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1. Introduction
A cooperative game with transferrable utility is defined by a
set of n players, N = 81121 0 0 0 1 n9, that can form coalitions.
Specifically, any subset S of players in N , can cooperate,
where � ⊆ S ⊆N is called a coalition, and S =N is also
called the grand coalition. Each coalition S is associated
with a real value denoted by V 4S5, where V 4�5= 0, that
represents the total cost inflicted on the members of coalition
S if they cooperate. Note that once a coalition is formed,
it is irrelevant to its members what the other players are
doing, and in particular, which coalitions they form. The
function V 2 2N → < is called the characteristic function of
the game. The pair G= 4N 1V 5 is said to be a cooperative
game with transferable utility. A game G= 4N 1V 5 is called
subadditive if for any two disjoint coalitions S and T ,
V 4S ∪ T 5 ¶ V 4S5 + V 4T 5. Subadditivity ensures that the
socially best partition of the players of N to disjoint coalitions
is when all players cooperate and form the grand-coalition N .
Subadditive games bear the concept of economies of scope,
i.e., when each player, or set of players, contributes its own
skills and resources, the total cost is no greater than the sum
of the costs of the individual parts.

A prerequisite for the stability of the grand coalition is an
agreement on fair allocation of the cost V 4N5 among the
players of N . Several fairness concepts have been proposed in
the literature. One of the most appealing among them is the
core: a vector x ∈ <n is said to be efficient if

∑n
i=1 xi = V 4N 5,

and it is said to be a core cost allocation if it is efficient and
∑

i∈S xi ¶ V 4S5 for any � ⊆ S ⊆N . The collection of all core
allocations, called the core of the game, is a simplex that is
defined by n decision variables and by 2n − 1 constraints.

Thus, finding a core allocation for a given game, except for
specific ones having special structures, may be an intricate
task. Indeed, this issue coupled with the possibility that the
core is empty, makes the problem of finding a core allocation,
or showing that the core is empty, a real challenge.

A game whose core is nonempty is said to be balanced.
A balanced game for which all its 2n−1 subgames are also
balanced is said to be totally balanced. There exist examples
that show that subadditivity by itself does not guarantee
balancedness of the game. Moreover, a game that is not
subadditive is also not totally balanced as for any disjoint S
and T of N for which, V 4S5+V 4T 5 < V 4S∪T 5, the subgame
4S∪T 1V 5 has an empty core since any efficient allocation of
V 4S ∪T 5 among the players of S ∪ T will be objected by at
least one of the coalitions, S or T .

We focus on sufficient conditions for a subadditive game
to be totally balanced. To the best of our knowledge, the
following are the only two well-known general sufficient
conditions for a game to be totally balanced. In this paper,
we propose a new sufficient condition for a cooperative
game to be totally balanced. First, we present the two known
sufficient conditions:

Condition 1. Concave games. A game G= 4N 1V 5 is said
to be concave if its characteristic function is concave,
meaning that for any two coalitions S1T ⊆N , V 4S ∪ T 5+

V 4S ∩ T 5¶ V 4S5+V 4T 5.

Condition 2. Market games. (See Shapley and Shubik 1969
and Chap. 13 in Osborne and Rubinstein 1994.) Suppose
there are l types of inputs. An input vector is a nonnegative
vector in <l

+
. Each of the n players possesses an initial

commitment vector wi ∈ <l
+

, 1 ¶ i ¶ n, which states a
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nonnegative quantity for each input. Moreover, each player
is associated with a continuous and convex cost function
fi2 <l

+
→ <+, 1 ¶ i¶ n. A profile 4zi5i∈N of input vectors

for which
∑

i∈N zi =
∑

i∈N wi is an allocation. Then, for any
� ⊆ S ⊆N ,

V 4S5=min
{

∑

i∈S

fi4zi52 zi ∈<
l
+
1 i∈S and

∑

i∈S

zi =
∑

i∈S

wi

}

0 (1)

Actually, a necessary condition for a game to be totally
balanced is that the game can be reformulated as a market
game; see Peleg and Sudholter (2007). Therefore, in theory,
the class of totally balanced games coincides with the class
of market games. The snag is that if a game is not presented
naturally as a market game, reformulating it as such (or
showing that such a reduction is impossible), is an intricate
job by itself, and hence this approach is not very useful.
Thus, in the sequel, we refer to market games as games that
are originally formulated as in Condition 2, or games that a
reduction to the form of a market game is known.

