
electrically disconnected from the QD and the source-
drain electrodes). At certain voltages ( )n

gV , when the 
energies of states with n  and 1n +  (or 1n − ) electrons on 
the dot are degenerate, the current can flow through the 
system at low bias voltages ( 0V → ). At temperatures 
much lower than the charging energy a periodic lifting of 
the Coulomb blockade results in Coulomb blockade oscil-
lations with period /e C  of the conductance as a function 
of gate voltage. 

For small-sized QDs the average level spacing becomes 
much bigger then the charging energy and the system can 
be treated as a single-level QD as in the previous section. 
In particular, the resonance (at special values of gate vol-
tage r

gV ) conductance is described by Eq. (10). The effect 
of Coulomb interactions (phenomenologically described by 
the charging energy Cε ) in this case is reduced to a uni-
form shift of the level energies and this shift is unobserva-

ble in transport experiments. Instead of Coulomb blockade 
oscillations the oscillations of the conductance as a func-
tion of gate voltage now reflect the spacing of single-
particle energy levels (resonant tunneling). In other words 
the Coulomb blockade does not lead to new measurable 
effects in resonant electron tunneling when 

t CTΓ ε δε� � � . This is not the case for very low 
temperatures when electron–electron correlations in the dot 
can qualitatively change electron transport. The most im-
portant transport effect induced by correlations is the Kon-
do resonance [27]. In the next section we discuss how the 
Eq. (1) for the current of noninteracting electrons can be 
generalized to the case of interacting electrons in the dot. 

3.2. The Meir–Wingreen formula 

For interacting electrons it is in general impossible to 
represent the electrical current (or the conductance) in 
terms of a transmission probability (or a transmission ma-
trix for a multi-channel conductor). The scattering ap-
proach can not correctly describe the inelastic and multi-
electron processes usually induced by the interaction. The 
approaches used to calculate transport properties of inter-
acting particles are mostly based on the Green's function 
formalism. In mesoscopic physics the Keldysh diagram-
matic technique turns out to be the most useful and ade-
quate calculation formalism for studying non-equilibrium 
properties of conductors (see, e.g., Ref. 28). 

In Ref. 29 the Keldysh formalism was used to derive a 
Landauer-type formula for the average current through an 
interacting multi-channel electron region. The general ex-
pression for the current (the Meir–Wingreen formula) takes 
a simple form for the case when the partial level widths 
ˆ ( = , )j j L RΓ  are proportional ˆ ˆ( ) = ( )L RΓ ε λΓ ε  (these 

quantities are in general matrices and energy dependent 
functions). For proportional couplings the current takes the 
form [29]  

 2 ˆˆ= [ ( ) ( )]Tr[ Im ],r
L R

eJ d f f G
h

− ε ε − ε Γ∫  (12) 

where ( ) ( )L Rf ε  are equilibrium distribution functions for 
electrons in leads with chemical potentials ( )L Rμ , 

 
ˆ ˆˆ ˆ( ) = ( ) ,

ˆ ˆ 1

L R
R

L R
Γ Γ λ

Γ ε ≡ Γ ε
+ λΓ + Γ

  

 ( ) = 2 ( ) ( ) ( ).j j j
mn j n mt t∗Γ ε πρ ε ε ε  (13) 

Here ( )L Rρ  is the electron density of states in the ( )L R  
electrode, j

nt  is the tunneling amplitude and the retarded 
Green function of the multi-level quantum dot is defined as 

 †( ) = ( ) { ( ), (0)} .r
nm n mG t i t c t c− θ 〈 〉  (14) 

Here ( )tθ  is the Heaviside step-function, † ( )n nc c  is the 
creation (annihilation) operator for electrons in the nth dot 
level and the average is taken with the total (interacting) 
dot Hamiltonian including the tunneling Hamiltonian. 
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For noninteracting electrons the retarded Green's func-
tion in the energy representation is 0 ( ) =rG ε

0= 1/ ( ( ) ( ) / 2)tiε − ε −Λ ε + Γ ε  (we consider a single-level 
quantum dot), where ( )Λ ε  and ( )tΓ ε  are the shift and 
broadening of the bare level energy 0ε  caused by the 
tunneling. In the wide band approximation, which is a 
plausible model for massive metallic leads, one neglects 
the level shift and assumes the level width to be an energy 
independent constant. In this case Eq. (12) coincides with 
the Landauer formula for the resonant current Eqs. (1) and 
(3). For interacting electrons the real and imaginary parts 
of the self-energy, which determines the retarded Green's 
function, acquire contributions both from the tunneling and 
the interaction Hamiltonians and to proceed further one 
needs to specify the interaction. 

The described approach for electron tunneling through 
an interacting quantum dot was generalized in Ref. 30 to a 
time-dependent transport. 

3.3. Sequential tunneling through a Luttinger liquid 
quantum dot 

Here we consider the situation when a quantum dot is 
weakly coupled to leads containing interacting electrons. 
The corresponding device — a SWNT-based single-
electron transistor (SET) — was first fabricated in 2001 
independently by two groups: one group from the Depart-
ment of Physics at TU Delft [9], another group from the 
Department of Physics and the Department of Chemistry 
and Chemical Biology at Harvard University [31]. In both 
experiments an atomic-force microscope tip had been used 
to mechanically buckle single-walled carbon nanotube 
producing two closely spaced defects. The defects (distinct 
bends in the nanotube) were found to act as tunnel barriers 
for electron transport along the nanotube surface. The fa-
bricated device (a doubly buckled SWNT) behaved as a 
SET when bias and gate voltages were applied. The esti-
mated charging energy for the experiment [9] and the aver-
age level spacing were of the same order ( 40∼  meV) and 
the device exhibited the properties of a SET even at room 
temperatures. 

In single wall carbon nanotubes electron transport is 
ballistic and one-dimensional (see, e.g., Ref. 32). It is 
known that in 1D electron–electron correlations are of cru-
cial importance and they result in Luttinger liquid (LL) 
behavior of the conduction electrons (see, e.g., [33]). 

What is the nature of resonant tunneling in a Luttinger 
liquid? In the seminal paper by C.L. Kane and M.P.A. 
Fisher [8] it was shown that, despite the fact that each tun-
nel barrier «pins» the Luttinger liquid at low temperatures 
and bias voltages, the double-barrier structure can support 
perfect resonant transmission provided that the Luttinger 
liquid correlation parameter 1(1 / )Fg U −+ ε�  (where 

2 ,U e n n�  is the 1D electron density) is 1 / 2g ≥  and the 
barriers are symmetric. In experiments with individual 
SWNTs the measured correlation parameter g  is small 
(the fitted value for STM experiments is 0.2g � , see, 

e.g., [34]) and the contact resistances are uncontrolled pa-
rameters. The implication is that the true quantum mechan-
ical resonance (perfect transmission through a symmetric 
double-barrier structure) predicted by the LL theory [8] is 
very difficult (if not impossible) to observe in experiments 
with carbon nanotubes. 

A more pragmatic question one may ask when dealing 
with SWNT-based SETs is the following. How does the 
«orthodox theory» of Coulomb blockade [24] (see also 
reviews in Ref. 23) change when the leads are modeled as 
Luttinger liquid wires? The simplest way to answer this 
question is to consider sequential electron tunneling 
through a single-level quantum dot weakly coupled to LL 
wires. The most significant predictions of the theory of 
sequential electron tunneling for noninteracting leads are 
(see Sec. 2.2): (i) 1/T-scaling of the peak conductance, and 
(ii) an exponential line-shape of the resonance and a linear 
dependence on temperature of the resonance width. 

Recall that the level width tΓ  depends on the barrier 
transparencies 2| |j jD t∝  and the electron density of 
states in the leads at the Fermi energy, Eq. (11). For non-
interacting electrons in the wide band approximation the 
density of states was assumed to be energy independent, 

0ρ . This is not the case for LL leads, where  

 
1/ 1

0= ,
g

F
LL

−ε − ε⎛ ⎞ρ ρ ⎜ ⎟Λ⎝ ⎠
 (15) 

and FΛ ε∼  is the cutoff energy. Contrary to the assump-
tion made to justify the wide band approximation, the den-
sity of states Eq. (15) for 1g �  is a sharp function of 
energy in the vicinity of the Fermi level. The dependence 
of Γ  on energy results in an additional temperature depen-
dence of the peak conductance of the form  

 
1/ 1

0 0
( )( ) , ( ) = .

g

g
T TG T G T

T

−Γ ⎛ ⎞Γ Γ ⎜ ⎟Λ⎝ ⎠
�  (16) 

So for Luttinger liquid leads one can expect non-universal 
(g-dependent) temperature scaling 1/ 2gT −  (Furusaki scal-
ing [35]). 

In Ref. 35 the theory of sequential electron tunneling in 
a LL was formulated and developed. As for the case of non-
interacting electrons the theory is based on the master equa-
tion approach and the formula that generalizes Eq. (10) for 
LL leads now looks like  

 0 ( , ) ( , )1= ,
2 cosh( / 2 ) ( , ) ( , )

L r R r
g

r L r R r

G T T
G

T T T T
γ ε γ επ

ε γ ε + γ ε
 (17) 

where ( = ,j R L ) 
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−
⎛ ε ⎞

Γ +⎜ ⎟Γ ππ⎛ ⎞ ⎝ ⎠γ ε ⎜ ⎟π Λ Γ⎝ ⎠
 (18) 

Here ( )zΓ  is the gamma-function, rε  is the addition ener-
gy of the quantum dot. Equation (17) is reduced to Eq. (10) 
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for the case of noninteracting electrons ( = 1g ) (notice that 
rε  is measured from the Fermi energy). According to Eqs. 

(17) and (18) the conductance does not depend on tempera-
ture if = 1/ 2g . We will show later that at this special 
point the result based on the master equation approach 
(perturbation theory in Γ ) is questionable even at high 
temperatures. To understand the problem let us find the 
temperature region where the sequential tunneling process 
dominates. When deriving Eq. (17) a perturbation theory in 
Γ  was used and therefore the obtained maximum conduc-
tance should be much smaller then the conductance quan-
tum at all temperatures, 0( )gG T G� . If L RΓ Γ∼  this 
leads to the inequality [35] 1/ 2( / )( / ) 1gT −Γ Λ Λ � . When 

< 1/ 2g  (strong repulsive interaction) the inequality is 
satisfied down to zero temperature. It means that for 

< 1/ 2g  true resonant tunneling ( 0=gG G ) does not oc-
cur. This conclusion is in agreement with the general con-
sideration of resonant tunneling in a LL [8]. One can show 
[8,35] that for < 1/ 2g  all higher order contributions in Γ  
are much smaller than the sequential tunneling conduc-
tance at all temperatures. In particular the second order 
process (called co-tunneling for noninteracting electrons) 
yields a conductance which scales with temperature as 

2 2(1/ 1)( / ) gT −Γ Λ  and this term is irrelevant at low tem-
peratures already for < 1g . Notice that this temperature 
scaling coincides with the one for a single impurity [8]. It 
means that in the co-tunneling process the electron tunnels 
through a double barrier as through a potential without 
internal structure (quantized energy levels). For moderately 
strong interaction ( > 1/ 2g  and not close to 1) and weak 
( 1)g →  interaction the inequality 0( )gG T G�  is satis-
fied at «high» temperatures, /(2 1)( / )g gT −Λ Γ Λ� . At 

= 1/ 2g  the peak conductance is T-independent in lowest 
order calculations and virtual processes have to be taken 
into account. We will see in the next section that at this 
special point the problem of resonance tunneling through a 
single-level quantum dot with some additional assumptions 
can be solved exactly [46] (it is mapped to the model of 
noninteracting fermions) and the result for the temperature 
dependence of the conductance does not agree with the 
prediction of the sequential tunneling approach. 

