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Abstract: We study the distribution problem of a single commodity from one warehouse to n geographi-
cally dispersed retailers by a fleet of capacitated vehicles, Each of the retailers faces a continuous
constant and deterministic demand rate over the infinite horizon. In addition, each of the retailers is
characterized by its own inventory holding cost rate. The objective is to obtain a routing and replenish-
ment strategy which minimizes the long-run average transportation and holding cost. We restrict
ourselves to a class of strategies which partitions the overall region into subregions. A retailer can be
assigned to several subregions: each subregion is responsible for a certain fraction of the sales of each of
its retailers. We first show that the optimal solution can be bounded from below by a special partitioning
problem whose solution can be given in a closed form. We then present a simple heuristic which is shown
to converge to the lower-bound almost surely under mild probabilistic conditions, when the number of
retailers is increased to infinity.
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1. Introduction

In this paper we study the distribution problem of a single commodity from one depot to n
geographically dispersed retailers. Each of the retailers is characterized by its geographic location, its
demand rate and by its inventory holding cost rate. We consider an infinite-time horizon in which
retailers are facing deterministic retailer-specific constant demand rates. All demands must be met on
time (i.e., no backlogging is allowed). The cost structure consists of the routing cost which is proportional
to the Euclidean distance driven, plus a fixed cost which is paid each time a tour is initiated (this last cost
may include the vehicle rental cost or any other fixed costs which do not depend on the load size or the
number of stops on the route). In addition, each of the retailers is charged for holding stock in the same
way as in the EOQ model. The objective is to find a routing schedule minimizing the average
system-wide costs. Such a schedule should specify a list of routes, the frequency each of the routes should
be driven as well as the delivery size for each of the retailers on the route. The vehicles are assumed to
be identical and their capacity may be limited or non-limited. We may also impose upper bounds on the
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frequency each of the routes is driven or on the sales volume assigned to each of the routes. Such upper
bounds may be used by practitioners to (1) limit the number of trucks assigned to a single route: (2) avoid
‘heavy’ routes, i.e., routes that serve a large percentage of the total sales volume.

This problem is a version of the Capacitated Vehicle Routing Problem (CVRP). Garey and Johnson
(1979) show that even the one-period problem with routing costs only (shortly denoted by the ‘VRP’) is
NP-complete. Several variants of the VRP including solution methods as well as a literature review is
provided, for example, in Golden et al. (1977) and Magnanti (1981). Recently much interest arose in the
development of heuristics with guaranteed error bounds obtained by either asymptotic, probabilistic,
statistical or worst-case analyses.

One of the first papers that considers an inventory replenishment problem with vehicle routing costs is
by Burns et al. (1985). The paper considers an infinite-horizon one warehouse multiple retailer system
with retailers facing constant demand rates. The transportation cost is proportional to the euclidean
distance travelled and all holding cost rates are assumed to be identical. The authors develop an analytic
method for minimizing total replenishment costs.

In this paper we adopt the asymptotic analysis approach. For an excellent survey on the asymptotic
analysis of several versions CVRP and VRP with holding costs see Federgruen and Simchi-Levi (1992).
The stimulating paper by Haimovich and Rinnooy Kan (1985) provides a breakthrough in this direction.
The paper considers a single-period CVRP where each vehicle can serve at most g retailers (all vehicles
are assumed identical). By making use of the geometric setting of the problem they developed extremely
simple heuristics, based on regional partitioning schemes, which are shown to be asymptotically optimal
(i.e., to converge to the optimal solution when the number of retailers is sufficiently large). Federgruen,
Rinnooy Kan and Zipkin (1985) extend the results of the above paper and derive asymptotically accurate
lower and upper bounds on the minimal expected total cost for an integrated routing and inventory
problem: they assume a single-period time horizon and a set of identical retailers. Anily and Federgruen
(1990b) consider a class of general routing problems where the cost of driving a route depends both on
its length and the number of points visited on the route via some general cost function having two
arguments. The paper describes a class of simple heuristics of complexity O(n log n) which are shown to
be asymptotically accurate if the cost function satisfies certain conditions. Anily and Federgruen (1990a,
1993) (and Anily, 1987) consider two deterministic, continuous time, infinite horizon inventory-routing
problems: a single depot is assumed to supply stock to a set of retailers each facing its own constant
demand rate. The holding cost rate is assumed to be identical at all retailers. The former paper considers
the case where the depot is an outside supplier (R-systems). The later one analyses the case where the
depot is a part of the system (DR-system): in addition to the routing and holding costs due to the
retailers, the DR-system is charged: a) by a fixed cost each time the depot places an order and b) for
holding inventory at the depot. In both systems the routing and delivery schedule to the retailers are to
be determined. In DR-systems the reorder-points of the depot are additional decision variables. Both
problems are shown to fall in the class of cost functions analyzed in Anily and Federgruen (1990b). In
both cases easily computable replenishment strategies are provided. The heuristics for R (DR)-systems
are shown to be tight with (to come within 6% of) the optimal solution when the number of retailers is
large. Experimental studies show that the proposed heuristics come close to the optimal solution even for
problems of moderate size.

Gallego and Simchi-Levi (1990) consider the infinite horizon continuous time R-system with routing
costs and retailer specific holding and ordering costs. The authors obtain a simple lower bound on the
average total cost. Moreover they show that if the trucks’ capacity is small enough relative to the
Economic Order Quantity of each of the retailers separately, then a simple heuristic using only ‘direct
shipments’ (ile., each route consists of a single retailer), comes within 6% of the lower bound given that
the number of retailers is sufficiently large.

In this paper we generalize the results of Anily and Federgruen (1990a) for general holding cost rates.
In some settings, the variability among the retailers is small and the assumption of identical holding costs
may be reasonable; however in large distribution systems we often encounter the situation where the
holding cost rates vary substantially among the retailers. Usually the holding cost is an increasing
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function of the item-value and this one tends to increase with the distance travelled. Other factors as, for
example, the proximity to city-centers may also have an impact on the holding costs. Thus, it is important
to obtain good replenishment strategies for general holding cost rates.

Intuitively, one will seek a replenishment policy with the property that two retailers located in close
proximity, but one having a higher holding cost than the other, then the stock of the first will be
replenished at least as frequently as the stock of the second. It is noteworthy that in Anily and
Federgruen (1990a) the assignment of retailers to routes is based solely on their geographical location.
The extension of the analysis to the general case, especially with respect to the lower bound derivation, is
not direct (for reasons explained below), and a new approach is required. The computation of the lower
bound and the heuristic, is as simple as for the identical retailers model (complexity O(n log »r)). We also
remark that the lower bound and the policy obtained by applying the proposed algorithm in this paper to
a set of retailers having identical holding cost rates do not necessarily coincide with the ones derived in
Anily and Federgruen (1990a). For a set of identical retailers we recommend the user to apply the
algorithm in Anily and Federgruen (1990a) which is expected to yield more accurate lower bounds and
policies of better quality.

2. Problem description

Consider a distribution system consisting of one warehouse and a set of » retailers. Let u; denote the
demand rate of retailer j, Similarly to Anily and Federgruen (1990a), we assume that all demand rates
are represented as integer multiples of some common quantity u, i.e.

pi=kp, 1<k;<K, j=1,..,n,

for some given integer K that is independent of n. Without loss of generality we let u = 1. We define a
demand point as a point in the plane facing a demand rate of 1. Thus we can view retailer j as consisting
of k; demand points all located at the j-th retailer’s site. We restrict ourselves to policies that partition
the set of N = Z;L 1k; demand points into groups (=regions), and each time the stock of one demand
point is replenished then the stock of all other demand points in the same region is replenished as well.
Consequently, a retailer may be served by several routes where each of these routes satisfies a certain
fraction of the retailer’s total demand. We assume that once the routes and the assignment of the
demand points to the routes are determined, then each route is controlled independently of the others:
the stock delivered on a specific route to a retailer having g demand points on that route is aimed to
satisfy the demand of these g demand points only, resulting in a corresponding depletion rate of g. Each
route is responsible for not allowing the stock of ifs demand points to be backlogged. We denote this
class of policies by @. For a further discussion on this restriction see Anily and Federgruen (1990c).