Conditions 1 and 2 allow the characteristic function to be
quite general as it may assign values to coalitions arbitrarily
and independently of the profile of its members. In particular,
the characteristic function may assign different values to two
players that are identical in all aspects except their identity.
In practice, many cooperative games are symmetric in the
sense that they do not exploit this freedom of the definition,
and de facto, identical players/coalitions that differ only
in the identity of their members affect the characteristic
function in exactly the same way. In such games it is easy
to generalize the definition of the characteristic function
to any set of players, not necessarily subsets of N . In
a previous paper (Anily and Haviv 2012) we formalize
this idea by introducing the class of regular games where
players, except for their own name, are fully characterized
by some quantitative properties. For example, a tax payer
is identified by his or her social security number (identity)
and is characterized by a number of quantitative properties,
e.g., his or her income level, tax allowance, tax credits, etc.
A game is said to be regular if the characteristic function
assigns to any collection of players, not necessarily players
of N , a value that is computed via a closed-form expression
of the quantitative properties of its players and is not a
function of their identity. In the next section we formalize
this notion rigorously. In Anily and Haviv (2012) we also
identify a class of regular games called regular market games
and a reduction scheme that reduces these games to market
games, proving, according to Peleg and Sudholter (2007),
that they are totally balanced.

Condition 3. Regular market games. Follow the definition
of market games in Condition 2, with the following differ-
ences: (i) The functions fi in (1) are identical, i.e., fi ≡ f
for all i ∈N , so that the cost associated with a player is
independent on its identity. (ii) The total of the commitment
vectors of the players should be allocated among the players
and an external agent, where the cost to the coalition due to

the allocating commitments to the external agent is linear.
That means that there exists a linear function h2 <l

+
→ <,

with h4E05= 0, so that Equation (1) is replaced by

V 4S5= min
{

∑

i∈S

f 4zi5+h

(

∑

i∈S

4wi − zi5

)

2 zi ∈ <
l
+
1 i ∈ S

and
∑

i∈S

zi ¶
∑

i∈S

wi

}

0 (2)

In addition to the above mentioned three classes of games,
a few structural games have been identified in the literature
as totally balanced. Of particular interest here is the class
of permutation games (see Tijs et al. 1984 and Peleg and
Sudholter 2007 subsection 3.4.2): Let ç4N5 be the set of all
permutations of N 0 A permutation � ∈ç4N5 is a one-to-one
function from N to N , and ç4S5 = 8� ∈ ç4N52 �4i5 =

i for i ∈N\S9.

Condition 4. A Permutation game is defined by a cost
function p2 N ×N → <, and a characteristic function of the
form V 4S5= min�∈ç4S5

∑

i∈S p4i1�4i55 for any S ⊆N0

To present our new sufficient condition for total balanced-
ness, we generalize a well-known property of real functions
to characteristic functions of regular games, namely, the
property of homogeneity of degree p:

Definition 1. A game is said to be homogeneous of degree
p if for any integer m, the characteristic function value of
cloning m times a collection of players is mp times the value
of the original collection of players.