From Eqs. (17), (18) one can easily see that for sequen-
tial tunneling the conductance decays exponentially for 
large | |r Tε �  and the width of the resonance line-shape 
depends linearly on temperature as in the case of non-
interacting electrons. Higher order processes (and the most 
important of them, co-tunneling) decay as a power law and 
this means that co-tunneling will dominate in off-resonance 
tunneling for sufficiently large | |rε . The crossover de-
pends on interaction strength and the stronger the interac-
tion the larger the region where the off-resonance tunneling 
is described by the sequential tunneling approach. 

In experiments the quantum dot (small-sized quantum 
wire) is a multi-level system and at temperatures bigger 
than the mean level spacing, δε , all transport channels in 
the energy interval of order T  contribute to the resonant 
current. For noninteracting electrons in this temperature 

region CTδε ε� �  the conductance does not depend on 
temperature as (1/ ) constG T T∝ �  (classical regime of 
Coulomb blockade [36]). For a LLQD the peak conduc-
tance scales with temperature as a power law [35]  

 1/ 1/ 2( ) ,g gDpG T T + −δε ∝�  (19) 

where Dg  is the LL correlation parameter of a multi-level 
interacting QD. Notice that the additional factor 1/ gDT  
(see Eq. (16)) originates from the density of states of the 
dot levels. For noninteracting leads ( = 1)g  this high-T 
scaling was observed in experiments with SWNT-based 
SET (see Sec. 4). 

In addition, new intrinsic energy scales appear in a 
LLQD. The single-particle level spacing for a SWNT 
quantum dot is  

 
2

2
8= = , = ln ,g C C

NT

e L
L Rgρ

⎛ ⎞δε
Δ δε + ε ε ⎜ ⎟

⎝ ⎠
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where gρ  is the LL correlation parameter in the charge 
sector, Cε  is the electrostatic charging energy for a nano-
tube of length L  and radius NTR . The new energy scale, 
which for interacting electrons replaces /Fv Lδε� , is 
the plasmon level spacing = /g gρδ δε  (for strongly inte-
racting electrons g gδε δ Δ� � ). The differential con-
ductance of LLQD peaks at energies corresponding to the 
energy levels of all quantized excitations. Recall that spin-
charge separation in a LL yields two different energy 
scales for boson excitations: gδ  for plasmons and δε  for 
spin density wave excitations. The interplay of three dif-
ferent energy scales ( , ,g gΔ δ δε ) results in a Coulomb 
blockade oscillation picture [37] which is much more 
complex than the analogous oscillations in the case of non-
interacting electrons. 

Depending on the coupling to the environment the 
plasmons inside a LLQD can be either in equilibrium [38] 
(strong relaxation; in this case they are described by a 
Bose–Einstein distribution function) or in a non-equilib-
rium (weak relaxation) state. In the sequential tunneling 
regime the plasmon occupation probabilities are found by 
solving the corresponding master equation and for weak 
relaxation in the nonlinear transport regime they are not in 
equilibrium. It is interesting to notice that for strong elec-
tron–electron interactions these steady-state occupation 
probabilities depend only on the state energy and they take 
a universal form that depends on the bias voltage V  and 
the interaction strength [39]. This form resembles a Gibbs 
distribution with an effective temperature effT eV∼ . It 
has been shown [39–42] that different assumptions con-
cerning the distribution function of plasmons do not effect 
the average current. However the statistical properties of 
charge transfer processes through a LLQD (in particular 
the shot noise) are sensitive to the plasmon statistics [42] 
and some knowledge of the plasmon distribution function 
in LLQD can be extracted from experiments. 
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3.4. Resonant tunneling in a Luttinger liquid 

In an isolated individual single wall carbon nanotube 
the Coulomb interaction is poorly screened and the corres-
ponding LL correlation parameter g  is small. Tunnel bar-
riers pin the Wigner crystal formed by 1D conduction elec-
trons in the wire and the process of tunnel depinning, 
which determines the electrical current at low temperatures 
and bias voltages, occurs independently at each pinning 
center. Thus at low temperatures one can expect that se-
quential tunneling has to dominate the electron transport 
through a LLQD. However, the temperature scaling of the 
peak conductance measured in the experiment [9] does not 
agree with the predictions of the theory of uncorrelated 
sequential tunneling described in the previous section. 
These measurements lead to a revival of the interest in 
resonant tunneling in a Luttinger liquid. 

It is well known [8] (see also [43]) that in a Luttinger 
liquid resonant tunneling ( 0( 0) =rG T G→ ) through a 
double-barrier system is possible only if (i) 1 / 2g ≥ , and 
(ii) the barriers are symmetric. The last condition =L RΓ Γ  
is physically understandable. The resonance conductance 
of noninteracting electrons through an asymmetric barrier, 
where = | | /( ) 0L R L RA Γ −Γ Γ + Γ ≠  is always smaller 
than the conductance quantum: 2

0 0= (1 )AG A G G− ≤ . 
This means that even electrons with resonant energy are 
backscattered by the asymmetric double-barrier structure. 
Since it is known (see, e.g., Ref. 44) that in a repulsively 
interacting Luttinger liquid any finite backscattering is 
renormalized to give a total reflection at = Fε ε , the re-
quirement of fully symmetric barriers to achieve resonant 
transmission in a LL looks physically evident. Less evident 
is the first condition 1 / 2g ≥ , which is a formal con-
sequence of the renormalization group equations derived 
for spinless electron transport through a double-barrier 
structure in the large barrier limit [8]. For a very strong 
repulsive interaction 1g �  (the limit of a 1D Wigner 
crystal) there is no room for resonant electron tunneling 
since the quantum depinning of a Wigner crystal occurs 
independently at each local defect [45]. On the other hand 
for weak interaction 1g → , when it is possible to rep-
resent electron transmission through the barrier in terms of 
a renormalized transmission probability [44] one can ex-
pect resonant tunneling at least for special conditions 
(symmetric barriers). 

The boundary point = 1/ 2g  corresponds to the strong 
interaction region and the exact solution of the problem is 
known at this special point [8] (see also [46]). In particular, 
the peak conductance takes a form [8,46] that coincides 
with the resonant conductance of noninteracting electrons 
through a symmetric single-level quantum dot,  
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2 2 2
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( ) = .

4 ( / 2 )cosh
s

G dG T
T T

∞

−∞

Γε
ε ε + Γ∫  (21) 

Here 0Γ  is the bare level width; 2
0 = 2 | | / ,Ft v tΓ  is the 

electron tunneling amplitude. This coincidence is not sur-

prising since at = 1/ 2g  the Luttinger liquid model with 
an impurity can be mapped [46,47] onto the model of non-
interacting fermions. The corresponding transmission 
probability for asymmetric barriers and for off-resonance 
tunneling was calculated in Ref. 46 (see Eq. (10) in Ref. 
46). It was shown that for asymmetric barriers the peak 
conductance at tT Γ�  vanishes as 2

AG T∝ . This low-T 
behavior coincides with the 2(1/ 1)gT − -scaling predicted by 
Kane and Fisher [8] for a single impurity. It means that at 
low temperatures electrons tunnel through an asymmetric 
quantum dot non-resonantly as through a barrier without 
internal structure. The peak conductance [46] takes a sim-
ple asymptotic form for the case of strong asymmetry 

2 2 2/ ( ) 1L L RA ≡ Γ Γ + Γ � , where one finds  
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The 1/T-scaling found in the model [46] for the high-T 
conductance shows that the theory of sequential electron 
tunneling, which at = 1/ 2g  predicts a temperature inde-
pendent high-T conductance (see Sec. 2.2), fails to correct-
ly describe resonant electron tunneling at all temperatures 
for this special case. This conclusion could be an artifact of 
the exactly solvable model. To solve the problem, the elec-
trostatic interaction between the leads and the dot was add-
ed to the model and the strength of this interaction was 
tuned to a special strong coupling point (the Toulouse 
point in the corresponding two-channel Kondo problem) 
[46]. The role of this interaction in the predicted anomal-
ous high-T scaling of the Luttinger liquid resonance con-
ductance is not physically clear (mathematically it is at this 
point the four-fermion interaction is removed and the stu-
died problem can be mapped to «quadratic» Hamiltonian). 
Notice that a numerical study (by the fermion functional 
renormalization group method) of resonant tunneling in a 
Luttinger liquid [52] showed that, for model parameters 
when the peak conductance behaves as a power-law in 
temperature, the predictions of (uncorrelated) sequential 
tunneling model were verified at high temperatures in the 
whole «questionable» region of correlation strength 
1/ 2 < 1g≤ . 

To understand the physical picture of resonant tunne-
ling in a Luttinger liquid it is useful to consider this phe-
nomenon in the theory of 1D weakly interacting electrons. 
One can expect that for weakly interacting particles the 
Landauer–Büttiker approach could be a reasonable de-
scription of electron transport properties if it is possible to 
replace the elements of the bare scattering matrix by those 
renormalized by interaction. This is indeed the case when 
the most divergent terms in the perturbation theory in the 
interaction strength are induced by purely elastic 
processes. In Ref. 44 a theory of transport properties of 1D 
weakly interacting electrons was proposed. The theory 
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starts with a calculation of the electron backscattering am-
plitude due to a local potential in the Hartry–Fock approx-
imation, improved by a renormalization group (RG)-like 
summation of the most (logarithmically) divergent terms of 
the perturbation theory. The solution of the RG equations 
allows one to obtain the effective transmission probability 
renormalized by interaction. 

In Ref. 48 this approach was generalized for the case of 
an energy dependent scatterer (double-barrier). For the 
energies far from the resonant level Δ  the renormalized 
transmission probability was shown [48] to take the form 
of a Breit–Wigner transmission probability, Eq. (3) with 
energy dependent level widths of the form  

 ( ) =
j

j j

αε⎛ ⎞Γ ε Γ ⎜ ⎟Λ⎝ ⎠
 (23) 

( = ,j L R ). Here the energy ε  is counted from the Fermi 
energy, FΛ ε∼  is an ultraviolet cutoff and ( )L Rα  is the 
coupling constant ( 2 / Fe vα � ) which is assumed to be 
small. In this limit the exponent in Eq. (23) can be rewrit-
ten as = 1/ 1j jgα − , where ( ) 1L Rg �  is the LL correla-
tion parameter. The energy dependent factor in Eq. (23) is 
directly related to the energy dependent density of states in 
a LL with an open boundary [49]  

2 1/ 1
0= 2 | | = ( / ) g

LL LL t −Γ πρ Γ ε Λ . 
The corresponding effective (interaction dependent) trans-
mission coefficient takes the form [48]  

 eff 2 2
( ) ( )

= .
( ) [ ( ) ( )] / 4

L R

L R
T

Γ ε Γ ε

ε − Δ + Γ ε + Γ ε
 (24) 

By putting Eq. (24) into the Landauer formula for the con-
ductance, Eq. (2), we reproduce — for g  close to 1 (weak 
interaction) — the high-temperature scaling of the peak 
conductance predicted in Ref. 35. 