Let:
c= The fixed cost per route driven.
b= The capacity of a vehicle (all vehicles are assumed to be identical). If the vehicles are non-limited

in capacity, we let b = .
f= The upper bound on the frequency with which a given route may be driven. If no frequency
__ constraints prevail, let f* = cc.
M = The upper bound on the number of demand points assigned to a single route, M < x.
Without loss of generality, (a) we set the variable transportation cost per mile to one; (b) we assume that
f*b>1 in order to ensure feasibility.

Let also X ={x,,..., xy) be the set of demand points in the Euclidean plane, with r; the distance of
demand point x; from the warehouse. We choose the warehouse as the origin of the plane. Let rf =r,
+ 3c. We use A; to denote the holding cost rate at x, and without loss of generality we number the
demand points in ascending order of r{/h;, i=1,..., N. We assume also that the sequences {r;}, {h},
i=1,..., N, are uniformly bounded from above by the constants r_, and h,, respectively, and that the
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sequence {h;}, i=1,..., N, is also bounded from below by the constant %, > 0. Moreover, in the case

the sales volume assigned to each of the routes is finite. The requirement of having a finite sales volume
in each of the routes is essential to the analysis and was assumed in many other asymptotic analyses of
vehicle routing heuristics.

A partition of the set of demand points X is denoted by x. We write xy = {X,,..., X;} if X; is a subset
of X,i=1,...,L, Xjr\Xj=ﬂ, i<j,and UL X;,=X. We use m, to denote the cardinality of X, ie.
m,=|X,|, ¢=1,..., L. For a specific partition x with L sets the determination of the optimal policy in
@ reduces to L constrained EOQ problems one for each region: the order cost of X, equals to the sum
of the vehicle’s rental cost with the total length of the route emanating from the warehouse, visiting all
the demand points in X, and finally returning back to the warehouse. The holding cost rate of X, is the
average holding cost rate of the demand points in X, and its demand rate is | X, |.

Similarly to the EOQ model, the best policy in the class @ is such that each of the routes is driven at
equi-distant epochs and the quantity delivered to any of the retailers on the route is of constant size. The
determination of the route is the well known Traveling Salesman Problem (TSP) defined on the
warehouse and the corresponding retailers,

Denote by TSP(X f) the length of an optimal traveling salesman tour via the warehouse and the
retailers in X,, and by Q, the total delivery size to the /-th region. Our objective is to compute
V *(X) = the minimal long-run average cost among all strategies in the class ®. We define OPT,, to be
the problem of finding the optimal strategy in &:

(OPT,)

V*(X)=min{i minll Yy 5oy

-1 Q|2

- -gf(TSP(Xf) +c)]}

iex, M ¢
st. m,/f*<Q,<b, ¢=1,...,L,
m!SH, Z=1,...,L,
x ={X,,..., X} is a partition of X.
The problem can be simplified by using the following considerations: for a given set of demand points
X, with delivery size Q,, the average total cost is given by the expression in the square brackets in the

objective function of OPT,. Similarly to a constrained EOQ problem, the optimal Q, subject to the first
¢ constraints is given by

QF= min(b, max

-m—:;‘/me(TSP(Xf)+C)/ s h,.”. (1)

icX,

By substituting (1) into V' *(X), we obtain an equivalent problem whose objective function is a
minimization over all partitions y, of a cost function that depends on the problem’s parameters, subject
to constraints on the sets’ cardinalities: the ¢ first constraints translate into ¢ constraints of the form

def
m,<f*b, thus the 2¢ constraints can be written as m,<M*, ¢=1,..., L, where M* = min{l f*b],
M} < e,
For a given region X,, define the following parameters:

8,=TSP(X?)+C, Hf= Eh;, R(= Erj! R;= Er;’:_
X Xf X{

(4

In Lemma 1 we provide the simplified representation for OPT,, that will be used in the sequel.
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Lemma 1. (a) The optimal average cost of a given region X, is g(8,, H,, m,) where

H,/(2f*) +f*8, if 0,/H,<1/(2f*?),
g(6,, H,,m,)=1{(2H,8,)"* if 1/(2f**) <8,/H,<b*/(2m}), (2)
bH,/(2m,) +m,0,/b otherwise.

(b) V*(X)=min{Z%_,g0,, H,, m,)| x ={X,,..., X} is a partition of X and m,<M*, ¢=1,...,L}.

Proof. (a): The average cost of a region X, is given by a constrained EOQ model with the fixed cost 6,,
the variable holding cost H,/m,, and demand rate of m, units.
(b): Directly from the definitions of ¥ *(X) and the function g. O

In the next section we provide a lower bound on V¥ *(X). For the reader’s convenience we summarize
the main notations and definitions of Sections 2 and 3 in Table 1 (see end of Section 3).

3. The lower bound

Theorem 1. V *(X) = V(X) where

L
V(X) =min{ Y. g(2RS/m,, H,, m,)|x={X,..., X,} is a partition of X and
/=1

m,<M*, ¢=1,...,L}. (3)

Proof. The function g(8,, H,, m,), as given in (2) is strictly increasing in 8,> 0. The well known
inequality TSP(X?) > 2R,/m , implies that 8, > 2RS/m,, resulting in (3). O

The lower bound, as given in (3), is a partitioning problem with a separable cost function that depends
on the following set’s attributes: (1) the average of rf, (2) the sum of holding costs, and (3) the set’s
cardinality. Chakravarty et al. (1982) show that general partitioning problems are NP-complete. Very few
partitioning problem types are known to be polynomially solvable, see Chakravarty et al. (1982, 1985) and
Barnes et al. (1989). Unfortunately, the partitioning problem V(X)) is not known to be solvable: not only
it depends on three attributes of the sets but also constraints are imposed on the set’s cardinalities.

By a careful investigation of V(X) and relaxation of its cardinality constraints, we could derive a
solvable lower bound on V(X). We first rewrite the set function g as an equivalent set function G having
as arguments the sum of rf, the sum of holding cost and the set cardinality: let £,= 1m,6, and G(¢,,
H, m,) =g(6,, H,, m,). Alternatively,

G(R::"Hfsmf] =g(2Ry/m,, H,, m,). (4)
Below we write the function G explicitly. (For simplicity we omit the index ¢.)
H/Q2f*)+2f*R°/m if R°/H <m/(4f*?),

G(R®, H, m) = { (4HR /m)'/? if m/(4f*?) <R°/H <b?/(4m), (%)
bH/(2Zm) +2R°/b otherwise

(Observe that the set-function’s break points in (5) are well defined since be definition m <M * <bf *
implying that m/(4f*?) <b?/(4m).) In Appendix A, Lemma 2, we prove the set function G is
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non-increasing in m. Thus, the optimal average cost of any feasible region X,, m, <M *, is bounded
from below by G(R¢, H,, M *). Let

Gyo(RS, H) S G(RC, H, M*). (6)
Define also,
def . [ & ; *
V(X)) = mm{ 2. Gy«(RS, H)) x={X,,..., X} is a partition of X ). (7
=1

Theorem 2. V(X) > V,«(X).