The main result of this paper is that subadditivity and
homogeneity of degree one of the characteristic function
of a regular game imply total balancedness. That means,
that within the class of subadditive games, five subclasses
of games that are totally balanced are currently known:
(i) concave games, (ii) market games, and (iii) permutation
games; and within the class of regular games also (iv) regular
market games and (v) homogeneous of degree one games.
These subclasses are not disjoint. For example, the class
of homogeneous degree one games contain the subclass of
games that are both regular and permutation games. We
refer to such games as regular permutation games. In fact,
the state-of-the-art level of characterization of the core of a
game depends on the class that the game belongs to: a full
characterization of the core is known only for concave games;
see Shapley (1971). For market games, and as a consequence
also for regular market games, a single core allocation based
on competitive equilibrium prices is proposed in chapter 13
in Osborne and Rubinstein (1994). A single core allocation
for a permutation game is obtainable by solving a linear
programming problem consisting of 2n variables and n2

constraints; see Peleg and Sudholter (2007). Our result on
total balancedness of homogeneous of degree one games,
leaves open the challenge of identifying core cost allocations
for such games.
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The contribution of this paper stems from the fact that
there exist subadditive and homogeneous of degree one
games that are not concave, they have neither the form of
regular market games or permutation games. This paper
proves that such games are totally balanced.

In the next section we define regular games. In §3 we
present two examples of regular games, one in retailing and
another in facility location. The examples are of subadditive
regular games that are neither concave nor are presented
as regular market games or as regular permutation games,
and therefore it is impossible to invoke any of the sufficient
conditions mentioned above in order to prove that these
games are totally balanced. In §4 we present formally the
homogeneity of degree one property, and the key theorem of
this paper, which states that subadditivity and homogeneous
of degree one of the characteristic function of a regular
game, is sufficient for total balancedness. The examples in
§3 can easily be shown to be subadditive and homogeneous
of degree one, proving that they are also totally balanced. In
§5, the theorem is proved.

2. Regular Games
A cooperative game G = 4N 1V 5 is defined by its set of
players N and its characteristic function V . This definition is
useful as long as one considers just the players in N 0 However,
in general, one may want to consider adding new potential
players to the game. As currently presented, the characteristic
function is not applicable for such cases. In many settings
this limitation is artificial as each potential player of the
game is characterized by a vector of quantitative properties,
hereby called a vector of properties, and it affects the cost
of any coalition that it joins only by this vector through a
closed-form mathematical expression that is independent of
the player’s identity.

A regular game G= 4N 1V 5 (see Anily and Haviv (2012))
satisfies the following conditions: there exists �¾ 1 resources,
indexed by l = 11 0 0 0 1 �. Each player i ∈ N is fully char-
acterized by the resources’ quantities that he or she owns.
That means that player i ∈N is associated with a vector
of properties yi ∈ <�, so that yil denotes the quantity of
resource l, 1 ¶ l¶ �, that he or she owns. The vector of
properties of the players may be required to satisfy some
feasibility constraints of the form y ∈ D, where D ⊆ <�.
Some of the resources are sharable among the members of a
coalition, whereas the others are nonsharable. In some games
all resources are sharable. Nonsharable resources serve as
attributes (parameters) of the players. The characteristic
function value V 4S5 of coalition S ⊆N , is a function of
the �S� vectors of properties of the members of S and is
otherwise independent of the identity of its members. V 4S5
denotes the cost induced by the members of S when they
share the sharable resources according to the rules of the
game. Let y4m5 denote a sequence of m vectors of properties
y11 0 0 0 1 ym in D. The following two definitions formally
define a regular game:

Definition 2. An infinite sequence of symmetric functions
V01 V11 0 0 0 1 Vm1 0 0 0 is said to be infinite increasing input-size

symmetric sequence 4IIISSS5 of functions for given integer
�¾ 1, and a subset D of <�, if

• V0 ≡ 0;
• for any m¾ 1, Vm2 D

m → <;
• there exists a vector y0 ∈D such that V14y

05= 0 and for
any given sequence of m− 1 vectors of properties y4m−15 =

4y11 0 0 0 1 ym−15 ∈Dm−1, Vm−14y
4m−155= Vm4y

4m−151 y05.