At low energies the energy dependence of the effective 
transmission probability is changed. The transmission 
coefficient takes a simple form for = =L Rα α α  and 

= 0Δ  (for a general case see Eq. (6) in Ref. 48)  

eff 2 2
( ) ( )

( ) = .
( ) ( ) [ ( ) ( )] / 4

L R
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L R L c R c
T

Γ ε Γ ε
ε ≤ ε

ε + Γ ε Γ ε + Γ ε −Γ ε
 

  (25) 
The new energy scale cε  (crossover energy), which ap-
peared in Eq. (25), is the solution of the equation 
2 = ( ) ( )c L c R cε Γ ε + Γ ε . Equation (25) shows that at low 
temperatures the width of the resonance peak for an 
asymmetric barrier ( L RΓ ≠ Γ ) saturates at the value 

( 0)A cW T → ε� . This is the physical meaning of cε . For 
a symmetric barrier ( =L RΓ Γ ) the width, as one can see 
from Eq. (25), shrinks to zero [8,48] ( 0)sW T → �

( / )c cT αε ε� . Notice that for weak interaction 
1/ 1 1 1g gα − −� � �  and the temperature dependence 

of the symmetric resonance line-width agrees with the 
general result [8] 1( 0) g

sW T T −→ ∝ . According to 
Eqs. (2), (23), and (25) the low-temperature scaling of the 
peak conductance for the asymmetric barrier case is 

2 ,AG T α∝ 1/ 1gα −� . This temperature dependence 
coincides with the scaling found for a single-impurity case 
[8]. Therefore the electron tunneling through an asymme-
tric double-barrier structure at low temperatures occurs in a 
single-stage process and the internal structure of the barrier 
does not affect the low-energy electron dynamics [48]. 

In the experiment Ref. 9 the temperature dependence 
of the peak conductance, ( )pG T , was measured for a 
SWNT with a double-barrier structure induced by two 
closely situated defects (the defects — tube buckles — 
were artificially produced with the help of an atomic 
force microscope). An unconventional temperature be-
havior, 2 1end( )pG T T α −∝ , was observed (here end =α  
= (1/ 1) / 4g −  and the factor 4 appears due to spin and 
valley degeneracies in the electron spectrum). This scaling 
can neither be explained by the theory of sequential elec-
tron tunneling, which gives the exponent end 1α − , nor by 
the mechanism of direct electron tunneling through the 
asymmetric double-barrier end(2 ).α  

It was suggested in Ref. 20 and theoretically demon-
strated in Ref. 21 that, when processes of higher order in 
the level width Γ  are included in the master equation ap-
proach, the observed temperature scaling of the peak con-
ductance can be obtained for an intermediately strong inte-
raction ( > 1/ 2g ) and moderately strong barriers. The 
developed approach was named correlated sequential 
tunneling (CST) [32]. The proposed calculation scheme 
[50] involves a procedure that allows one to determine 
self-consistently the infra-red cutoff energy (effective level 
width), which is indispensable for the evaluation of higher 
order diagrams. The desired scaling appears in the CST-
approach as a result of several different contributions and 
has no clear physical meaning. The existence of a CST-
regime of resonant tunneling was confirmed in Ref. 51 by 
numerical calculations using a quantum Monte Carlo algo-
rithm but was questioned by numerical simulations [52] 
using a functional renormalization group procedure. Until 
now the discussed unconventional temperature scaling has 
not been observed or questioned in any other experiment. 
The problem of resonant electron tunneling in SWNTs 
demands further experimental investigation. 

3.5. Long-range quantum coherence in a chiral Luttinger 
liquid 

Electron–electron correlations and quantum interfe-
rence are two fundamental physical phenomena which are 
responsible for many unusual properties of small-size and 
low-dimensional conductors. They are of different physical 
origin. Interference effects are coherent quantum pheno-
mena while Coulomb correlations are non-coherent effects 
that could survive even in the classical limit. However, 
very often they cannot be separated and their interplay 
leads to new physics — Coulomb correlations of coherent 
electrons. 

Resonant tunneling in a Luttinger liquid is an example 
where the electron–electron interaction strongly affects the 
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interference picture. The influence of interactions on inter-
ference was also studied for the problem of Aharonov–
Bohm (AB) oscillations in quantum rings [53–58] (see also 
the review [59]). In metallic rings threaded by a perpendi-
cular magnetic field AB oscillations appear due to topolog-
ical properties of electron trajectories, which are characte-
rized by an integer quantum number (winding number). 
The conditions for quantum interference in this case are set 
up by the special (ring-like) geometry [60]. Elastic electron 
scattering by impurities does not destroy AB oscillations as 
long as electron transport in the dirty ring is phase coherent 
(that is why the size of the ring must be smaller than the 
phase breaking length) [61]. The amplitude of persistent 
currents in normal rings depends on impurity scattering 
and for the ballistic regime of transport it is strongly sup-
pressed when electron backscattering by impurities is 
strong [62]. 

The manifestation of resonant electron tunneling in sys-
tems where a persistent current flows in a quantum ring 
with two tunnel barriers is more complex than in a linear 
geometry. It was shown in Ref. 63 that for noninteracting 
(or weakly interacting) electrons two different regimes of 
resonant behavior appear: (i) «true resonances», when the 
amplitude of the persistent current does not depend on the 
barrier transparency (for symmetric barriers), and (ii) 
«semi-resonances» when the amplitude of the persistent 
current in a double-barrier ring is determined by the trans-
parency of a single barrier. 

The influence of the electron–electron interaction on 
persistent currents in 1D rings is determined by the same 
effects as in quantum wires. The Kane–Fisher effect and 
Coulomb blockade play crucial roles in charge transport 
involving correlated electrons. It was shown [53,64] that in 
a perfect (impurity-free) ring the electron–electron inter-
action does not affect the persistent current. On the con-
trary, in the presence of (even weak) impurity scattering 
the persistent current of strongly (repulsively) interacting 
electrons (Wigner crystal-ring) is strongly suppressed 
[54,55] (an impurity «pins» the Wigner crystal). Both for 
resonant tunneling and for AB oscillations in quantum rings, 
the destructive influence of interactions on interference ef-
fects in 1D systems is explained by the strong enhancement 
of backscattering in a Luttinger liquid. However, the influ-
ence of interactions is not always destructive. 

In Ref. 65, it was shown that the interference pattern in 
a multi-channel chiral Luttinger liquid (CLL) produced by 
inter-channel electron transitions is enhanced by interac-
tions. Here we discuss this prediction in some detail since 
recently the effect was claimed [66] to have been observed 
in an experiment. 

Consider a two-channel Luttinger liquid with two nar-
row (point-like) transition regions separated by a distance d. 
In both channels the electrons are either right- or left-
moving particles. Inter-mode transitions at local centers 
make the structure under study behave as a quantum inter-
ferometer and in this sense it is analogous to a double-
barrier scattering structure in a single-channel non-chiral 

Luttinger liquid. Unlike the latter it is, however, free of 
«dangerous» backscattering events. 

In real experiments a multi-channel chiral Luttinger liq-
uid is realized by the edge states in systems that display the 
fractional quantum Hall effect [68] (see also reviews in 
Ref. 69). Inter-channel electron transitions can be induced 
by microwave irradiation. In a recent experiment [66] ir-
radiation-induced oscillations of the magneto-resistance in 
a magnetically confined quantum wire were attributed to 
the long-range quantum interference effect in chiral Lut-
tinger liquid predicted in Refs. 65 and 70. 

The Hamiltonian of a 2-channel CLL takes the form 
(for definiteness we consider right-moving electrons)  

 2 2 0
1 1 2 2 1 2= ( ) ( ) ( ) ( ) ,

V
H dx u x u x x x⎧ ⎫π ρ + ρ + ρ ρ⎨ ⎬

π⎩ ⎭∫  (26) 

where 1(2)ρ  are charge-density operators with commuta-
tion relations [ ( ), ( )] = ( / 2 ) ( )j k jk xx y i x yρ ρ δ π ∂ δ −  and 
the velocities 0= /j jFu v V+ π  ( jFv  are the Fermi ve-
locities in the channels and 2

0V e∼  is the strength of the 
electron–electron interaction). 

The Hamiltonian of Eq. (26) is readily diagonalized by 
a rotation in = 2n  «flavor» space, = ( )i ij jRρ ψ ρ . In its 
diagonal form, 
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the Hamiltonian describes two decoupled boson modes 
with velocities  
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The dimensionless correlation parameter K  plays a 
significant role in the CLL-based quantum interferometer. 
It determines the influence of interactions on interference 
effects. To demonstrate the interplay of coherence and in-
teractions in our system we calculate the power absorption 

( )P ω . Monochromatic irradiation of frequency ω  induces 
inter-channel electron transitions at the points = 0x  and 

=x d . We describe them by the tunneling Hamiltonian  

 † †
0 1 12 2= e [ (0) (0) ( ) ( )] h.c.,i t

tH t d dω Ψ Ψ +Ψ Ψ +  (29) 

where † ( )[ ( )]jj x xΨ Ψ  is the electron creation [annihila-
tion] operator at points = 0,x d  and 0t  is the electron 
transition amplitude, which is assumed to be small, 

0| | .Ft v�  
In a perturbation theory with respect to the transition 

amplitude the power absorption 12( ) = ( , )P dω ωΓ ω  
(where 12 ( , )dΓ ω  is the inter-channel electron transition 
rate) is expressed in terms of the «dipole density» 

†
21( , ) = ( , ) ( , )D t x t x t xΨ Ψ  correlation function. Hence  

 12 osc osc( , ) = ( , = 0) ( , ) ,d d dΓ ω Γ ω +Γ ω  
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†0
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2 | |
( , ) = e ( ,0) (0, ) ,i tt

d dt D t D d
∞

ω

−∞

Γ ω 〈 〉∫  
(30)
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where ...〈 〉  denotes a thermal average. The correlation 
function in Eq. (30) is evaluated in a standard way by us-
ing the bosonization technique (see, e.g., [33]). The result 
at zero temperature is [65] 

 12
1 2

12

( , )
= 1 Re{exp[ ]

( , = 0) F F
d

i k k d
d s+

⎛ ⎞Γ ω ω
+ − − ×⎜ ⎟Γ ω ⎝ ⎠

  

 1 1
1 1(1 sin 2 , 2; ( ))}.F i d s s− −

+ −× − ψ ω −  (31) 

Here jFk  is the Fermi wave-vector, 1 1( , ; )F a c z  is the con-
fluent hypergeometric function (see, e.g., Ref. 71) and 

 
2/ 12

0
12 12 2

2 | | 1( , = 0) = 2 ( ) = ( )
K Kt s

d
s s s

+
+

+ − −

⎛ ⎞
Γ ω Γ ω ωΘ ω⎜ ⎟

π ⎝ ⎠
  (32) 

is the inter-channel transition rate, 12 ( )Γ ω , for a single 
«scatterer». From Eq. (32) it follows that interactions al-
ways suppress the inter-channel transition rate. However, 
unlike in the Kane–Fisher effect [8], the renormalization 
factor for a CLL does not depend on energy (although a 
weak — logarithmic — energy dependence appears for 
long-range interactions [70]). 

In contrast, the interference contributions depend strong-
ly (as a power law) on the frequency ω . The argument z  
of the hypergeometric function 1 1( , ; )F a c z  in Eq. (31) is 
always larger than unity in realistic situations (since 

1 1| |=| ( ) | / 1Fz d s s d− −
+ −ω − λ∼ �  in the weak coupling 

regime and 2| | / 1Fz d eε∼ �  in the strong coupling 
case) and we may use the known asymptotic expansion of 
the confluent hypergeometric function (see, e.g., Ref. 71). 
In this case the oscillating part of the normalized power 
absorption takes the form [65] 

 osc
sin sin

| | | | ,
( ) ( )

I z z−λ −λ+ −− +

+ −

Φ Φ
−

Γ λ Γ λ
�  (33) 

where  

1 22 2
= 1 , =

1 2 1
F F

K Kk k d
sK K

± ±
+

⎛ ⎞ω π
λ ± Φ − − +⎜ ⎟

⎝ ⎠+ +
 

  (34) 
and ( )xΓ  is Gamma-function. These oscillations are re-
miniscent of the Friedel oscillations in a LL (see, e.g., 
Ref. 72). 