Proof. In view of the fact that the function G(R¢, H, m) is monotone non-increasing in m, the
requirement that m <M * and (6) we get that

G(R{, H,m,) >G(R{, H, M*) =Gy«(RS, H,)
holds for any feasible set X,. Thus, (3), (4) and (7) imply that

L
V(X) 2min{ Y. Gy«(RS, H,) x={X,,...,X,) is a partition of X and m,<M*,
¢=1

= 1,,L}ZKM*(X)

The last inequality follows from the relaxation of the partitioning problem which is obtained by omitting
the cardinality constrains. 0O

Unlike V(X), V,,+«(X) and the corresponding partition can be easily obtained. Moreover, it turns out
that the last inequality in the proof of Theorem 2 holds as an equality, i.e. omitting the cardinality
constraints m, <M * from the partitioning problem defined by the set-function G,;+ does not worsen the
lower bound. We prove below that one of the optimal partitions for V,,«(X) consists of N singletons.
Nevertheless, we will show that V,,.(X) is asymptotically accurate with the optimal average cost over all
policies in @.

Theorem 3. The partition x* ={{1}, {2},...,{N}} is an optimal partition for the lower bound partitioning
problem V,,«(X) as defined by (5)—(7).

Proof. Observe that for a given set X,, G «(RS, H,) may be viewed as the optimal average cost of
replenishing the demand of the set X, having (i) joint setup cost of 2R5/M *, (ii) joint holding cost rate
of H,, and (iii) total demand rate of M *, under the restriction that 7, = the order interval, T,= Q,/M *,
satisfies the inequalities f* ' <T,<b /M *. Therefore,

C

VT )]:X is a partition of X}

I_/M‘(X)=min{)£:', min [):[ hT,+ ——

=1 f* 'sT,sb/M*|icx

) N : 2rf et b
=, min 3 Ehﬂ}+m T <T5~M—*
The second equality follows from the fact that both the joint setup and holding costs are additive
functions in the demand points. Thus, no advantage is gained by replenishing demand points simultane-
ously, i.e., the separability property of V,«(X) with respect to the demand points ensures that
V(X)) =LY, Vi« ({x;). Therefore, x* ={{1}, {2},...,{N}} is an optimal partition for V,«(X). O
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Table 1
Notation Description
c fixed cost per route driven.
F* upper bound on the frequency a route may be driven.
b vehicle’s capacity.
M(M*) upper bound on the total demand in a region (M * = min{| f *b), M}).
X ={xy,...,xy} set of demand points.
x ={X,,..., X} a partition of X into L subsets.
r (rf) radial distance of x; from the depot (rf = r, + 3c).
R, (R%) =L, r (R;=L,rf)
h;(H,) holding cost rate at x; (H, =L, h,). Note that 7{/h;<r§/hy< - <rg/hy.
m, = | X, | = the number of demand points in X,.
TSP(X () optimal tour through the depot and X,. Routing cost for X, is TSP(X})+ c.
gle,, H,,m,) optimal average cost of X, as a function of the routing cost 8,, H,, and m,.
V*(X) = min{E, g(TSP(X)) + ¢, H,, m,)| x ={X,,..., X, } is a partition of X and
m, < M *}: the optimal average cost of policies in @.
v(X) =min{L,g(2RS /m,, H,, m )| x ={X,,..., X, } is a partition of X and m, < M*}.

V*(X) = V(X) (Theorem 1).
G(RS,H,,m,) =gQRR,/m, H,,m,)
Gy«(R$, H,) =G(RS, H,, M*). GRS, H,, m,)< Gy «(R5, H,) for m, < M * (Lemma A.2).
Vigs(X) =min{L, Gy (RS, H, )| x ={X,,...,X )} is a partition of X}.

V(X) = Vy+(X) (Theorem 2).

Let T.* be the minimizer of V},+({x,}). According to the proof of Theorem 3, the demand points in X
can be classified into three (possibly empty) categories:

F = {x|rf/h; <M*/(4f*?)},
S=(xIM*/(4f**) <ri/h; <b?/(4M*)},
C = {x|rf/h;>b*/(4M*)}.

The demands points in F are ‘replenished’ at the highest frequency allowed (7.* = f *=1) and the ones in
C are ‘replenished’ by fully loaded trucks, i.e. the capacity constraint is tight (7;* =b/M *). Note that
b= (no capacity limits prevail) implies that C =@, and f* = (no frequency constraints prevail)
implies that F=.

In the next section we present a regional partitioning scheme which takes into account the radial and
polar coordinates as well as the holding cost rates while grouping the retailers into regions of M *
demand points each (with the possible exception of at most three regions which may contain less than
M * demand points).

4. The upper bound: Regional partitioning scheme

As a direct consequence of the previous section, the lower bound Vy,*(X) can be rewritten as
EM’(X) = YM"(F) + _I{M*(S) + KM‘(C) where

h;  2f*
"_/M*(F)tg(zf* + M* r‘_r), (83)
Vaue(S) = X {ah,ri /M* (8b)
5
h.b 75
V * C = _‘— "'“‘_ =y
%ur(©) = Z (335 + 5 (8¢)
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The partition of X into the categories F, S and C is a consecutive partition, i.e., there exist integers f’
and ¢’ such that 0<f'<c'<Nand F={x,, x5,...,xp}, S={xp ., X0, 0, X}, C={x0y,..., xp)
In the sequel we describe an algorithm which applies a regional partitioning scheme on each of these
categories separately. Several regional partitioning schemes for the classical VRP are presented in the
literature, some of them are asymptotically optimal, see Karp (1977) and Haimovich and Rinnooy Kan
(1985), However, the cost function of the problem considered here, is much more intricate than in the
classical VRP as it depends not only on the routing cost but also on the retailers’ holding cost rates.

Apparently none of the existing regional partitioning schemes can be guaranteed to preserve the
asymptotic optimality convergence when directly applied to the above problem. However, by making use
of the cost function structure we develop an asymptotic optimal heuristic that partitions the plane in
accordance to both the retailers’ location as well as their holding cost rate.

Our heuristic is based on the CRP scheme proposed by Haimovich and Rinnooy Kan (1985) that
partitions the points in the plane according to their location. As will be shown below, this procedure does
yield an asymptotically optimal solution when applied on each of the categories F and C separately but
for § a new approach is needed. The underlying difference between F and C, on one hand, and S, on
the other hand, lies in the lower bound expression V,,«: the frequency (capacity) constraints are tight for
each of the demand points, and also for any subset, in F (C). Therefore, regardless of the grouping of
these demand points, all of them share the same order interval f*~' (b/M*). In addition, it is simple to
see that for any subset X, of F (C), V;+(X,) is a linear function of L, h; and L, rf.

Suppose now that X, is a subset of F (C) of cardinality M*, and all its demand points are
geographically close one to the other, i.e., the total route length TSP(X?) ~ 2R,/M *. Thus, substituting
2RS/M* be TSP(X,) + ¢ in the cost function almost does not effect the optimal reorder interval f*~'
(b/M *). Therefore, also the average holding cost of X, will remain almost unchanged, i.e.,

Y V(%) =Vyys(X,) ~g(TSP(X]) + ¢, H,, M*).

X,
In other words, the problem of finding a good approximation for F (C) boils down to applying good
regional partitioning schemes (as the CRP) to solve the CVRP on these sets,

The holding cost plays a more critical role in § where neither the frequency nor the capacity
constraints seem to be tight. There, an aggregation based solely on the points’ location may result in an
extremely poor policy. For these demand points, we propose a technique which first aggregates demand
points with similar r/ /A, ratios into large groups and then the (CRP) scheme is applied on each of these
groups, separately. We call this scheme the ‘Two-Stage Regional Partitioning’ scheme.