For a given IIISSS of functions 4Vm5m¾0, Vm receives
as input m vectors of size �, each is a member of the set
D, and it returns a real value. As the functions Vm are
symmetric, the order of the m input vectors has no affect on
the value of the function. The third item of the definition
guarantees that the definition of the various functions of
the IIISSS of functions is consistent, i.e., it excludes the
possibility that there exist two functions Vl and Vk for l 6= k,
l, k¾ 1, where each is defined by a different mathematical
expression. This is achieved by requiring to have a null vector
of properties y0 ∈D that links the different functions through
a forward recursion. For example, suppose that each player
i is associated with a certain score �i and the value of a
coalition is the average score of its members. In such a case
let �= 2, player i is associated with a vector yi = 4�i115, the
null vector is y0 = 40105 and D = 8401059∪ 84x1152 x ∈ <9.
Given m vectors of properties y4m5 ∈Dm, yi = 4�i1�i5 ∈ y4m5,
i = 11 0 0 0 1m, the value Vm4y

4m55 =
∑m

i=1 �i/
∑m

i=1 �i, i.e.,
Vm4y

4m55 is the average score of the nonnull vectors in D.
Note that the choice of y0 as the zero vector is a quite natural
choice for a null vector that holds in many other games. But
in some games y0 is not necessarily the zero vector. Consider
a similar example to the above one with a characteristic
function that for any coalition returns the product of the
scores in the coalition divided by the number of players in
the coalition, i.e., Vm4y

4m55=çm
i=1�i/

∑m
i=1 �i. In such a case

the null vector y0 is 41105, and V14y
05 is defined as 0.

Definition 3. A game G= 4N 1V 5 is called regular if there
exists a set D ∈ <�, such that player i, i ∈N , is associated
with a vector of properties yi ∈D, and there exists an IIISSS
of functions Vl2 D

l → <, l¾ 0, such that for any S ⊆N ,
V 4S5= V�S�4y

i�i∈S5.

Observation 1. A market game G= 4N 1V 5, as described
in §1, is not a regular game in general, as the cost function
of a player may depend on his or her identity. A market
game is a regular game if all individual cost functions fi4 · 5,
i ∈N , are identical, i.e., fi ≡ f for all i ∈N .

The subadditivity of an IIISSS of functions is defined as
follows:

Definition 4. An IIISSS of functions V01V11V21 0 0 0 is
said to be subadditive if for any two finite sequences
of vectors of properties in D, 4yiA5�i∈A and 4yiB5�i∈B,
V�A�+�B�44y

i
A5�i∈A1 4y

i
B5�i∈B5¶ V�A�44y

i
A5�i∈A5+V�B�44y

i
B5�i∈B5.

In the next section we consider two examples of regular
cooperative games that do not fit the structure of these two
types. In addition, none of the them can be proved to be
totally balanced by using the sufficient conditions described
in §1.
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3. Examples
The first example deals with a situation that we often
encounter in sales, where we do not have to pay for all the
items that we buy. Suppose that the items in the store are
partitioned into k categories for some k¾ 2. If a customer
buys k items, one from each category, then she gets for free
one of the items whose price is the cheapest among the k
items she picked up. We call such a sale a 4k− 15+ 1 sale.

Example 1. Consider a department store that announces
a 4k− 15+ 1 sale for k categories of items. The sale is
such that if one buys one item from each category, she
gets for free one item whose price is the cheapest. Suppose
the categories are indexed by 11 0 0 0 1 k. A customer that
takes advantage of the sale is associated with a vector of
properties of size k, 4xi11 0 0 0 1 x

i
k5 ∈ <k

+
, where xij is the price

of the item in category j that customer i picks up. This
customer, if acting individually, pays

∑k
j=1 x

i
j − min8xij 2 j =

11 0 0 0 1 k9. Cooperation among customers of a group S ⊆N
may generate some savings. Let V 4S5 denote the minimum
payment that coalition S can achieve by reassigning the
items of the different categories among its members.