In the strong coupling regime ( 1K � ) the exponent 
0−λ →  and hence, according to Eq. (33), the oscillating 

contribution to the power absorption does not decay with 
an increasing distance d  between the transition points. It 
means that long-range quantum coherence is maintained in 
a CLL-based quantum interferometer. The oscillations 
maxima occur when  

 1 2 = 2 ,F Fk k d n
s+

⎛ ⎞ω
− − π⎜ ⎟

⎝ ⎠
 (35) 

where n  is an integer. 

In the experiment [66,67] a two-channel chiral Luttin-
ger liquid was formed in the middle of a magnetically con-
fined quantum wire (MCQW) formed in a 2D electron gas. 
The finite magneto-resistance of the wire measured in ex-
periment is caused by electron (back)scattering from the 
central chiral modes to the edge states, which have oppo-
site chirality. If one assumes a strong difference in the 
couplings of the chiral modes to the edge states, then the 
redistribution of electrons between the two central modes 
induced by irradiation could strongly influence the magne-
to-resistance of the wire. In a MCQW the difference be-
tween Fermi wave-vectors is controlled by applied magne-
tic field B. In this case Eq. (35) determines a fan chart of 
peak positions in the Bω−  plane that has parallel 
branches, each indexed by n. Experimental data (see Fig. 4 
in Ref. 67) are quantitatively reproduced by Eq. (35) with 
the distance between transition centers ( 11d �  μm) as 
the only adjustable parameter [66,67]. 

An effect of interaction-induced enhancements of the 
conductance of quantum wires was also predicted in 
Ref. 73. There it was shown that for the case of a weak 
time-dependent local scattering potential the electron–
electron interaction can enhance forward scattering, result-
ing in a stimulation of the conductance even in non-chiral 
Luttinger liquids. 

4. Electron transport in single-wall carbon nanotubes 
and quantum wires in confined 2DEGs (experiment) 

So far, the best experimental systems to test the Luttin-
ger liquid properties of 1D electron systems have been 
GaAs quantum wires and carbon nanotubes. Historically, 
GaAs was the first material system where quantized values 
of the 1D conductance were discovered by the Delft [74] 
and Cambridge groups [75], after it had been possible to 
define narrow constrictions (quantum point contacts) in 
2DEGs by means of the so-called split gate technique. 

The first attempts to confirm the predictions of the LL 
model were made by the Tarucha group [76], who ob-
served deviations of the conductance from 22 /e h  in long 
split-gate constrictions at low temperatures. Qualitatively, 
the results agreed with the theory [8]. However, the ap-
pearance of sharp resonances at the plateau at low tem-
peratures made it difficult to compare the results quanti-
tatively and to deduce the value of the g parameter. Later, 
two technologically more advanced techniques have been 
developed to produce long high-quality quantum wires 
in GaAs. The first technique employed regrowth of an 
AlGaAs/GaAs heterostructure on a V-shaped prepatterned 
GaAs substrate [77], whereas the second technique [78] 
used regrowth of a heterostructure on the fresh in-situ 
cleaved edge of another previously grown 2DEG hetero-
structure. Both techniques [77,78] allowed the manufactur-
ing of long ballistic quantum wires with a structurally 
built-in confinement potential, rather than one induced 
electrostatically by gates. Results of transport studies on 
these novel 1D quantum wires, which show quantized val-
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ues of the conductance, have been reported in a number of 
publications [79,80]. 

Suppression of the conductance at low temperatures 
was observed [79,81] in these systems and analyzed within 
the framework of the LL theory. Although the results of 
Ref. 79 were not fully explained within LL model, the ori-
gin of the effect was believed to come from the interac-
tions suppressing the coupling between the 2DEG and the 
electrons in the wire. More recent results [81] for V-groove 
quantum wires, were demonstrated to be consistent with 
the LL model predictions in the sense that the value of the 
g parameter, = 0.68g , deduced from the experiment is in 
good agreement with the theoretical estimate for a GaAs 
quantum wire. Cleaved-edge overgrown wires were also 
used for resonant tunneling studies [82] using negative 
gate voltages large enough to pinch off the wire. The ob-
served few peaks in the conductance in the pinched-off 
regime were attributed to tunneling through a single 1D 
island formed somewhere under the gated region and con-
nected to the rest of the conducting 1D band by thin tunne-
ling barriers. The results of these studies were analyzed 
within the framework of LL theory, but a discrepancy be-
tween the values of g  estimated from theory and experi-
ment was found. 

Single-wall nanotubes is another well studied one-di-
mensional electronic system. It is believed that carbon na-
notubes are already making and will make even greater 
impact to both fundamental science and technology. Nev-
ertheless, in the present context they have many drawbacks 
relative to GaAs quantum wires. The major difficulty aris-
es from highly resistive electrical contacts to the nanotubes 
and poor gating techniques. This becomes a major obstacle 
to observing the most fundamental feature of a 1D conduc-
tor, which is the quantized value of the ballistic 2-terminal 
conductance. It is believed that for a SWNT this value 
should be 24 /e h  [83,84]. However, nobody has observed 
this value experimentally yet. As a matter of fact there are 
only few studies reporting the observation of conductance 
steps [85–87]. The observed values were, however, either 

2 /e h  or 22 /e h . On the another hand the theoretical es-
timate of the g parameter is much smaller for carbon nano-
tubes than for GaAs wires and therefore the interaction 
effects predicted by LL model should be revealed much 
stronger. Several groups [88,89] reported a suppression of 
the conductance of SWNTs at low temperatures and the g
values they deduced from their experiments were consis-
tent with the theoretical estimate. The experiments in 
double-kink SWNTs [9] exhibited conductance peaks, 
whose value decreased with temperature. The results were 
attributed to resonant tunneling (see the discussion in 
Sec. 3.4), but could not be explained by any existing theory 
within the framework of the LL model. 

In the following we will give a more detailed descrip-
tion of the few experiments revealing interaction effects in 
the context of resonant tunneling in GaAs quantum wires 
and SWNTs. 

4.1. Fabrication of GaAs quantum wires 

4.1.1. V-groove quantum wires. The method for grow-
ing quantum wires by MOCVD on V-grooved substrates 
was developed a long time ago [77]. However, during a 
long period the grown wires were undoped and used only 
for optical studies. The initial V-shaped surface is formed 
in a GaAs (100) substrate by crystallographically preferen-
tial wet etching. We refer to the original work [77] for a 
detailed description of the kinetics during the MOCVD 
growth of GaAs and AlGaAs on different facets of the V-
shaped substrate, but note that a standard GaAs/AlGaAs 
heterostructure with a typically 14 nm thick GaAs quantum 
well can be grown on the etched substrate (see Fig. 1). As 
a result of the different growth rate on different facets, the 
thickness of the GaAs quantum well at the very bottom of 
the groove is thicker than at the sidewalls, resulting in a 
lateral confinement potential. When the grown heterostruc-
ture is remotely doped, a 1D conducting channel is formed 
along the bottom of the groove. This conducting channel 
coexists (Fig. 1) with the 2DEG formed at the sidewalls of 
the groove and in general the contact resistance between 
the 1D electrons and the 2DEG is quite low [80,90]. An 
electrostatic gate is employed to remove the carriers from 
the 2DEG leaving only electrons in the wire under the gate. 
The number of 1D subbands connecting the regions across 
the gate can be varied and controlled by the same gate. A 
contact to the device is established via the contacts to the 
2DEG in the ungated regions as illustrated in Fig. 1. 

4.1.2. Cleaved edge overgrowth. The method was pro-
posed by L. Pfeiffer and H. Stormer [78], and the first suc-
cessful realization of a conducting quantum wire was re-
ported [79] a few years later. The fabrication process is 
shown schematically in Fig. 2. First, a standard 2DEG he-
terostructure containing a quantum well is grown on a pla-
nar (100) GaAs substrate. The grown wafer is then cleaved 
in the MBE chamber and another 2DEG GaAs/AlGaAs 

Fig. 1. Schematic diagram of the device geometry. The quantum 
wire (marked QW) is located at the bottom of the V-shaped 
groove. The inset shows a cross-sectional TEM image of the 
wire, on which the charge distribution is schematically depicted. 
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heterostructure is grown on the cleaved edge of the wafer. 
The quantum wire forms along the line of the intersection 
between two GaAs planes normal to each other. Similarly 
to the previous method the electrons in the wire are shorted 
by the 2DEG electrons and an electrostatic gating is re-
quired to define a region where the electrical connectivity 
is provided only by 1D confined carriers. 

4.2. Deviation of the 1D conductance from the 
conductance quantum at low temperatures 

According to LL theory even weak backscattering in 
the wire will cause a temperature dependent deviation of 
the quantum conductance of a single-mode wire from the 
clean-limit value of 22 /e h  [8,91,92]. Indeed, such devia-
tions have been reported in both types of wires. Figure 3 
shows the variation of the first-plateau conductance as a 
function of temperature.  

The value of the g parameter found for wires [81] with 
weak backscattering was remarkably close to the theore-
tically estimated value, as is evident from Fig. 4, whereas 
the samples possessing stronger disorder gave smaller val-
ues of g. The authors attributed the variation of g  with 
disorder to an artifact arising from having to fit the varia-
tion of the conductance of such samples to formulas only 
valid for weak backscattering.  

It is interesting that so far there has been no report on 
experiments in GaAs wires testing the opposite limit, i.e., a 
wire having a large barrier for which the conductance is 
predicted to vanish as ( )pG T Tα∝ , where = (1/ 1)gα − . 

Such a regime has been tested in SWNTs [88,89] and be-
low we briefly describe these experiments. 

Fig. 2. Wire preparation by cleaved edge overgrowth of GaAs–
AlGaAs by molecular-beam epitaxy (courtesy of Amir Yacoby
[79]). 

Fig. 3. (a) Differential conductance of a 2 mm long wire in a
25 nm quantum well vs top-gate voltage TV . The different curves
correspond to different temperatures. Inset: The differential con-
ductance vs temperature for a value of TV  marked by the arrow;
(b) Conductance vs gate voltage gV  for 0.5 µm gate width at
various temperatures, after subtraction of a series resistance. 

Fig. 4. Conductance values of the first plateau vs temperature in 
the wire. Both theoretical expressions are plotted for the same 
parameter of = 0.64.g  
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4.3. Carbon nanotubes 

Carbon nanotubes can be grown by a laser arc-dis-
charge method [93] or by CVD methods [94]. The raw 
material, usually in the form of bundles (highly entangled 
ropes), is dispersed in an organic solvent and deposited 
onto a substrate using a spinner. An atomically uniform 
small-diameter carbon nanotube has some natural advan-
tages over the GaAs quantum wires described above, one 
of them being a large energy separation between the 1D 
subbands (1 eV for a 1 nm tube) allowing the observation 
of 1D transport at room temperature. However, making 
electrical contacts to the tube is problematic and getting 
low values for the contact resistance remains a challenging 
experimental task. 