We next describe the CRP scheme for solving the CVRP as proposed by Haimovich and Rinnooy Kan
(1985). Suppose n points in the plane are to be partitioned into regions containing at most M * points
each. Let ry,..., r, be the radial distances of the points, r,,, =max r, and 7= X" _, r;,/n. The CRP first
partitions the plane into o(¥n ) equal sectors and then partitions each of the sectors by radial cut into
olVn) regions containing exactly M * points:

The Circular Regional Partitioning scheme (CRP).

Step 1. Partition the circle into ¢ =[((4wX?_, r))/(3M *r,,,))'/?] disjoint equal sectors.

Step 2. Partition each sector into regions by circular cuts, such that all of them, except possibly the one
closest to the center, contain exactly M * points.

Step 3. Repartition the group of at most ¢ subregions closest to the center and containing less than M *
points each by radial cuts into at most ¢ — 1 subregions with M * points each, and at most one
subregion containing less than M* points. Let X,, ¢=1,..., [n/M*], be the generated
subregions.

Step 4. In each subregion X, find TSP(X?), ¢=1,...,[n/M*].

We now review some of the results in Haimovich and Rinnooy Kan (1985) that we use in the sequel.
Let ITRP(X) (JTR?(X)) be the total perimeter length over all the subregions generated by any regional
(circular) partitioning scheme when applied on X.
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Lemma 3 (see Lemma 6 in Haimovich and Rinnooy Kan, 1985). For any regional partitioning (RP)
scheme which generates the regions X,,..., X;, L =[n/M*], the following inequality holds:

[n/M*]
Y. TSP(X?) <2(n/M*)F+2ry, + TSP(X) + 3ITRP(X).

=1

Lemma 4 (see Lemma 5 in Haimovich and Rinnooy Kan, 1985).

MRP(X) <43m(n/M*)rpuF + (3 +27) .

Lemma 5 (see Theorem 3 in Haimovich and Rinnooy Kan, 1985).

TSP(X) <2(wnryF) >+ (2+ W) rpy.

In the sequel we explain how the CRP can be adapted for the solution of the above described
problem. In the analysis we use the indicator set-up for any set X,.

Lo = { 1 if X, is not an empty set,
o) 0 otherwise.

The set C

Applying the CRP on C results in a partition of C into clusters of M * demand points each, except
possibly one. Let C,,...,C, be the generated clusters such that |C,|=M*, ¢=2,...,L_, and
|Cy| <M*. In the proposed heuristic each of the sets C . 1s served by a fully loaded truck. Let U(C,)
denote the associated average cost of such a policy, i.e.

6
U(C{)difl bzl

b
TSP(C?) +¢) + Y h,.
( ( 4 ) ) zlcfl c.

The next theorem provides a bound on the difference between the average cost of serving C,,...,C,_
by fully loaded trucks and the respective lower bound on C.

Theorem 4. Let {C ],...,CLE}, with L_=[|C|/M*), be the subregions generated by applying the CRP
scheme on C such that |C,| =M*, ¢=2,...,L_,and |C,| <M¥*. Then

3 1/2
2+6(M*] )'Cll/zrmax

*

£ M
2 U(C,) —Vy=(C) < T’ﬂ'l/z
/21

M* b
+ b (8.5 +4m)rpy t+ Eh“““ Loy

Proof. See Appendix B.
The set F

We apply the CRP also on the set F, resulting in L,=[|F|/M*] subregions {F,,..., FL,-} where all
of them, except possibly F,, contain exactly M * demand points. The proposed heuristic serves all of
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these subregions at the maximum frequency f *. We denote the average cost of serving F, at frequency
f* by U(F,), where

U(F,) = Y h,/(2f*) +f*(TSP(F}) +c).

Fy

The following theorem provides a bound on the performance of the heuristic on set F:

Theorem 5. Let {F,,...,F, ), with Lp=[|F|/M*|, be the subregions generated by applying the CRP
scheme on F such that |F,|=M*, ¢=2,...,Ly, and |F,| <M?*. Then

Lg 3 1/2
Z U(F!) _I_/M"‘(F) Ef*“l/z 2+6(F) }IFllfzrmax+f*((8'5+4w)rmax+c)l(f'")'
=1

Proof, See Appendix B.

The set S

The lower bound expression on the set § (see (8b)) is non-linear in the holding costs. Below we show
that for a partitioning scheme to perform well relatively to the lower-bound, the demand points in each
of the regions should 1) be geographically close one to the other, and 2) have similar r{/h, ratios.
Therefore, pure regional partitioning schemes as the CRP may be inefficient. We propose a two-stage
regional partitioning scheme that generates [ | S| /M *] subregions, each (except possibly one) consisting
of exactly M* demand points: in the first stage the demand points in S are partitioned into «
consecutive clusters {S,,...,S,} according to the ratios r{/h;; in the second stage the CRP procedure is
applied on each of these clusters separately. By a careful design of the partitioning scheme we obtain a
heuristic that is both asymptotically optimal and have a bounded performance ratio.

Let

Rdif(maxrf/hi)/(msin'f/hf) and a=[|s]'"?].

Our assumptions ensure that R is finite since for any demand point x;, (a) rf/h; < min{b?/(4M*),
&/ Pmind < ®; and (b) rf /h; is bounded from below by a positive constant as follows:

2 rrnin/hmax iff*=°° and ¢ =0,
Lah {mﬂx{f/(%mx), M*/(4f**)} otherwise.

Therefore, we can write that R < R < « where the explicit form of R is given in Appendix C, see (C.1).
In the first stage of the algorithm we partition the demand points of § into a consecutive and disjoint
clusters so that the ratio between the maximal and the minimal rf/h; in each cluster does not exceed
R'/=, In the second stage, the CRP scheme is applied on each of the clusters separately: L, regions are
generated from the k-th cluster, each containing exactly M * demand points except possibly the L, -th
region that may contain less than M * demand points. We then combine all the regions containing less
than M * demand points into one set and apply again the CRP scheme on this set. The algorithm is
formally stated below:

The Two-Stage Partitioning Algorithm for S.
Step 0. a=[|S|'*]; A :==RY* Ry=minSr{/h); R, =NRgy, k=1,...,a; (R, = max(r{/h;).)
Step 1. S, ={x,|x;€Sand R,_,<rf/h;<R,}, k=1,...,a; S, =8, U{x;|x; €S and rf/h;=R.};
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Step 2. Apply the CRP on each cluster S,, k =1,..., a, separately. Denote the subregions generated by
{Sk,l" ey Sk.Lk} thre

Lk = “Sk‘/M*], |Sk,.f_.k| EM*, and |Sk.j'| ZM*,j: 1,"-yLk_ 1‘

Step 3.So=U{S; |l <k<a and |S,, | <M*}. Apply the CRP on S, and let the generated
subregions be {S,;,..., S, .} where

Lo=[|Sol/M*], |So;|=M*, j=2,...,Ly, and | Sy, | <M*.

Step 4. For k=1,...,a do: if |S;, | <M*set S, =S, —S,,, and L,:=L, - 1.
Step 5. For each of the subregions S, ;, 0 <k <a, 1 <j <L,, compute the optimal policy according to
).

(In Step 4 we update the set S, by deleting all demand points that were transferred to S,.)