To present the game as a regular game let the set
of feasible vectors of properties be D = 84x11 0 0 0 1 xk52
xj ¾ 0 j = 11 0 0 0 1 k9, where the null vector is the zero vector.
Let ç4N5 be the set of all permutations of N , and ç4S5=

8� ∈ç4N52 �4i5= i for i ∈N\S9. Let also �11 0 0 0 1 �k be k
permutations in ç4N5, where permutation �1 is the identity
permutation, i.e., �14i5= i for i = 11 0 0 0 1 n. The characteristic
function of the 4k− 15+ 1 sale game is defined by

V 4S5=
∑

i∈S

[ k
∑

j=1

xi
j − max

�l∈ç4S51 l=210001k
min8x�14i5

1 1x
�24i5
2 10001x

�k4i5
k 9

]

�⊆S⊆N0

For any integer m¾ 1, let P4m5 be the collection of all
permutations of the sequence 411 0 0 0 1m5, where permutation
�1 is the identity permutation. Define the IIISSS of functions
Vm, m¾ 0, as follows: V0 = 0, V14x11 0 0 0 1 xk5=

∑k
j=1 xj −

min8xj 2 j = 11 0 0 0 1 k9, and for m¾ 1

Vm44x
i
110001x

i
k5i=1000m5

=

m
∑

i=1

[ k
∑

j=1

xi
j − max

8�l∈P4m51l=210001k9
min8x

�j 4i5

j 2 1¶ j¶k9

]

0 (3)

We provide now a simple procedure that determines the
characteristic function value for any coalition and for k > 1
categories of items. Claim 1 specifies an optimal sequence
of permutations that minimize (3):

Claim 1. Let �j ∈P for j = 11 0 0 0 1 k be k permutations,
with �1 being the identity permutation, and x

�j 415
j ¶ · · ·¶

x
�j 4m5

j for j = 11 0 0 0 1 k. Then, (3) is equivalent to

Vm44x
i
11 0 0 0 1 x

i
k5

m
i=15

=

m
∑

i=1

k
∑

j=1

xi
j −

m
∑

i=1

min8x
�j 4i5

j 2 1 ¶ j ¶ k90 (4)

Proof. The proof is by induction on m, the size of the
coalition. For m= 1 the proof is trivial. Consider i =m and

the following vector of properties x̄ = 4xm1 1 x
�24m5
2 1 0 0 0 1 x

�k4m5
k 5

that consists of the prices of the most expensive item in
each of the k categories. In any reassignment of the items
among the customers of the coalition it is necessary that the
coalition pays for all the k− 1 most expensive items in x̄.
Thus, without loss of generality, we assign these k− 1 items
to customer m. Hence, customer m is assigned items in all
categories except for some category l ∈ 811 0 0 0 1 k9. Yet, it is
easy to see that it is optimal to assign to her also the most
expensive item of category l, now without a charge. In other
words, the vector x̄ is assigned completely to customer m.
The problem then repeats itself with a coalition of m− 1
customers, and the remaining set of items in each of the k
categories. The proof then follows by induction.

The IIISSS of functions given in (3) is subadditive as
when an optimization problem is involved in defining the
functions 4Vm5m¾1 then the optimal solution for a set A of
vectors of properties coupled with the optimal solution for a
disjoint set B of vectors of properties is still feasible for
A∪B. Yet, a better solution can be found for A∪B.