Typically, contacts are made from the bottom, i.e., the 
nanotubes are spun onto a substrate with a lithographically 
prefabricated array of contact pads (Au or Pt). Later an 
AFM is used to determine the location of the nanotubes 
bridging two or hopefully more electrodes [95]. Another 
possibility is to map the positions of the deposited nano-
tubes using a substrate with markers and to provide on-top 
electrical contacts using e-beam lithography [96]  

Figure 5, a and b show, respectively, a SWNT and a 
carbon nanotube rope attached to metallic pads using the 
two described contacting methods. In a typical metallic 
nanotube, the 2-terminal resistance is dominated by the 
resistance of the tunnel junctions between the electrodes 
and the nanotube. The high contact resistance, usually ex-
ceeding 1 MΩ, makes it difficult to study the effect of the 
interactions in the weak backscattering regime, i.e., when 
the deviations of the conductance from its ballistic value 
are small. However, it has been experimentally demon-
strated that a mechanically introduced kink in the nanotube 
makes its intrinsic resistance much larger than the contact 
resistance. 

The variation of the SWNT resistance with temperature 
and applied voltage has been reported in a number of pub-
lications [88,89], and is illustrated in Figs. 6–8. It has been 

argued that the exponent α  that governs the temperature 
dependence is different for a bottom-contacted SWNT, 

bulk = (1/ 2) / 8g gα + −  compared to top-contacted tubes 
(cutting the nanotube), end = (1/ 1) / 4gα −  [97]. More-
over, for a kinked nanotube the exponent end-end =α
= (1/ 1) / 2.g −   

Fitting the data for differently connected nanotubes 
with or without kinks, to the LL model gave the same g
parameter, ranging between 0.2 and 0.3, fully consistent 
with the theoretical estimate. 

4.4. Resonant tunneling in GaAs quantum wires and 
SWNTs 

When a sufficiently large negative gate voltage is applied 
to a GaAs quantum wire (Fig. 9,a), the 1D conduction sub-
band in the wire becomes depleted of carriers (pinch-off) 
and zero conductance is observed experimentally. 

However, it has been argued [82] that such a depletion 
does not happen simultaneously for all electrons in the 
wire under the gate. Due to small potential fluctuations an 
almost-zero conductance appears when the bottom of the 
1D subband crosses the Fermi energy at the weakest point 
of the wire. Upon further gate biasing a second barrier ap-
pears in the wire due to the same reason. A small conduct-
ing island is therefore formed between the two barriers. 
This small 1D «puddle» of conducting electrons forms 
discrete energy levels facilitating resonant tunneling 
through the wire. The appearance of conductance peaks in 
the pinched-off regime of the wire was indeed observed 
experimentally [82] and was attributed to the resonant 
tunneling effect. Figure 9,b shows a series of resonant 
peaks as well as their temperature dependence. An analysis 
of the data indicated that the observed temperature varia-
tion could not be fully explained by existing theoretical 
models. 

A qualitatively similar electronic system was realized 
using a SWNT by a couple of groups [9,31]. The formation 
of two kinks in the SWNT by means of an AFM, as illu-

Fig. 5. (a) AFM image of a carbon nanotube on top of a Si/SiO2 substrate with two 15 nm thick Pt electrodes; (b) AFM image of a 
completed device. The bright regions are the lithographically defined metallic contacts, labeled 1 to 4. A nanotube rope is clearly visible 
as a brighter stripe underneath the metallic contacts (courtesy of Cees Dekker [95] and Paul McEuen [96]). 
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strated in Fig. 10 resulted in a small segment of the nano-
tube being limited by two barriers [9]. 

The observed variation of the conductance peaks versus 
temperature [9] is shown in Fig. 11. The strong tempe-
rature dependence of the peaks was impossible to explain 

as a result of sequential or of resonant tunneling, and 
another theoretical model involving so-called correlated 
sequential tunneling was invoked to explain the experi-
mental data (see Sec. 3.4). 

Fig. 6. Conductance G plotted versus temperature T for individual nanotube ropes. (a) Data for ropes that are deposited over pre-defined
leads (bulk-contacted); (b) data for ropes that are contacted by evaporating the leads on top of the ropes (end-contacted). The plots show
both the raw data (solid line) and the data corrected for the temperature dependence expected from the Coulomb blockade model
(dashed line). The upper inset to (a) shows the power law exponents inferred for a variety of samples. Open circles denote end contacted
samples, and crosses denote bulk-contacted ones (courtesy of Paul McEuen [88]).  
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5. Vibrational effects in resonant electron transport 

So far we have considered electron tunneling through a 
fixed, unmovable quantum dot (QD). However, tunneling 
of a single electron between nanosized objects is accom-
panied by an increase in electrostatic energy which can be 
comparable to elastic and mechanical energy scales of the 
system. As a result a significant deformation of the 
dielectric material which separates the QD from the 
metallic electrodes can occur if it is mechanically soft. 
Besides, the tunneling electron can excite vibrational 
modes of the QD resulting in the appearance of additional 
(inelastic) channels for electron transport and of polaronic 
effects. In this section we study the influence of vibrational 
effects on resonant electron tunneling. 

The most evident real systems where all these effects 
should be pronounced are molecular transistors (see re-
views [98,99]). In molecular transistors the role of the 
central electrode (quantum dot) is played by a single 
molecule. The interaction of the molecule with the metallic 
electrodes results, for weak coupling, in a rearrangement 
and broadening of the molecular energy levels. When the 
coupling is strong a molecule can provide even perfect 
transmission through a junction as it was demonstrated in 
experiments using break-junction devices [100]. In what 
follows we will assume weak molecule-metal coupling and 
only consider tunneling transport through molecular 
junctions. When a molecule bridges a small gap between 
closely situated metallic electrodes two types of molecular 
orbitals become significant for electron transport — 
HOMO (highest occupied molecular orbital) and LUMO 
(lowest unoccupied molecular orbital) states. For a neutral 
molecule the Fermi energy of the leads falls into the 

LUMO–HOMO energy gap (typically of the order of 1 eV) 
and the electrical current at low temperatures and bias 
voltages (V ) is practically blocked unless the gate voltage 
shifts the LUMO or HOMO states to the «eV-window». 
Therefore the I–V characteristics of single-molecule 
transistors can demonstrate resonance features, Coulomb 
blockade phenomena and conductance oscillations (in 
large molecules) as a function of gate voltage similar to the 
analogous effects observed in single-electron transistors 
formed by laterally confined 2DEGs. The important 
differences (molecular transistors can function even at 
room temperatures) are qualitatively explained by the large 
values of charging energy and level spacing. Although 
experimental data for molecular junctions strongly vary 
from molecule to molecule (sometimes by orders of mag-
nitude) numerical calculations of their transport properties 
based on density functional theory are in progress to fit the 
data (see the recent discussion in Ref. 98). 

Fig. 8. Linear-response two-probe conductances G of segments I
and II and across the metal–metal junction of plotted against tem-
perature T on a double-logarithmic scale. The data are fitted (sol-
id lines) by the power law, ( )G T Tα∼ , which is associated with
the suppression of tunneling density of states in a Luttinger liq-
uid. The exponents a for the two straight segments are 0.34 and
0.35, respectively. The fit is particularly convincing for the data
across the kink. An exponent of 2.2 is obtained, which is consis-
tent with end-to-end tunneling between two Luttinger liquids
(courtesy of Cees Dekker [89]).  

Segment I
Segment II
Across the kink

50 100 200 300
T, K

10
–2

10
–1

10
0

10
1

G
,

S
�

Fig. 9. (a) Top view layout of the wire and its contacting scheme. 
The sample is fabricated using the CEO method. The 1D wire 
(thick black line) exists along the cleaved surface and overlaps a 
2DEG over the entire edge. The metallic gate depletes the 2DEG 
over a 5 μm wide segment, thereby, forming an isolated 1D wire 
that is coupled at its ends to the overlapping 2DEG. A further 
increase in the top gate voltage reduces the wire density conti-
nuously to depletion. (b) Conductance of the wire as a function of 
the top gate voltage. Inset: A zoom-in of the conductance of the 
wire in the sub-threshold region (courtesy of Ophir Auslaender 
and Amir Yacoby [82]). 
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Qualitatively new effects in the transport properties of 
molecular transistors are associated with vibrational de-
grees of freedom of the molecule coupled to the leads. 
Low-energy vibrational modes result in such new pheno-
mena as phonon-assisted electron tunneling [101], polaro-
nic effects in electron tunneling (see, e.g., review [99]) and 
electron shuttling [103]. 

5.1. Electron transport through a vibrating quantum dot. 
The model 

We now consider the novel effects caused by vibronic 
modes in electron transport through molecular transistors 
in the simplest possible theoretical model, which treats the 

molecule between the leads as a single-level vibrating 
quantum dot weakly coupled to leads containing nonin-
teracting electrons. This model is too simplified to describe 
the transport properties of realistic molecular junctions. 
However, it catches the main features of electron transport in 
systems with a nanoelectromechanical coupling and would 
serve as a guide in this novel field of physical research. For a 
comprehensive review of the field see Ref. 99. 

The Hamiltonian of our model (the local Holstein 
model) is  

 ( ) ( )

= , = ,
= ,j j

D tl
j L R j L R

H H H H+ +∑ ∑  (36) 

where ( ) †= ( )j
k j kjl kjkH a aε −μ∑  is the Hamiltonian for 

noninteracting electrons with energy kε  in the left ( =j L ) 
and right ( =j R ) leads and jμ  is the corresponding 
chemical potential. The second term,  

 † † † †
0 0= ( ) ,D iH c c b b c c b bε − ε + + ω  (37) 

is the Hamiltonian of a single-level ( 0ε ) vibrating QD. 
Here †,c c are standard fermion creation and annihilation 
operators obeying the canonical commutation relation 

†{ , } = 1c c , while †,b b  are boson operators and 
†[ , ] = 1b b  ( 0ω  is the energy quantum of the boson mode 

(vibron)). The second term in Eq. (37) describes a 
fermion–boson interaction of characteristic strength iε . In 
our model this interaction originates from the electrostatic 
coupling of the charge density on the dot to the 
electrostatic potential produced by the metal electrodes. In 
what follows we will characterize the strength of the 
electron–vibron interaction by the dimensionless constant 

0= 2 /iλ ε ω . Notice that in our model this coupling 
constant is a linear function of the driving voltage V  (we 
neglect all nonlinear dependencies induced by polarization 
effects in a weak electric field /E V d δε� � , where d  

Fig. 10. Fabrication of a room-temperature single-electron transistor within an individual metallic carbon nanotube by manipulation
with an AFM. (a) Nanotube between Au electrodes on top of a Si/SiO2 substrate with a gate-independent resistance of 50 kΩ. (b) Nano-
tube after creation of a buckle. The dragging action has resulted in a tube that is bent so strongly that it has buckled. A second dragging
action is performed as indicated by the arrow. (c) Double-buckle nanotube device. (d) Enlarged image of the double-buckle device
(courtesy of Cees Dekker [9]).  

Fig. 11. Power-law temperature dependence of the conductance,
demonstrating correlated sequential tunneling through the nano-
tube SET device. Lower data (right-hand scale) show the peak
height Gmax(T) for the conductance, following a power-law func-
tion with exponent 0.68. The conductance integrated over the
gate voltage range, G*(T) (left-hand scale), also follows a power-
law function with exponent 1.66. The inset shows the peak width
w versus T, which displays a linear behavior (courtesy of Cees
Dekker [9]). 
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is the distance between the electrodes and δε  is the 
characteristic level spacing in the molecule),  

 0

0
( ) =

x eVV
d

λ
ω

 (38) 

0 0( = /x Mω  is the amplitude of zero-point fluctua-
tions of a harmonic oscillator with mass )M . In a general 
case of inelastic electron tunneling through a molecular 
junction the strongest coupling between electronic and 
vibrational degrees of freedom does not have to involve 
vibrations colinear with the direction of electron tunneling, 
as was assumed in our model. For a small-amplitude 
«transverse» vibrational motion we would still have a 
coupling term in the dot Hamiltonian, Eq. (37), linear in 
the deviation from the equilibrium position of the dot. 
However, the corresponding coupling constant would not 
depend on bias voltage. In what follows we will have in 
mind an electrostatic coupling model such that shuttle-like 
transport may dominate the charge transfer through a nano-
sized junction. Notice, that in this case the strong coupling 
regime can be realized (at least theoretically) by applying 
sufficiently «high» bias voltages. Various aspects of 
resonant electron transport in the regime of strong 
electron–vibron interaction is the subject of our 
considerations in this and the next sections. 