The following example demonstrates the regional partitioning scheme described above: consider row
13 from Table 2, with 1000 retailers, a total of 5501 demand points, M* =4, b=64 and f*=1.
According to the output 3825 demand points have ratio rf/h; <M * /(4f **) =1 and thus belong to F.
The CRP scheme with M * = 4 is applied on these points resulting in 956 regions consisting of 4 demand
points each and a single region consisting of a single demand point. All of these regions are replenished
at maximum frequency of once per time unit. No demand point has ratio r{ /h; > b?/(4M *) = 2.56 thus
C =#. 1676 demand points fall in the set S and they are partitioned into @ = Y1676 = 41 sets. Assuming
that R = 2.56 /1 = 2.56 we obtain that A = 2.56'/*! = 1.023. Therefore, the first set consists of all demand
points satisfying 1 <rf /h; < 1.023, the second set consists of all demand points satisfying 1.023 <rf/h, <
1.046, ..., and the last set consists of all demand points satisfying 2.502 <r{ /h; < 2.56. The CRP scheme
with M ¥ 4 is then applied on each of these sets separately; all demand points of the § falling into
regions of less than 4 demand points are combined together into a single set and the CRP scheme is
applied on it resulting in 419 regions each consisting of exactly 4 demand points. In overall the scheme
produces 1375 regions of 4 demand points and one region of a single demand point.

The next two lemmas will be used in the performance analysis of the proposed heuristic:

Lemma 6 (Inmann and Jones, 1987). Given a sequence of paris of real numbers {(a;, b)), with a,> 0,
b;>0,i=1,...,n, such that a,/b, < -+ <a,/b,, it follows that

n n 1/2

(Eats) =
5 < B(8) where §= and B(8) = (9)
3

(a‘b_)l/Z

It is easily verified from Lemma 6 that if all ratios a,/b; are identified, i.e., 6 =1, then B(8)=1
meaning that (Za,Lb,)'/? = L(a;b,)'/*. Moreover, as § decreases, B(8) increases and lim,,, B(8) ==
However the function B changes at an extremely slow rate when & is close to one, for example,
B(0.75) = 1.006, B(0.5) = 1.042 but B(0.1) = 1.82.

Recall that R <« is a constant bounding R = max(r{ /h,)/min(rf/h;), i € S (see C.1).

Lemma 7. Let the regions (S, ;|0 <k <a,1<j<L,} be the subregions generated by the ‘Two Stage
Regional Partitioning Algorithm’ on S. Then:

(a) Forany kand j, 1 <k <a,1<j<L;, (Zg, Ll h )1”2/2:5Jk (rfh)'/? < B(R™V/9),

(b) For 1<j <Ly, (S, r{Es, h)V/2/Es, (reh)/? <B(R-
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Proof. Let 8,‘ = mlnsk (rf/h;)/maxg, (rf/h,).

(a): By definition of the Two-Stage Regional Partitioning Algorithm, any subset S, ;, 1<k <a,
1<j<L; is a subset of §,. Thus §,; is a subset of {x;|R,_,<r{/h;<R,} which implies that
1>8,>R,_,/R,=A""=R"*>R~'= Since B(5) is a decreasing function of & for 0<d <1 it
follows that B(8]) < B(R™'/%). Use Lemma 6 to complete the proof.

(b): The proof of part (b) is similar to that of (a), observing that 85 >R ' >R~ 1,...,L,. Thus
B(3))<B(R™"). O

Denote by U(S, ;) the average cost of the Two-Stage Partitioning Algorithms when applied on Si.ps
i.e. U(S, ;) =g(TSP(S, ) +¢, Tg, h;, | Sk ;D

Recall that V,«(S) =L (4r‘h‘/M *)172, Also note that by definition of S, any demand point in S
satisfies M*/(4f2)5r‘/k <b?/(4M*), thus for any subregion S, ;, since |S, ;| <M*, it holds that
|8k /4f?) < X, rf/Eg, h;<b?/(4]S, ;1). Therefore, in view of (5), the optm'lal average cost of S, ;
satisfies the followmg mequallty

2
U(Sk,j) Zg(mzswrf, Zslq'hi’ I Sk.jl] = G(Zsk.,‘rfc’ Zsh_hl', Isk.fl)
]

4 1/2
’Skflzski‘zsk :

ForO0<k<a,1<j<L,, define

A 1,2
W(Sk,f)zG(Zf‘f, Zhu|5k;|) ('Sk T& r! Ek) (10)

Sk o ‘sk o Sk o

In order to bound the gap between the average cost of the heuristic and the respective lower bound on §
we present this gap as the sum of two differences, as follows:

U(Sk,;) = Var+(S) = i Zk (U(Sk.j) - W(Sk,;‘))

k=0j=1

EE

T Mk

£ 5 T (W(Ses) ~ Yare(5): (1)

k=0j=1
and bound each of the differences in the r.h.s. separately. The next theorem bounds the second
difference in (11).

Theorem 6. Let the partition {S, ;|0 <k <a, 1 <j <L,} be obtained by applying the Two-Stage Regional
Partitioning Algorithm on S. Then

T 1,2
E ZW(Sk,j)_L_/M*(S)EZ[lSl(B(R._Ix’")—]) (|S|1X2+1)(B(R 1)_1)]( max max]

k=0j=1
+ 2 M*rpphog)’. (12)
Proof. See Appendix C.

It is worthnoty that as | S| increases to infinity B(R™1/®) — 1 decreases exponentially fast to zero
(since a =[|S|'/?]). Thus the dominating term in (12) is of order O(| S |'/?).
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Let IT®(S) be the total perimeter of the subregions generated by applying the Two-Stage Regional

Partitioning Algorithm on S. The following lemma provides an upper bound on the total length of
Ia(s):

Lemma 8.

v 1/2 -~ 1/2
nf?}(5)5{4[;*] |313/“+[4(%) +(3+21r)llS|1/2+(6+41-r)}rm“.

Proof. See Appendix C.

In the next theorem we bound the gap between the average cost of the heuristic and the lower bound.
We first need the following lemma. For the proofs of the lemma and the theorem see Appendix C.
Recall the assumption that if ¢ =0 and f* =, then r_, > 0.

Lemma 9. Let D be any subset of S of cardinality m, m < M *. Then there exists a constant B < o such that
g(TSP(D“) +c, Y h;, m) —g(Zer/m, Lh; m) SB(TSP(DU) —2}:rf/m)
D D D D
where
1 * 1/2 e =
I(M hrnax/rmin) "ff —wandc—O,
min{(%M *hm“/c)m, f *} otherwise.

Theorem 7. Let {S, ;|0 <k <a, 1 <j <L,} be the subregions generated by applying the Two-Stage Regional
Partitioning Algorithm on S and W(S, ;) be defined in (10). Then

k=0 j=1

(a) i f. (g(TSP(SEJ) +C'§kf'lsul) - W(Sk.j)}

<B[6(3m/M*)' /S /4 + 43.55|8|"% + 35] e
(see Lemma 9 for the definition of B).
a L
k) Y X 8(TSP(S£._;') +c, Lh, |Sk,j|] = Vu+(S)

k=0j=1 S
< ’)’1|S|3f4 + '!’2|S|l';2 + vl S1(1 + R/ — ZRI'I(Z“) + 1i5yYas
where a =[]51?),

c

3w\ /2 reho V2
TI=GE(M*) rmax’ ?2:43'558rmu+2(__) (‘B(R_l)__ l)y

M*
e R 1/2 "
73:05(?) ; Vs = 35BT e + 475(M* + (B(R™1) — 1)),

and B(8) is as defined in (9).
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Combining the results of this section we conclude that the proposed algorithm yields an average cost
which is bounded from above by V(X):

*

b

\/;[2+6(—3—)V2)IC['/2:',“M

V(X)=Vys(X)+ =

3 \172
+f+vm (246 5z )|F|"2rm,+yl|sﬁ/‘+yzlsr’z

+ 93| S|(1 + RV — 2RV/@)

Iy + I(F)f*((S.S AT )t C) + 15y74 (13)

M* b
+ —'b—(SS +41T)I'max + Ehmax

(see Theorems 4, 5 and 7). The next theorem is immediate:

Theorem 8. For any set X containing N demand points X ={x,,..., x5}, V(X)) <V*(X) < V(X),
where Vi (X)) = Vs F) + Vy «(S) + V,,+(C) as defined in (8) and V(X) is defined in (13).