The following instance of a 1 + 1 sale game shows that
4k− 15+ 1 sale games are not concave; see Condition 1 in
§1. Let N = 8112139, �1 = �2 = 1, �3 = 10, �1 = �2 = 10,
and �3 = 1. Let S = 81139 and T = 821390 Thus, V 4S5=

V 4T 5= 11, V 4S ∩ T 5= V 48395= 10, and V 4S ∪ T 5= 1 +

10 +10 = 21, implying that V 4S∪T 5+V 4S∩T 5 > V 4S5+
V 4T 50

The formulation of the 4k− 15+ 1 sale game in (3) does
not look as a formulation of a market game (see Condition 2
in §1) or as a formulation of a regular market games (see
Condition 3 in §1) as we deal here with a discrete rather
than a continuous optimization. The special case of a 1 + 1
sale game with two categories, and one pays for the most
expensive item of the two, is a regular permutation game and
therefore it is totally balanced; see §1. In the next section we
show that also the general 4k− 15+ 1 sale game is totally
balanced.

Our second example is from the area of location of service
facilities:

Example 2. Suppose that a number of towns that are part of
a bigger metropolitan need the service of a fire station. Each
can have its own station at a dedicated location. Cooperation
can take place when a number of towns use the same station.
The goal is to minimize the sum of the distances between
the centers of the towns and their closer stations. Specifically,
let xi ∈ <2 be the center of town i and let yi ∈ <2 be the
default location of its fire station. Define V0 = 0 and

Vm44xi1 yi511 ¶ i¶m5=

m
∑

i=1

min
j �1¶j¶m

��xi − yj ��
20 (5)

In particular V14x1 x5= 0 for any x ∈ <2 ×<20 The sequence
Vm for m¾ 0 is an IIISSS of functions with D = 84x1 y5 ∈

<2 ×<22 max8�x�1�y�9¶ �9∪ 84z1 z5 ∈ <2 ×<22 �z�> 2�9
for some constant �> 0. The pair 4z1 z5 serves as the null
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vector and therefore it is chosen so that �z� is a large number
relative to the input implying that pairing a town in D with
4z1 z5 is never optimal.

In view of the above presentation the game is regu-
lar. It is easy to see that this game is subadditive. The
following example shows that it is not a concave game.
Let N = 8112139 and assume x1 = x2 = x3 = 41105, that
y1 = y2 = 41105 and that y3 = 410105. Let S = 81139 and
T = 82139. Thus,V 4411355= V 4421355= 0,V 4S∪T 5= 0
and V 4S ∩ T 5 = 81. Clearly, V 4S5 + V 4T 5 < V 4S ∩ T 5 +

V 4S∪T 5, refuting a possible conjecture that this game is
concave. For the same reasons as Examples 1, this game
does not look as neither a market game nor as a regular
market game, or a permutation game.

The new condition that we present in §4 will easily prove
the total balancedness of these three cooperative regular
games.

4. Homogeneity of Degree One
We now present the homogeneity of degree one property for
regular games. For this sake we need the following notation:

Definition 5. Given a regular game G = 4N 1V 5 that is
associated with D ⊆ <�, and a sequence A of vectors of
properties in D let A4p5 be a set of vectors of properties in
D containing p replicas of any member in A0

Definition 6. An IIISSS of functions 4Vm5m¾0 (with the
corresponding set D) is said to be homogeneous of degree p,
p¾ 0, if for any given sequence A of m vectors of properties
in D, Vmp4A

4p55 = mpVm4A5. In particular, for p = 1, an
IIISSS of functions is said to be homogeneous of degree one.

Definition 7. A regular game G= 4N 1V 5 whose IIISSS of
functions 4Vm5m¾0 is homogeneous of degree p, is said to be
homogeneous of degree p.

Example 3. Let N = 811 0 0 0 1 n9 be a set of n M/M/1
queueing systems that cooperate in order to minimize the
steady-state congestion in the combined system. Queueing
system i is associated with its own exponential service rate
�i and its own Poisson arrival rate of �i, �i <�i, i ∈ N .
Cooperation of a set � ⊆ S ⊆N results in a single M/M/1
queue whose service rate is �4S5 =