The tunneling Hamiltonian ( )j
tH  in Eq. (36) takes the 

form  

 ( ) †ˆ= { ( ) h.c.}.j
t j cm kj

k
H t X a c +∑  (39) 

In the definition Eq. (39) we explicitly took into account 
the coordinate dependence of the tunneling amplitude 

ˆ( cmX  is the position operator that corresponds to the cen-
ter-of-mass of the dot, †

0
ˆ ˆ/ = ( ) / 2cmX x X b b≡ + ). 

Since the tunneling probability depends exponentially on 
the barrier width, it is convenient to model the coordinate 
dependence of the tunneling amplitude in Eq. (39) by the 
single-parameter exponential function [103]  

 0
ˆ ˆ( ) = exp( ), = ( , ) = ( , ).j tt X t j X j R Lλ + −  (40) 

Here 0= /t tx lλ  is the dimensionless parameter ( tl  is the 
tunneling length) which along with the coupling constant 
λ  characterizes the electromechanical coupling in our 
model. 

The phenomenon of electron shuttling [103] can be de-
scribed, using an «operator language», as the appearance 
of a time-dependent classical part of the coordinate opera-
tor, ˆ = ( )cX x t〈 〉 . It is useful to represent the boson opera-
tors in the Hamiltonian, Eq. (37), as a sum of classical and 
quantum parts (the shift of operators by a c-number is a 
canonical transformation),  

 † †ˆ ˆ ˆ ˆ= ( ) , = ( ) , = ( ) ,cb t b b t b X x t x∗α + α + +  (41) 

where †ˆ ˆˆ( ) = 2Re[ ( )], = ( ) / 2cx t t x b bα +  and = 0x〈 〉  
by definition. The quantum part of the electron–vibron 

interaction in the Hamiltonian, Eq. (37), can be eliminated 
by a unitary transformation (see, e.g., Ref. 104)  

 ( )† †ˆ ˆˆ ˆ ˆ ˆ= exp( ) , = , = .
2
iU i pn p b b n c cλ −  (42) 

This transformation (sometimes called the Lang–Firsov 
[105] or «small polaron» transformation) is used in a num-
ber of theoretical papers dealing with inelastic electron 
tunneling (see, e.g., the review [99] and references there-
in). It allows one to relate the electron–vibron interaction 
to the tunneling Hamiltonian, which in its turn can be 
treated perturbatively or by using other approximations. 

After unitary transformation the total Hamiltonian takes 
the form  

 
( ) ( )1 † †

0
= , = ,

= = ( ) ,j j
p tl

j L R j L R
H UHU H t c c b b H− + ε + ω +∑ ∑
  (43) 

where  

 2
0 0( ) = [ ( ) / 2]p ct x tε ε − λ +λ ω  (44) 

(the term in Eq. (44) proportional to the square of the 
coupling constant ( 2λ ) is usually called the «polaronic 
shift»). The transformed tunneling Hamiltonian, Eq. (43), 
can be expressed as  

 ( ) †
0

ˆ= ( h.c.),j
t j jkj

k
H t a V c +∑  (45) 

where 0 0= exp( )j j tt t j− λλ  and  

ˆˆ = { ( )} , { ( )} = exp{ ( )},j j c j j c t cV T x t Q T x t j x tλ   

 ˆ ˆ ˆ= exp( ) .j tQ j x i pλ + λ  (46) 

5.2. Phonon-assisted electron tunneling and polaronic 
effects 

The Hamiltonian described by Eqs. (43), (45), and (46) 
is the starting point for our theoretical study of vibrational 
effects in resonant electron tunneling. At first we consider 
the case when one can neglect the coordinate dependence 
of the tunneling amplitude ( = 0tλ ). It is physically clear 
(see the next section) that in this case the equilibrium posi-
tion of the quantum dot ( = 0cx ) is stable and there is no 
electron shuttling phenomenon. Vibrational effects, how-
ever, strongly influence the transport properties of molecu-
lar junctions and in recent years this problem was theoreti-
cally studied in detail (see, e.g., the review [99]). 

The most simple and evident effects caused by elect-
ron–vibron interactions are: (i) the appearance of inelastic 
channels for electron transport (phonon-assisted electron 
tunneling) and (ii) a «polaronic narrowing» (for strong 
electron–vibron interactions) of the bare width of the dot 
level. Polaronic effects can also lead to an unusual tem-
perature dependence of the conductance. 
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The electrical current through a vibrating quantum dot 
coupled to noninteracting electrons in the leads can be cal-
culated by using the Meir–Wingreen formula of Eqs. (12), 
(13), and (14). In our model one can evaluate the average 
current directly by the equation-of-motion method. The 
Heisenberg equations of motion for the fermion operators 

†( )kj kja a  and †( )c c  are easy to solve in the so-called 
«wide band approximation» [101,102] where the density of 
states in the leads ( = ,j L R ) is assumed to be a constant 

jρ  (the corresponding partial level widths 
2

0 0= 2 | |j j jtΓ πρ  are energy independent quantities). 
When evaluating the averages one needs to know how to 
decouple the fermion and boson operators. The usual ap-
proximation (see, e.g., Ref. 106) is to disregard correla-
tions between electrons and vibrons and evaluate boson 
averages with the Hamiltonian of noninteracting vibrons, 

†
0=vH b bω , and fermion averages with the fermion part 

of the Hamiltonian, Eq. (43) (including the tunneling Ha-
miltonian). This decoupling procedure is definitely valid in 
a perturbation theory where the junction transparency (i.e., 
the level width 0 0 0= L RΓ Γ +Γ ) is the small parameter, 
since the electron–vibron interaction enters the Hamilto-
nian, Eq. (43), only via the tunneling term. In a number of 
papers [106–108] (see also Ref. 109 where a self-con-
sistent decoupling approximation was suggested) the reso-
nant electron tunneling through a vibrating quantum dot 
was studied in this approach. Although the validity of the 
decoupling procedure beyond the perturbation region 

0 0( , , )T eVΓ ω�  is not clear, the approach, viewed as a 
calculational method, allows one to get analytical expres-
sions for the whole range of resonant tunneling. Notice that 
in the limit = 0tλ  the boson operator ˆ

jV  in Eq. (46) is 
unitary. The level width, Eq. (11), which in the general 
case of an x̂ -dependent tunneling amplitude is an operator, 
coincides with the bare level width 0Γ  in the considered 
limit. This fact allows one to carry out all analytical calcu-
lations in the discussed approximation up to the end. In 
particular, boson averages are reduced to the evaluation of 
the correlation functions †ˆ ˆ( ) (0)jjQ t Q〈 〉  with the quadratic 
Hamiltonian of noninteracting vibrons. The quantum dot 
Green's function in this approach is represented (see, e.g., 
[106]) as a product of the dot-level Green's function in the 
single-particle approximation [101,102] and the vibron-
induced correlation factor ( )TF t , 

 0( ) = ( )exp[ ( / 2) / ] ( ),r
v p TG t i t i i t F t− Θ ε + Γ  (47) 

where the temperature dependent vibron correlation func-
tion takes a standard form (see, e.g., Ref. 104)  

2
0

=
( ) = exp[ (1 2 )] ( ) exp[ ( / 2 )].T B l

l
F t n I z il t i T

∞

−∞
−λ + ω +∑   

  (48) 

Here 1
0= [exp( / ) 1]Bn T −ω −  is the Bose–Einstein dis-

tribution function, 22 (1 )B Bz n n≡ λ + , and ( )lI z  de-
notes the modified Bessel function of the first kind. When 
evaluating the vibron-induced correlation factor it is as-

sumed that vibrons in the dot are described by the equili-
brium distribution function. It means that vibrons are 
coupled to at heat bath (environment) of temperature T  
(chosen to be the same as in the leads) and the process 
of equilibration of their distribution function is rapid 

0( /vτ Γ� ). This is a plausible assumption in the week-
tunneling regime (small ( )L RΓ ) we are dealing with. Non-
equilibrated vibrons in a master equation approach were 
considered in Refs. 110, 111 (see also [112], where the 
influence of non-equilibrated vibrons on the transport 
properties of a single-electron transistor was investigated 
both in the classical and the quantum regime). 

The average current through a single-level vibrating 
quantum dot in the considered approximation takes the 
form of a sum over inelastic channels of weighted Breit–
Wigner contributions [106]  

 2
0

=
( ) = exp[ (1 2 )] ( )exp( / 2 )B l

l

eJ V n I z l T
h

∞

−∞
− −λ + − ω ×∑  

 ( )[ ( ) ( )],l
BW L Rd T f f

∞

−∞

× ε ε ε − ε∫  (49) 

where ( )L Rf  are the equilibrium distribution functions of 
electrons in the leads and  

 0 0
2 2

0 0 0
( ) = .

( ) ( ) / 4
l L R
BW

p L R
T

l
Γ Γ

ε
ε − ε + ω + Γ + Γ

 (50) 

Positive l-values in Eqs. (49) and (50) correspond to vibron 
absorption, negative l -values describe processes where l  
vibron quanta are emitted. This formula was analyzed in 
Ref. 106 for different regimes of tunnel transport and was 
questioned in Refs. 112, 113. First of all Eq. (49) in the li-
near response limit predicts a suppression of the maximum 
resonance conductance (which occurs at 0( ) = 0p gVε ) even 
at = 0T  ( 2exp( )G ∝ −λ ). Besides, the low-T  linear con-
ductance peaks as a function of gate voltage ( gV ) not only 
on resonance (i.e., at 0( ) = 0p gVε ) but also at the values 

( )n
gV  ( ( )

0( ) = 0,n
p gV n nε ± ω  is an integer) correspond-

ing to the appearance of side-bands. The last claim 
[106,107] looks very suspicious since at 0T ω�  and 

0eV →  only the elastic channel for electron tunneling 
through the vibrating quantum dot is available. The ques-
tionable predictions are artifacts of the approximations (the 
fermion–boson decoupling procedure and a single-particle 
approximation for the dot-level Green's function), which 
were assumed to be valid in low-temperature region 

0T Γ� . It was shown [112,113] that at low temperatures 
0 0( ,T Γ ω� ) the maximum (peak) conductance is not 

renormalized by vibrational effects and that side-bands do 
not appear in the gate-voltage dependence of the linear 
conductance [109,112,114]. Vibrations do influence, even 
at low temperatures, the shape of the resonance peak by 
narrowing it. The stronger the electron–vibron interaction, 
the narrower the «line-shape» [112,114]. This behavior 
reminds one of resonant tunneling through a symmetric 
double-barrier in a Luttinger liquid (see Sec. 3.4). 
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The approximations used in the derivation of Eq. (49) 
(where the decoupling procedure is most sensitive step) is 
readily justified in the perturbation theory on Γ . Here we 
consider the temperature behavior of the maximum (peak) 
conductance at temperatures 0T Γ� , when sequential 
tunneling is the dominating mechanism of electron trans-
port through the dot. 