Next we summarize the overall proposed algorithm which we call the ‘Multi-Retailer EOQ with
Routing Costs’.

The Muiti-Retailer EOQ with Routing Costs.
Step 1. Find the largest index f' such that rf,/h, <M*/(4f **). Set Fi={x,,..., x;};
Find the largest index ¢’ such that r&/h.<b?/(AM*). Set S:= (Xpestseens Xy Co=
{x.41.--» Xy} Calculate ¥y, «(X).
Step 2. Apply the CRP on C and F separately and the Two-Stage Regional Partitioning Scheme on S.
Let {Y,,...,Yg }, IN/M*| <K, <[N/M*]+ 3, be the collection of the subregions generated.
Step 3. Calculate V(X i(see (13)).
Step 4. Find the optimal traveling salesman tour (see Remark below) through the depot and the retailers
in each of the subregions generated in Step 2, i.e., calculate TSP(Y,?), k=1,...,K,.
Step 5. Determine the replenishment interval 7(Y,) and the load quantity Q(Y),) for each of the
subregions as follows:
While k <K, do begin H(Y,):= 1L, h;
If (TSP(Y,?) + ¢)/H(Y,) < 1/(2f *?) then T(Y,) =f*"1;
If 1/Q2f*?) <(TSP(Y,?) + ¢)/H(Y,) <b?*/(2|Y, |°) then
T(Y,) = (ATSP(Y,) + ¢) /HY, )%
If (TSP(Y,?) + ¢)/H(Y,) > b*/(21Y, |*) then T(Y,) :=b/|Y, |;
oY,)=T(Y,)| Y, |
endwhile;

Remark. Computing the optimal traveling salesman tours in each of the subregions in Step 4 might be
time-consuming if the number of retailers in a subregion exceeds 7 or 8. Instead, one can use any
heuristic whose worst-case relative error is bounded (for example, Christofides’ algorithm, see
Christofides, 1976). This will not affect the asymptotic optimality property of the algorithm.

The asymptotic analysis of the proposed heuristic is carried out on the set of retailers. Observe that
the demand points are partitioned to the sets F, § and C according to the ratios r{/h;. Thus any retailer
belongs to exactly one of these sets. Therefore the partition of X into F, S and C can also be viewed as

a partition of the set of retailers.
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Let y; be a retailer consisting of u; demand points. Let (r;, h;) denote radial distance and the holding
cost rate of the j-th retailer Vy+(y,) = u; Gp«(rf, h)), 1 <j <n. Thus, Y= {y1, ¥35..., ¥} represents
the set of retailers and denote by X(Y) the set of demand points associated with Y. Then

Vus(X(Y)) = i #iGrx(rfs hj)-

=1

Theorem 9. Let Y(n)={y,,¥5,...,¥,} be a random set of retailers each characterized by a triplet
(r,, h;, p;) and its polar coordinate. The triplets (r;, h;, w;) are assumed to be i.i.d. and moreover p; is a
discrete random variable assuming positive integer values which is independent of (r;, h;). Let &=
E(Gy+(rf, h;)) and d = E(w;). Then
(a) lim, _, (1/n)V,,«(X(Y(n))) =d¢ as.
(b) If, in addition, ¢ >0 and the random variables r;, h;, p; are uniformly bounded as follows:

WD) ri<rp<®wandifc=0, r;>ry, >0; () 0 <h <h <h,, <o i) 1sp, <K<,

then

. V(X(Y(n))) = Vy(X(Y(n)))
g Vau(X(Y(n))) -

Proof. (a): V, «(X(Y(n))) = L2, p;Gy+(rf, h)). Part (a) follows from the fact that g, is independent of
(rf, h;) and the law of large numbers.
(b): In view of part (a), Theorem 8 and the assumption that £ >0 and d > 0 it suffices to show that

lim S [P(X( () = Vi (X(¥(m))] =025
Using (13) we can write
P(X(Y(n))) = Vas(X(Y(1))) = g+ | C|"* +ap| F|'* +9,|S]"* + 7,8
+y4|S|(1 + RV« — 2R"/@)

where « =[|S5|'/?] and the constants y,, v, 3, ¥, are defined in Theorem 7 and

b *
g =15y, + l(c)(ihm+ T(S.S + 4'“')"max) + 1(F_)f*((8.5 + 41r}rmu+c),
M* 3 \1/2 3 172
m = \/-F(2+6[M*] )rm, af=f*\/_'rr_(2+6(m) )rm.

For any given set Y of n retailers the sets F, C and S define a partition of X(Y(n)), ie.,
|F|+|Cl+18| =X}, p,=n.Since the constants a,, a,, ar, ¥}, ¥, and y; are all independent of » it
remains to be shown that lim, . |S|(1+ RY*—2R/22)/n =0.

Fix a realization of the sequence {y,, ¥,,...}. Assume to the contrary that

) |S(n)|(1+ R1/atm) _ zél/(zu(n)))
lim sup —— (i

n—wo n

Let {n,);_, be a sequence of integers such that

(i) lim,_.|S(n,)| exists;
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(i) limy L o(1/n,)(|S(ni)|(1 + RV — 2 R1/@atun)) = ¢

If lim, _, | 8(n,)| < o then also lim, ., a(n,)=lim, .. |S(n,)|"/? <. Note that R as defined in
(C.1) is an upper bound (independent of n) on R = max (rf/h;)/min(rf/h;) thus R > 1 and

lim (1+ Rl/atn) _ 2R"IK(20{N;())) <1+R,
k—o
yielding a contradiction to the assumption. In this case the left-hand side of (14) converges to zero as fast
as 1/n.
If lim, _, . | S(n,)| = o then also lim, _, ,a(n;) = . Thus,

lim (1 + R/ — 21?""2“"'*”) =],
k— o0
Since | S§(n)|/n < K <» where K is the upper limit on the demand rate of the retailers, we obtain
that the Lh.s. of (14) converges to zero exponentially fast leading again to a contradiction. 0O

In overall we conclude that

V(X(Y(n))) = Vs (X(Y(n)))
Vus(X(Y(n)))

converges to zero as fast as n~ /4,

As mentioned in Anily and Federgruen (1990b), the assumption that {y,, y,,...} are i.i.d. is needed
only to assure that the lower bound V)« grows linearly in n almost surely. The assumption is needed to
preclude heavy concentration of points with small G,,«(rf, h;)-values.

Similarly, the condition that the radial distances and the holding cost rates are uniformly bounded
from above is unnecessarily strong. One merely needs that r_,, and A, do not grow ‘too fast’ as n —
(a.s.). Much simpler conditions with respect to the joint distribution of (r, ) may be invoked, see David
(1970).