∑

i∈S �i, and whose
arrival rate is �4S5 =

∑

i∈S �i. The cost associated with
coalition S, � ⊆ S ⊆N , is defined as the resulting mean
number in the system. Let G= 4N 1V 5 be the respective game
where V 4S5= �4S5/4�4S5−�4S55 for any S, � ⊆ S ⊆N .
This game was analyzed in Anily and Haviv (2010): the
game is subadditive but it is not concave. The game is
not formulated as a market game and it is not clear how
to reduce it to a market game. Still it is proved in Anily
and Haviv (2010) that the game is totally balanced and
its nonnegative part of the core is fully characterized. In
particular, it is shown that �i = 4�i/

∑

j∈N �j5V 4N5 is a
core allocation. The game 4N 1V 5 is regular: each service
provider i ∈ N is assigned a vector of properties of size

2, namely, 4�i1�i − �i5 in D = <2
+

, where 40105 is the
null vector, and V140105= 00 The IIISSS of functions is
given by Vm44xi1 yi5i=1000m5=

∑m
i=1 xi/

∑m
i=1 yi0 Regarding the

homogeneity property defined above, it is easy to see that
this game is homogeneous of degree zero.

Homogeneity of degree one means that when two (or
more) identical sets of players cooperate, they cannot do
better than what they did when acting individually. At the
same time, none of them interfere with another. What they
produce is just the total of what they would have produced
separately. This in fact means constant return of scale. Note
that subadditivity means that gains due to cooperation are
possible. This, when coupled with homogeneity of degree
one, means that in order to get a strict improvement, the
cooperating sets should be different, i.e., at least one of
the cooperating subsets should contain types of players
that do not appear in the other set. In contrast to that,
consider again the game presented in Example 3 and analyzed
in Anily and Haviv (2010): this game is both subadditive and
homogeneous of degree zero. Indeed, homogeneity of degree
zero implies that when k identical coalitions cooperate the
total cost is reduced by a factor of 1/k. Thus, in this example
both economies of scope and economies of scale prevail.

It is easy to verify the following:

Example 1 (Cont.). The 4k−15+1 sale game given in (3)
with D = 84x11 0 0 0 1 xk52 xj ¾ 0 j = 11 0 0 0 1 k9, is homogeneous
of degree one.

Example 2 (Cont.). The location game given in (5) with
D = 84x1 y52 4x1 y5 ∈ <2 × <29, is homogeneous of
degree one.

Next we state our main theorem. The proof is deferred
to §5.

Theorem 1. Any regular game that is subadditive and
homogeneous of degree one, is totally balanced.

Theorem 1 is a new sufficient condition for total balanced-
ness that helps us to resolve the question if the games in
Examples 1 and 2 are totally balanced:

Example 1 (Cont.). The regular 4k− 15+ 1 sale’s game
given in (3) is subadditive and homogeneous of degree one,
and therefore it is totally balanced.

Example 2 (Cont.). The location game given in (5) is
subadditive and homogeneous of degree one, and therefore
it is totally balanced.

Theorem 1 provides a sufficient condition for total bal-
ancedness but it does not say how to generate cost allocations
in the core for such games. This remains an open question.

5. Proof of Theorem 1
We start by reviewing a well-known necessary and sufficient
condition for the nonemptiness of the core of a cooperative
game; see, e.g., Osborne and Rubinstein (1994), chapter 13.
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This condition is equivalent to the duality condition of a
feasible linear programming formulation. Specifically, let
C be the set of all 2n coalitions of N . For any coalition
S denote by <S , the �S�-dimensional Euclidean space in
which the dimensions are indexed by the members of S, and
denote by 1S ∈Rn the characteristic vector of S given by

41S5i =

{

1 if i ∈ S

0 otherwise0

Definition 8. A collection 4�S5S∈C of numbers in 60117 is
said to be a balanced collection of weights if for every player
i ∈ S the sum of �S over all coalitions that contain i equals
1, namely, èS3i�S = 1 for all i ∈ N . A coalitional game
G= 4N 1V 5 is said to be balanced if

∑

S∈C�SV 4S5¾ V 4N5,
for every balanced collection of weights 4�S5S∈C.