For a fixed and rigid (nonfluctuating) QD the resonance 
conductance scales as 1G T −∝  at 0T Γ�  (see Sec. 2.2). 
One can expect that polaronic effects strongly influence 
electron transport when the tunneling electron is localized 
for a long time in the dot and therefore can be «dressed» 
by the vibrational modes. So, it is useful to consider the 
case when the level width 0Γ  is the smallest energy scale 
in the problem ( 0 0,TΓ ω� ). In this limit the spectral 
function of the dot level is a δ-function and it is easy to get 
from Eq. (49) the following formula for the maximum 
conductance [115]  

 =0 0( ) = ( ) ( / ).G T G T F Tλ λ λ ω  (51) 

Here =0 ( )G Tλ  is the conductance of a single-level quan-
tum dot at «high» temperatures (see Eq. (10)) and the scal-
ing function ( )F xλ , which has the property that 

=0 ( ) = 1F xλ , is represented as a series  

 2( ) = exp{[ [1 2 ( )]}BF x n xλ −λ + ×   

 
2

2
=

exp( / 2) [2 ( )(1 ( ))]
.

( / 2)cosh
l B B

l

lx I n x n x
lx

∞

−∞

− λ +
× ∑  (52) 

At low temperatures, 0TΓ ω� � , one finds that 
2( 1) exp( )F xλ −λ� � . In this region the usual tempera-

ture dependence of the conductance, ( ) /G T Tλ λ∝ Γ , is 
recovered but with the level width 2= exp( )λΓ Γ −λ  re-
normalized by zero-point fluctuations of the QD. For 
strong coupling the renormalized width becomes very nar-
row, λΓ Γ� , which corresponds to a strongly suppressed 
probability for electrons to tunnel from bare electronic 
states in the reservoirs (leads) to polaronic states in the dot. 
This suppression of linear electron transport is sometimes 
referred to as a Franck–Condon (or polaronic) blockade 
[116]. 

As soon as the temperature becomes of the order of the 
vibron energy quantum ( 0ω ), thermally excited vibronic 
modes appear and both the elastic and inelastic channels 
contribute to the conductance. The contribution of inelastic 
channels tends to lift the polaronic blockade and the com-
petition between elastic and inelastic channels at 0T ≥ ω  
and 1λ ≥  gives rise to a non-monotonic temperature de-
pendence of the conductance [115]. At temperatures in the 
interval 2

0 0Tω ≤ λ ω�  (recall that 2
0λ ω  is the pola-

ronic shift and that this quantity defines the polaron energy 
scale), when the polaronic blockade is already partially 
lifted, the «high-T» asymptotics of the resonance conduc-
tance takes the form [106]  

 
1/2 2

0
0

0 0
( ) exp .

4
TG T G

T

−

λ
⎛ ⎞⎛ ⎞ λ ωΓ
−⎜ ⎟⎜ ⎟ ⎜ ⎟λ ω ω⎝ ⎠ ⎝ ⎠

�  (53) 

At even higher temperatures, 2
0T λ ω� , all polaronic 

effects disappear and the conductance scales as / TΓ  [115]. 
The anomalous temperature behavior and 1/ -T scaling of 
the conductance is a signature of strong polaronic effects in 
electron transport through a vibrating QD. 

The interplay of vibrational and Luttinger liquid effects 
on electron transport through a vibrating single-level quan-
tum dot coupled to Luttinger liquid leads was considered in 
Ref. 117. There it was shown that in the regime of sequen-
tial electron tunneling, for a medium-strong interaction 
(the corresponding Luttinger liquid correlation parameter 

> 1/ 2g ), side-band peaks in the differential conductance 
dominate over the zero-bias peak (which is suppressed by 
LL effects). 

5.3. Electron shuttling 

In previous sections we have discussed the influence of 
vibrational effects on resonant electron transport while 
neglecting the coordinate dependence of the electron 
tunneling amplitude. This is a reasonable approximation 
for hard potentials or when the strongest coupling between 
electrons and vibrons are associated with modes unrelated 
to the direction of electron tunneling. For sufficiently soft 
potentials (small frequency 0ω  in our model) the shift in 
the position of the dot towards the leads exponentially en-
hances the probability of electron tunneling from the near-
est electrode. Under certain conditions this results in an 
instability of the equilibrium position of the QD in the po-
tential well between the leads and gives rise to electron 
shuttling. The phenomenon of electron shuttling was pre-
dicted more then 10 years ago [103] and has during the last 
several years been theoretically investigated for various 
model systems (see the reviews [11,118,119]) and also 
observed in experiments [120–122]. 

A shuttle-like mechanism of electron transfer makes yet 
another type of resonant electron transport possible, i.e., 
one where the probability of electron tunneling between 
the leads is strongly enhanced by the vibrational motion of 
the quantum dot. In this section we discuss the influence of 
polaronic effects on electron shuttling — a novel develop-
ment of the theory [125]. We derive an equation of motion 
for the single-electron shuttle in the regime of strong elec-
tron–vibron interactions and briefly comment on the influ-
ence of polaronic effects on the shuttle instability. 

In the process of shuttling the electron is transported 
from near the source to near the drain electrodes by an os-
cillating quantum dot. We model the dot by a harmonic 
quantum oscillator, Eq. (37). A shuttle instability in this 
case can be characterized by the appearance of a non-zero 
expectation value of the coordinate operator ˆ = ( )cX x t〈 〉 , 
which is possible if the number of vibron excitations is not 
conserved. In our model, Eq. (36), this is indeed the situa-
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tion at hand due to the presence of the electron–vibron 
interaction and tunneling terms in the Hamiltonian. 

In order to consider the shuttle phenomenon we intro-
duced the classical (c-number) part ( )tα  [ ( )]t∗α  of the an-
nihilation [creation] operator for vibrons in Eq. (41). This 
new variable can be interpreted as the amplitude of the vi-
bron condensate and its real part describes the instantaneous 
shift of the oscillator coordinate ( ) = 2Re ( )cx t tα . Now 
one needs to derive a dynamical equation for this variable 
(the shuttle equation of motion). For a single-electron shut-
tle in the regime of weak electromechanical coupling this 
classical equation was postulated in Ref. 123 and then re-
derived in Ref. 124 by using perturbation theory in the 
electron tunneling amplitude (weak tunneling). 

The Heisenberg equations of motion for the dimensi-
onless coordinate ( X̂ ) and momentum ( P̂ ) operators 

ˆ ˆ([ , ] =X P i ) can be represented in the form of operator 
Hamilton equations as  

 
ˆ ˆ ˆ ˆ1 1= , = .ˆ ˆ

dX H dP H
dt dtP X

∂ ∂
−

∂ ∂
 (54) 

In our model, Eq. (43), the Hamiltonian Ĥ  in Eq. (54) 
takes the form  

 ( ) ( )2 20ˆ ˆ ˆ ˆ ˆ= ( , ),
2

j
t

j
H X P H X p

ω
+ +∑  (55) 

where ˆ ˆˆ ˆ= ( ) , = ( )c cX x t x P p t p+ + . The derivative of the 
tunneling Hamiltonian (defined by Eqs. (45) and (46)) with 
respect to momentum is proportional to the current opera-
tor,  

 †
0

ˆ ˆ= ( h.c.).j j jkj
k

iJ t a V c −∑  (56) 

It is easy to check the validity of the operator continuity 
equation ˆ ˆˆ / = L Rdn dt J J+ . With its help one can rewrite 
Eqs. (54) and (55) in the form of Newton's equation [125] 

 ( )
2

2
02

ˆ ˆ ˆˆ = ,d X n X F
dt

+ λ +ω  (57) 

where the force operator F̂  is  

 ( ) ( )
ˆ

= / , /

ˆ = = ( ) .j j
t t tX

j j L R
F H j H

− +
−∂ λ −∑ ∑  (58) 

The nonlinear operator equation defined by Eqs. (57) and 
(58) is the starting point for our theoretical discussion of a 
single-electron shuttle in the regime of strong electron–
vibron interaction. Since in the shuttle mechanism of elec-
tron transport the electron–vibron coupling constant de-
pends linearly on the bias voltage, the strong coupling re-
gime could be realized at sufficiently «high» voltages. 

In order to derive from Eq. (57) the equation of motion 
for a shuttle (i.e., a closed dynamical equation for the clas-
sical coordinate ( )),cx t  certain approximations have to be 
made. We will use (following Ref. 124) perturbation 
theory in the tunneling amplitude. In this case there are no 

problems with the operator character of the level width Γ̂ . 
In addition the «fermion–boson» decoupling procedure 
discussed in Sec. 5.2 is justified and all averages can be 
calculated analytically. The equation for the shuttle coor-
dinate can be derived by averaging Eq. (57). It is conve-
nient to introduce a new classical variable (transformed 
coordinate),  

 1ˆ ˆ( ) = = ( ) , [ ( )] = ,s c cx t UxU x t N N x t n−〈 〉 + λ 〈 〉  (59) 

and to derive the equation for this quantity. It takes the 
form [125]  

 
2

2
02 ( ) ( ) =s s

d x t x t
dt

+ω   

 2 0
0

= / , /
[ ( )] [ ( )],t

s j s
j L R

N x t jH x t
− +

λ ω
= λω − ∑  (60) 

where ( )ˆ= j
j tH H〈 〉 . In the limit of weak electromechani-

cal coupling ( 1, 1tλ λ� � ), when we can omit operator 
factor ˆ

jQ  in the tunneling Hamiltonian, Eq. (45), this equ-
ation coincides with the corresponding equation for the 
classical shuttle [123,124]. Notice that both the average 
occupation number and the average tunneling Hamiltonian 
are proportional to the level width 0 0, j jN H∝ Γ ∝ Γ  and 
in perturbation theory one can replace their dependence of 

( )cx t  with a dependence of ( )sx t  in Eq. (60). 
The shuttle instability in the regime of weak electron–

vibron coupling was considered in Refs. 123, 124, where it 
was shown that in the absence of mechanical friction the 
equilibrium time-independent position of QD is unstable at 
biases 0 0> = 2( )ceV V ε + ω  (for resonance tunneling we 
can let 0 ( ) = 0)gVε  and an exponential growth of oscilla-
tions occurs 0( ) = exp( )cos( )c ix t x rt tω . At low tempera-
tures 0T ω�  the increment r  was found [123,124] to be 
a linear function of bias voltage 0 tr VΓ λλ ∝∼ . Notice 
that the increment in this limit is purely classical (it does 
not depend on ). 

In the presence of mechanical friction, which can be 
taken into account phenomenologically by adding to Eq. 
(60) a dissipative term proportional to velocity, the incre-
ment has to overcome the friction coefficient γ  to main-
tain electron shuttling. In this case the threshold voltage 
could be much larger than 0 / eω  and we enter the region 
of strong electron–vibron coupling, 1λ ≥ , where polaronic 
effects are significant. 

How do polaronic effects influence electron shuttling? 
The shuttle instability is most pronounced at low tempera-
tures when at the threshold voltage there is a sharp (step-
like) increase of the current signaling the transition to a 
new regime of electron transport. In the absence of me-
chanical friction and when the quantum dot is not pinned 
by imperfections, the threshold voltage for the resonance 
condition ( 0 ( ) = 0gVε ) is 02 ω  (for a symmetrically bi-
ased junction), the coupling to vibrons is weak 

0( ) / 1cV x dλ � �  and the polaronic effects are not pro-



I.V. Krive, A. Palevski, R.I. Shekhter, and M. Jonson 

176 Fizika Nizkikh Temperatur, 2010, v. 36, No. 2 

nounced. They start to influence electron transport at 
0 0> ( / )eV d x ω . We showed in the previous section that 

at low temperatures strong electron-vibrational mixing 
results in: (i) a multiplicative renormalization of the effec-
tive level width 2

0 0 exp( )Γ → Γ −λ  (we consider here the 
case ( ) tVλ λ� ), and (ii) a polaronic shift 

2
0 0 / 2ε → ε −λ . At 0eV ω�  a large number of inelas-

tic channels contribute to the shuttle instability increment 
parameter sr . All these effects make the voltage depen-
dence of = ( )s sr r V  strongly nonlinear. 