5. An experimental study

In this section we report on a numerical study conducted to assess the effectiveness of the proposed
heuristic. The algorithm was encoded in Fortran (Tops 20-Version 2) and run on an Amdahl 170V8
computer. We analyze both capacitated and uncapacitated systems and we vary the frequency limit. The
upper bound M on the sales volume per region was chosen to be either 4 or 7. Note that usually a single
vehicle will not serve more than 2—4 locations in a single tour. The retailers’ locations were randomly
generated according to a uniform distribution in a square of 200 X 200 with the depot placed in the
center. The demand rates of the retailers are generated from a uniform distribution on the integers
1,...,10. In all runs with 100 (1000) retailers we use the same sequence of locations and demands. The
holding cost rates of the retailers were uniformly generated on the interval [50.0, 150.0].

The lower bound value LB reported in Table 2 is ¥}, +(X) where the upper bound UB is the average
cost resulting from the proposed algorithm. We also report the cardinalities of the sets F, S and C as
indicators for the tightness of the capacity and frequency constraints.

As can be seen from Table 2, the algorithm generates good solutions even for problems of moderate
size, e.g. n = 100. The gap between the upper and lower bounds does not exceed 10% and is usually
much lower (see the values UB/LB). Moreover, the computational time is extremely low. As can be
observed by comparing problems with n=1000 M*=4 and M™* =7 the computational time grows
quickly with M *, Indeed it increases by a factor of approximately 1000. This indicates that most of the
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Table 2
Experimental study
n N M* b F* |F| IS| ICl UB/LB CPU time
in milliseconds
100 593 -4 ®© 1 421 172 0 1.036 0.12694
100 593 4 o 5 1 592 0 1.075 0.17130
100 593 4 @ 10 1 592 0 1.075 0.17228
100 593 4 6.4 1 421 172 0 1.036 0.12079
100 593 4 6.4 5 1 592 0 1.075 0.17070
100 593 4 6.4 10 1 592 0 1.075 0.17031
100 593 3 32 1 281 72 240 1.028 0.08996
100 593 4 32 5 1 248 344 1.046 0.12874
100 593 4 32 10 1 248 344 1.046 0.12810
1000 5501 4 o 1 3825 1676 0 1.023 3.15734
1000 5501 4 o 5 1 5500 0 1.045 4.32912
1000 5501 4 o0 10 1 5500 0 1.045 438116
1000 5501 4 6.4 1 3825 1676 0 1.023 3.16105
1000 5501 4 6.4 5 1 5500 0 1.045 436226
1000 5501 4 6.4 10 1 5500 0 1.045 4.36018
1000 5501 3 3.2 1 2531 648 2322 1.015 2.43309
1000 5501 4 32 5 1 1820 3680 1.025 3.09060
1000 5501 4 32 10 1 1820 3680 1.025 3.12366
1000 5501 7 -] 1 5354 147 0 1.013 3328.76
1000 5501 7 © 5 20 5481 0 1.095 6223.50
1000 5501 7 o 10 6 5495 0 1.098 6504.50
1000 5501 6 6.4 1 5045 264 192 1.017 3000.70

computational time is due to the computation of the Traveling Salesman tours by full enumeration (see
Remark in previous section for alternative methods that use heuristics for calculating the optimal
Traveling Salesman tours).

6. Conclusions

The paper considers an infinite-horizon replenishment problem of several retailers from a single
warehouse with transportation cost and retailer-specific linear holding costs. The retailers are assumed
to face constant demand rates. The stock is distributed via a fleet of identical (possibly capacitated)
vehicles. In addition, the model allows for bounds on the frequency at which the routes are driven. The
retailers are assumed to be dispersed in the Euclidean plane. We restrict ourselves to a class of policies
that specifies a collection of regions that covers all outlets: if an outlet belongs to several regions a
specific fraction of its sales/operations is assigned to each of these regions and deliveries to different
regions are not coordinated. We propose a regional partitioning procedure which is shown to converge to
the optimal solution in the above class of policies, when the number of retailers is sufficiently large. In
addition, we present an experimental study which demonstrates the algorithm’s efficiency on relatively
small systems.

It is interesting to note that the geographic regions generated by the proposed regional partitioning
scheme may overlap. The retailers are first partitioned according to the ratios radial distance / holding
cost rate and then according to their geographic location. In this way we ensure that the retailers in a
single region are in close proximity one to the other and that they have similar holding cost rates. As a
result, the effect of the joint replenishment on the holding cost is negligible relative to the savings on the
routing costs.
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Appendix A

Lemma 2.
(a) The set-function G as defined in (5) can be equivalently represented by one of the following forms:
If R /H <b/(4f *) then

(4HR /m)'/? if m<4f**R°/H,

G(R°, H, =
( ™) H/(2f*) +2f*RS/m if 4f*2R°/H<m <M*.

Otherwise

(4HR®/m)'"* if m <b*H/(4R°),

G(R¢, H,m) =
(R, m) {Hb/(Zm)+2R“/b ifb’H/(4R) <m <M *.

(b) The set-function G is non-increasing in m.

Proof. (a): For fixed (RS, H) and m < min{4f*°R/H, b*H/(4R)}, neither the capacity nor the
frequency constraints are binding, see (5). If m is such that

H ' 4R

) 4f*2Rc sz
min T
H 4R¢

) 4f*2Rc bZH
<m <min{ M*, max

and b2H /(4R°) is smaller (greater) than 4f*?R°/H, the capacity (frequency) constraint is binding. In
order to complete the proof, it is sufficient to show that any m greater than max{4f*?R° /H,
b2H /(4R°)} is infeasible: suppose m > max{h2H /(4R°), 4f **R° /H}, then equivalently we can write that
b*H/(2m?) < 2R°/m < H/(2f **). As a consequence b*H/(2m?) < H/(2f **) which implies that m >
bf * > M *, thus m is infeasible.

(b): Relaxing the integrality requirement on m one can verify that G is continuous in m, for
0 <m <M*. Moreover, (3G /dm) exists, is continuous and is non-positive everywhere on 0 <m <M *,
Thus, for fixed R and H, G is non-increasing in m. 0O

Appendix B

Proof of Theorem 4. Note that

M* e

L |Cy |
L U(C,) = Yare(C) = =~

4o {TSP(CP) — ):r,-)

b ICil ¢,

LS
ol

2
(TSP(C?) ~ e B
Cr

b[ 1 1 M* L 2
=] —t h.< TSP(C®)— — Y1,
2l | B b.?..:.[ (<?) MZ)
b

By applying Lemma 3 on the Lh.s. of the above inequality we obtain that

L,
Y U(C,) = Vus(C) < [(M*/b)(Zrm“-FTSP(C) + (3/2)HCRP(C)] + 5bh s licy-

=1
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With the help of Lemmas 4 and 5 and the fact that the average radial distance of any subset of X is no

greater than r_, we can bound the r.h.s. of the last inequality by the r.h.s. of the desired inequality in
Theorem 4. O

Proof of Theorem 5. By definitions of V,,+(F) (see (8a)), U(F,) and Lemmas 3, 4 and 5 we obtain
Lg

Lg
EU(F!)_EM‘(F) =f*{Lpe+ ZTSP(FP)_ZZ"&C/M*)

IA

((HFI/M*I—IFI/M )e+ jfZ}‘""I"SP(F") 2IFI/M*(§&/IF|])

£ (205 + TSP(F) + 1.5 (F)) 0

<F*(2r G+ 2T F 1) 1y + (24 ) gy + 1.5(4(37| F| /M *) 1,
+(3+27) 1) ey

=f*(m 22+ 6(3/M*)' /)| F|"*rpg + (8.5 + 4T) e + €)1y

which is the desired inequality. O

Appendix C

In this appendix we present some of the technical details regarding the analysis of the Two-Stage
Regional Partitioning Scheme applied on the set S. We first present the explicit form R, the finite upper
bound on R = (max rf/h;)/(min rf/h), i€ S:

(bf * /M*)’ if b<ooand f* <,
bzhmax/(“M*rmin) if b< ®©, *=o0 and ¢ = 0,
Jadef b?h e/ (2M *c) if b<oo, f*=o0and ¢ >0,

(C.1)
af*2re /(M*h,;,) ifb=wand f*<o,

r;lukmm/(rminhmin) if b :f* =xand ¢ = 0’
ZH_rl. A eh) if b=f*=ocand c>0.