The following proposition is referred to as the Bondareva-
Shapley Theorem; see, e.g., Proposition 262.1 in Osborne
and Rubinstein (1994).

Proposition 1. A coalitional game with transferrable utility
has a nonempty core if and only if it is balanced.

We are now ready to prove Theorem 1.

Proof. We prove the theorem by using Proposition 1 in two
steps. We first prove that for any vector of balanced rational
weights 4�S5S∈C, the inequality

∑

S∈C �SV 4S5¾ V 4N 5, holds.
Then we prove that the same is the case for any balanced
collection of real weights.

Consider any balanced collection of rational weights
4�S5S∈C. Let M4�5 be a positive integer such that �S4�5=

M4�5�S is an integer for all coalitions S ∈C. As the game
G= 4N 1V 5 is regular, there exists an integer �¾ 0, such that
each member i ∈N is associated with a vector of properties
yi ∈ <�. Let yij = yi for any integer j ¾ 1. Regularity of the
game implies that V 4S5= V�S�44y

i5�i∈S5. As V is homogenous
of degree one, V�S 4�5�S�44y

i
j54i1 j5∈S4�S 4�555= �S4�5V 4S5. Note

that

∑

S∈C

�S4�5V 4S5=
∑

S∈C

V�S 4�5�S�44y
i
j54i1 j5∈S4�S 4�555

¾ VM4�5n44y
i
j54i1 j5∈N 4M4�555=M4�5V 4N51

where the above inequality follows by the subadditivity
of V in the regular game G = 4N 1V 5, and specifically,
subadditivity of V over N 4M4�55 that contains M4�5 repetitions
of each player of N . Consider now the left-hand side of the
inequality, i.e.,

∑

S∈C V�S 4�5�S�44y
i
j54i1 j5∈S4�S 4�555: for any i ∈N ,

we have also here
∑

S∈C2 i∈S �S4�5=M4�5
∑

S∈C2 i∈S �S =

M4�5 copies of each vector of properties yi, as 4�S5S∈C is a
balanced collection of weights. The last equation follows
from the fact that in the regular game G = 4N 1V 5, the
characteristic function V is homogenous of degree one.
To conclude,

∑

S∈C �S4�5V 4S5¾M4�5V 4N5. Recall that
�S4�5=M4�5�S , thus dividing the last inequality by M4�5

gives the desired result for any rational balanced collection
of weights 4�S5S∈C.

To complete the proof, we need to show that the above
property holds also for any vector of balanced real weights.
Let 4�̃S5S∈C, be a balanced collection of real weights. Con-
sider the simplex induced by the constraints that define the set
of balanced weights, i.e., 4�S5S∈C ¾ 0, and

∑

S∈C1 i∈S �S = 1
for all i ∈N . The extreme points of this simplex are rational,
as the right-hand side of the constraints as well as the
coefficients of the variables are 0 or 1. Let K be the number
of extreme points of this simplex, and let �j for j = 11 0 0 0 1K,
be the respective extreme points, where each �j is a vector
of size �C�. Thus, 4�̃S5S∈C, can be represented as a convex
combination of the extreme points: let 4�11 0 0 0 1 �K5 be the
respective weights, so that 0 ¶ �i ¶ 1 for i = 11 0 0 0 1K,
∑K

j=1 �j = 1, and 4�̃S5S∈C =
∑K

j=1 �j4�
j
S5S∈C. As each of the

extreme points of the simplex is rational and is a vector
of balanced weights, we have

∑

S∈C�
j
SV 4S5¾ V 4N5 for all

1 ¶ j ¶ K. Therefore,
∑

S∈C4�̃S5V 4S5 =
∑

S∈C

∑K
j=1 �j�

j
S

V 4S5=
∑K

j=1 �j

∑

S∈C�
j
SV 4S5¾

∑K
j=1 �jV 4N5= V 4N5.
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