The interplay between the polaronic (Franck–Condon) 
blockade, which tends to suppress sr , and the increase in 
the number of inelastic channels (where each channel en-
hances the instability) leads to a non-monotonic behavior 
of sr  as a function of bias voltage with a pronounced max-
imum at 2

0 0( / )meV d x ω∼  [125]. Moreover in this re-
gion — and at low temperatures 0T ω�  — the incre-
ment ( )sr V  oscillates with a period of 0ω  and an ampli-
tude, which is only a few times smaller the averaged sr  
[125]. The large «oscillations» of the increment parameter 
could lead to an unusual behavior of the I–V characteristics 
for a shuttle-based single-electron transistor. Let us sup-
pose that the friction coefficient γ  is large enough to damp 
the shuttle motion at low bias voltages and the shuttle in-
stability occurs ( >sr γ ) in the region of large oscillations 
of the increment. Then a small change of bias voltage 
(smaller than 0ω ) would transform the system from the 
shuttle regime of transport (with strongly enhanced tunne-
ling probability) to the ordinary regime of tunnel transport 
(small tunneling probability) and the other way around. In 
this case one can expect a pronounced negative differential 
conductance (NDC) in the current–voltage characteristics. 
The NDC features are spaced by 0ω  signaling reentrant 
transitions to the shuttle regime of electron transport (see 
also Refs. 111, 116, where NDC in electron transport 
through a vibrating quantum dot was discussed). Notice 
that NDC features were observed in the I–V characteristics 
of suspended carbon nanotubes in the regime of strong 
electron–vibron coupling [126]. Are these features asso-
ciated with a voltage dependence of the electron–vibron 
coupling or do they have a different origin? This is an open 
question. 

5.4. Electron tunneling through nano-electromechanical 
systems 

The influence of vibrational effects on electron tunne-
ling have already been observed in a number of experi-
ments: in fullerene-based single-molecular transistors 
[127,128], in single-molecular metallic junctions [129] 
including break-junction devices [130], and in suspended 
quantum dots [131]. In recent years the most promising 
systems for the study of vibrational effects in electron 
tunneling spectroscopy appears to be suspended single-
wall carbon nanotubes [126,132,133]. 

In the first experiment on a C60-based molecular tran-
sistor [127] characteristic low-energy features in the cur-

rent–voltage characteristics were clearly observed (with 
the low-energy scale given by 0 5 meVω � ). These fea-
tures were associated with the quantized motion of the ful-
lerene molecule trapped to one of the Au leads by a van 
der Waals potential. The I–V characteristics measured in 
Ref. 127 can be explained and fit to theoretical formulas 
derived both for the shuttle mechanism of electron trans-
port [123] and for the purely vibron-assisted tunneling ef-
fects [134]. To distinguish between these two different 
theories, one needs to investigate the current fluctuations 
(noise). The noise was predicted to be qualitatively differ-
ent (as anticipated) for the random vibron-assisted tunne-
ling events [107] and for the regular shuttle motion which 
is synchronized with the electron tunneling [135]. 

The electron–vibron interaction constant extracted from 
the experiment by using the theory of Ref. 134 was found 
to be in the region of medium to strong interaction, 1λ� , 
and (for the best fit) bias- and gate voltage dependent. Al-
though the coupling constant obtained from this fit is suffi-
ciently strong to reveal polaronic effects, those are not 
pronounced in the I–V characteristics. In contrast, a differ-
ent fit using the shuttle theory achieved a satisfactory 
agreement between theory and experiment [127] by assum-
ing a weak electromechanical coupling [123] where no 
polaronic effects are expected. Strong polaronic effects 
(Franck–Condon blockade) were claimed to be observed 
[126,133] in experiments on suspended carbon nanotubes, 
where a low-energy quantized phonon mode (the stretching 
mode of the vibrating nanotube) plays the role of vibron 
excitations. The electron–vibron coupling constant ( 2λ  in 
our notation) extracted from the experimental data [126] is 
voltage independent (a physically evident assertion for the 
nanotube experiments) and does correspond to the regime 
of strong electron–phonon interactions. 

There is one more highly interesting system, namely a 
carbon nanopeapod, where electromechanical effects could 
play a significant role in electron transport. A carbon nano-
peapod is a hybrid system consisting of a single-wall car-
bon nanotube and fullerene molecules encapsulated inside 
the tube (see, e.g., reviews [136,137]). Carbon peapods 
were discovered more then 10 years ago [138] and are con-
sidered to be a promising system for applications in nano-
technology. 

Until recently transport experiments on C60-based pea-
pods did not show any special features characteristic of 
nano-electromechanical systems. Furthermore, the trans-
port characteristics of empty metallic SWNTs were, as a 
rule, superior to the analogous quantities measured on car-
bon peapods (see, e.g., the review [137] and references 
therein). This could be explained by technological reasons 
such as the low quality of peapods used in the early expe-
riments. In the process of peapod production the formation 
of structural defects (for instance, holes on SWNT surface) 
is dificult to avoid and one can certainly expect strongly 
defective metallic nanotubes to demonstrate poor conduc-
tive properties. Most of the defects are, however, healed 
when high-quality peapods are produced. For these peapod 
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systems the influence of the mechanically soft subsystem 
(encapsulated fullerenes or chains of fullerene molecules) 
on the conductance properties of metallic SWNT cylinders 
filled with fullerenes could be unambiguously revealed. 

C60 molecules, being electrically neutral objects, cannot 
directly influence the electrical current flowing along the 
tube. However, the observation in tunneling experiments 
[139] of the impact that encapsulated fullerenes have on 
the electron density of states of a SWNT, suggests a strong 
hybridization of the conduction electrons with the molecu-
lar (LUMO) states of fullerenes. This observation along 
with the fact that fullerenes and clusters of fullerenes can 
move easily along the tube axis make carbon nanopeapods 
promising nano-electromechanical systems. There are 
claims that electromechanical effects have already been 
observed in peapods (see, e.g., Ref. 140, where hysteric 
current–voltage characteristics and the appearance of ran-
dom telegraph signal-like current fluctuations are inter-
preted as evidence of a shuttle instability in peapods at 
high bias voltages > 1eV  eV). Recently it was also sug-
gested [141] that electron backscattering by a vibrating 
impurity (encapsulated fullerene molecule) could result in 
a high-temperature excess current. Here we consider the 
influence of vibrational (polaronic) effects on resonant 
electron transport through peapod-based quantum dot. 

When a peapod bridges the nanogap between the source 
and drain electrodes the potential barriers at the met-
al/SWNT contacts allow one to treat the nanotube as a 
multilevel quantum dot coupled to the vibrating fullerenes. 
In the simplest theoretical model we will consider a single 
side-impurity which represents a 60C  molecule (or a clus-
ter of fullerenes) confined in a small region inside the tube. 
The evident transverse confinement results in an energy 
scale for the transverse vibrational excitations of the order 
of 10  meV (see, e.g., [142]) for small-diameter peapods 
( 1.3d ≥  nm) usually exploited in experiments. The longi-
tudinal confinement, produced for instance by two closely 
situated holes on the nanotube surface (hole repels encap-
sulated molecule), could result in far smaller value (by 
orders of magnitude) of vibrational energy quantum. Since 
we are interested in low-temperature transport properties 
we will consider only longitudinal vibrations. 

The shift xδ  in the position of the scatterer (fullerene) 
along the tube disturbs all quantized electron energy levels 
in a metallic SWNT by = ( / )n F nv k x xδε ∂ ∂ δ  ( nk  is the 
electron momentum). The Hamiltonian of the quantum dot 
in this model takes the form [115]  

† † † †
0 0= ( , )( ) ,QD n n n n n n

n n
H c c L l b b c c b bε + ω λ + + ω∑ ∑  

  (61) 

where ( , )n L lλ  is the energy- and position-dependent elec-
tron–vibron coupling constant ( L  is the peapod length, l  
is the equilibrium position of the scatterer inside the tube). 
It was shown [115] that 2

nλ  strongly fluctuates from level 

to level even in the case when the actual level spacings are 
close to the mean level spacing ( = /L Fv LΔ π ). 

It is easy to apply the theory of electron transport 
through a vibrating quantum dot (see Sec. 5.2) to the con-
sidered model. Since the electron–vibron coupling constant 
strongly differs for different levels n, some levels strongly 
couple to the vibrations and the resonant conductance 
through these levels is influenced by polaronic effects (po-
laronic narrowing of level width, anomalous temperature 
behavior). Other levels are decoupled from the vibrational 
modes and electron tunneling through these levels are de-
scribed by the usual Breit–Wigner theory. As was already 
discussed in Sec. 5.2 the developed theory is valid at tem-
peratures nT Γ� . It means that to compare theory and 
experiment on resonant electron tunneling through peapods 
[143,144], one has to select only very narrow peaks (in a 
plot of conductance versus gate voltage) broadened by 
temperature effects. In the experiment Ref. 144 the regime 
of strong coupling between the dot and the leads was rea-
lized (since signatures of Kondo physics were reported) 
and the theory developed in Ref. 115 cannot be applied to 
fit the experimental data. A selective choice of peaks in the 
experiment Ref. 143 and new measurements with weakly 
coupled tunneling junctions show evidence of vibrational 
effects in resonant electron transport through peapod-based 
molecular transistors [145]. 

6. Conclusion 

Resonant tunneling of electrons is a quantum coherent 
phenomenon, which allows one to probe elementary exci-
tations in condensed matter systems with high precision. 
While the positions of resonant conductance peaks contain 
information about the energy spectrum, the transmission 
intensity provides direct information about the wave func-
tions of the charge carriers in the conductor under investi-
gation (the tunneling matrix elements are determined by 
the overlap of the wave function of the tunneling electron 
and the wave function of charge excitations in the region 
through which the electron tunnels). Both quantities are 
strongly affected by the electron–electron interaction and 
by the interaction of electrons with other degrees of free-
dom. These interaction effects result in the appearance of 
new and different energy scales, which determine specific 
features of the resonant electron transport characteristics. 
Therefore, it is reasonable to regard electron tunneling in 
resonant structures as a transducer that could convert one 
form of energy (e.g., mechanical) to another. In this Re-
view we have already discussed the coupling of electrons 
to nanomechanical (radio frequency) vibrations when 
studying electron shuttling (see Sec. 5.3). 

It is interesting to consider here other opportunities. The 
coupling of coherent electrons to an external high-
frequency electromagnetic field has been shown to result 
in a number of interesting nonequilibrium phenomena 
(both in normal [146,147] and in superconducting 
[148,149] mesoscopic structures) if the microwave photon 
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energy is comparable to the electronic energy-level spac-
ing. The mechanical frequencies of nanoelectromechanical 
devices, on the other hand, can easily be tuned to match the 
low-energy scales of tunnel structures such as the level 
width, the applied bias voltage, or the frequency of Rabi 
oscillations in the populations of energy levels. These two 
very different scales of energy both have a bearing on re-
sonant electron transport and one may speculate that cohe-
rent electrons in single-electron tunneling (SET) transistors 
can be used as microwave-mechanical transducers by si-
multaneously coupling them to both an electromagnetic 
and to nanomechanical degrees of freedom. 
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