Proof of Theorem 6. For any k, 1 <k <a, |5, ;| =M*,1<j<L,. Thus,

W(Sk,) = Vaur(Si;) = (-A:—*)Uz[{ Lrf Ehi)m - E_,.(rfhi)m]

Sil Si
4 1 5—1/a cp, V1/2
<\3s) (B -)E ()
where the inequality follows from Lemma 7. Thus,
(14 Lk
L L W(S,) ~ Yarr(S = So) < (4/M*)(B(R™V/*) = 1) T (rfh)"”
k=1j=1 5-5,

<2|S|(B(R™Y%) = 1)(réaxhma/M*) "/
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L, regions are generated from S, all of them have cardinality M *, with the possible exception of S, ;.
Note that L, < a <[|S|'/?]. Therefore, for 2 <j < L, we obtain from Lemma 7 that

W(So;) = Yare(So,) < (4/M*) X (B(R™) = 1) L (rth,)"2.

0.f

For j=1,

W(Su.l)_l_"u*(so,l)=(\;T]I/Z(erzh i (M*) zz(rfkl.)lﬂ

| S5i 'S S4s
( ] (B(R~ ')—1){‘,(:-%)"’2

172

4
e
[ Jso.| M*) 3: FZn)

SOI

But,

( 4 ]1/2 [ 4 )1/2 Z(M*l’lz—!So,llw) M *1/2
- | C— <
|So,1| M (|So,1 |M*)]/2 IS“'"

and

( e Ek‘)l/2/|Sﬂ,lf 2(Feuhii) 1z

Soq Sou

Therefore,

L

E (W(S0.) = Yars(S0,)) S 2USol(raxhman/M*) *(B(R™Y) = 1) + 2 M*rg ) .

Summation over the respective inequalities yields the desired inequality (12). O

Proof of Lemma 8. Note that the Two-Stage Regional Partitioning Algorithm applies the CRP scheme on
each of the subsets S, 0 <j <a (U, S;=15), separately. In view of Lemma 4,

nos)< ¥ HIR*(S)) < > {4(3w|s,.|/M*)"2rm +(3+ 2n)rm}
j=0 j=0

_ {4(317/M*)1"2 )E 1S,]"%+ (a+1)(3 +2-rr)}rm“.
j=0

Note that {S;: 0 <j <} is a partition of § into at most a + 1sets, i.e. ¢ 4|S;| = |S|and0< |5;| < |S|.
Moreover, it is easy to verify that

t t z 1/2
max{ ¥ z}/%: Y z,=2,0<z;<z,0<j<t}=(t+ 1)(-——) = (z(¢+1))"7,
e = t+1
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thus implying that

i ISj|1/2—<— (a+ l)l/zlsl1/2= ((“Sll/z] & 1]|S|]1/2 < (|S|3/2+ 2ISl)I/Z
j=0

=[SI3(1S[2 +2)" " <|SI3(IS|* +Z) =SP4 + (2AS1)
Therefore,
mo(s) < {4(311-/M*)1’2(|S|3/4 +(2S))'%) + (IS +2)(3 + 2«)}rm

< {4(3-:;/;1»1.““)""*|s|3"4 + [46m/M*)" 2 + 3 +2m)] (517 + (6+41'r)}rmx. O

Proof of Lemma 9. Note that for any demand point x; in § and m <M *,
m/(4f**) <M*/(4f*?) <rf/h, <b*/(AM*) <b?*/(4m). (C2)
Therefore, for any subset D of S of cardinality m, m <M*, m/(4f**) <L prf/(Lph,) <b%/(4m).
Thus
1/2
g(2Zr/m Lhym) =G et Thiym) = (4Zri Thiym)
D D D D D D

see (5). Since TSP(D?) + ¢ > 2T ,rf /m, the capacity (frequency) constraint may (can never) become tight
when accounting for the actual routing cost of D instead of its lower-bound. Let the function g(8, H, m)
be defined as follows:

20, H, m) = V2Ho if 0/H <b?/(2m?),
RESR Hb/(2m) +m@/b otherwise.

The function g coincides with g on any subregion DcS.Let DS S, m=|D|<M* and H= L h;: for
fixed H and m, g(8, H, m) is continuously concave and differentiable in 8. Thus,

AT . pe 3 (2 2Zpr;
g('I‘SP(DU)-‘_C’ H,m)—g'( znf:rl ,Hy m)ﬁ%(‘—“—_) (TSP(DD)_ E:::r‘)

2L prf/m
[ M*H\'? w  2Zpn
<3 E—c' (TSP(D )— = )
pTi

The value of B, as given in the lemma, is obtained by the above inequality and the following facts:
H<mh_,; by (C2), H/Zprf <4f**/M*; if f*=o and c¢=0 then L,r,>mr_,; if ¢>0 then
Tprfzsme. O

Proof of Theorem 7. (a): In view of lemmas 3, 5, 8 and 9,

i f, (3(TSP(SEJ) +C»§h;,|5kf|) = W(Sk.j)}

k=0j=1 -
a L
=Y ¥ (TSP(SE,j)—22r5/|S,‘J|)
k=0j=1 Sk

a L; a L,

<g L ):(TSP(SE,;)—2SZ_rf/M*)sﬁ z ZTSP(SB,;-)-(2|S|/M*)()S:r.-/ls|)]

k=0j=1 k=0j=1
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< B(2rma + TSP(S) + 3112(S))
<B{2+2(nlS|)'*+ (@2 +m)
+3{(43m/M*)" 2 S+ (4(6m/M*)' + (3 + 2m))|S|/2 + (6 +4-n)]}rm
- ,3[5(3«:/;»:”*‘)"’2|Sj3”4 +(45+2m 2+ 6(6m/M*)"? +3w)|S]'*+ (13 + 717)]rm“
<B[6(3m/M*)"*| S|/ + 43.55] 8|2 + 35] Fyper.
(b):

a L

Y X g(T‘SP(S,?_j) +c, Eh,.,]skd.[) = Vope(S)

k=0j=1 55

= i )f. {8(TSP(S£J) +C’SE.hv|S:¢.j|] - W(Su)] + { i )f. W(Sk;) — Vu=(S)

k=0j=1 . k=0j=1
<B[6(3m/M*)"*|SI* + 43.55|S|"% + 35] ey

+2[|SI(B(RY=) = 1) + (IS + 1)(B(R™") = 1) (ruhtma/M *)

+QEMA R ),

The inequality follows from Theorem 6 and part (a) of this theorem.
Note that for any Z >0, Z'/> <1+ 3(Z — 1) by using the Taylor expansion of Z'/? around Z,= 1.
Thus

172

_ sl/2an2
ok )) = (1.5+ 0.5/ — 51!/

B(8Y/%) = (1 + RV

<1+ (0.25+0.256 /2 —0.561/C=),

Therefore, B(R™/%)— 1 < 0.25(1 + RY/* — 2R'/@®), By using the notation v,, i = 1,...,4, given in part
(b) of the theorem we terminate the proof. O
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