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SIMULATED ANNEALING METHODS 
WITH GENERAL ACCEPTANCE PROBABILITIES 

S. ANILY,* The University of British Columbia 
A. FEDERGRUEN,** Columbia University 

Abstract 

Heuristic solution methods for combinatorial optimization problems are 
often based on local neighborhood searches. These tend to get trapped in a 
local optimum and the final result is often heavily dependent on the starting 
solution. Simulated annealing methods attempt to avoid these problems by 
randomizing the procedure so as to allow for occasional changes that worsen 
the solution. In this paper we provide probabilistic analyses of different 
designs of these methods. 

PROBABILISTIC PERFORMANCE ANALYSIS; CONVERGENCE CONDITIONS; 
GENERAL ACCEPTANCE PROBABILITIES 

1. Introduction and summary 

'It is a sobering thought that the only way to solve many engineer- 
ing problems is still by trial and error' (from 'Problem solving: 
smart guess work,' The Economist, 28 July 1984). 

Heuristic solution methods for combinatorial optimization problems are 
often based on local neighborhood searches. Each solution is associated with a 

given collection of neighbors (the neighborhood). At each iteration, the current 
solution is replaced by one of its improving neighbors provided the latter exist. 

Otherwise, the algorithm terminates with the current solution. These determi- 
nistic search procedures, while generating monotonically improving sequences 
of solutions, encounter the following probems: 

(i) the final solution is heavily dependent on the starting point; 
(ii) deterministic methods tend to get trapped in local optima. 
Simulated annealing methods attempt to avoid these problems by rando- 

mizing the procedure so as to allow for occasional changes that worsen the 
solution: a potential switch is implemented with a prespecified acceptance 
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probability. All acceptance probabilities depend on a control parameter c 
which is reduced to 0 as the algorithm progresses. As c decreases to 0, the 
acceptance probabilities for deteriorating (improving) switches converge to 0 
(1) according to prespecified acceptance probability functions (a.p.f.). 

It appears that the annealing concept was first developed in statistical 
mechanics, motivated by an analogy to the behavior of physical systems in the 
presence of a heat bath, see Metropolis et al. (1953). (The control parameter c 
plays the role of the temperature in statistical mechanics.) Recently Kirkpa- 
trick et al. (1983) and Cerny (1985) introduced the concept as an innovative 
and general solution approach for discrete optimization problems. Their 
observations, reinforced by articles in the popular press (e.g., Wilson et al. 
(1982)) led to several successful applications in a variety of problem areas, e.g. 
the traveling salesman problem, VLSI design, code generation, speech recogni- 
tion. See Aragon et al. (1985) for a list of empirical studies. 

This paper presents a probabilistic analysis of various non-static implemen- 
tations when applied to a general discrete optimization problem. Let Sk be the 
solution generated, and Ck the value of the control parameter applied at the kth 
iteration. We identify necessary and sufficient conditions for the following 
properties: 

(a) Reachability of the set of global optima. The set of global optima is 
reached from every starting solution with probability 1. 

(b) Asymptotic independence of starting solution. The dependence of the 
distribution of Sk with respect to the starting solution vanishes as k - oo. 

(c) Convergence in distribution. Sk converges in distribution. 
(d) Convergence to a global optimum. The algorithm converges to the set of 

global optima with probability 1. 
In addition, for annealing methods satisfying the third property we identify a 
bound on the rate of convergence. 

For practitioners reachability is perhaps the most important of the four 
properties since it is easy to keep track of the best solution encountered in the 
course of the algorithm. The necessary and sufficient conditions for the four 
properties apply to general discrete problems, search heuristics and acceptance 
probability functions and are shown to be tight for the most commonly used 
a.p.f.'s. For example, for the most popular of all investigated a.p.f.'s ('exponen- 
tial' or 'Metropolis' probabilities) these conditions imply the existence of two 
(problem-dependent) constants K1 and K2 such that all four properties hold if 

Ck > K,/log k for k sufficiently large while they all fail to hold in any problem 
with suboptimal local minima if ck _ K2/log k (for k sufficiently large). Many of 
the proposed annealing algorithms (see Aragon et al. (1985) and the references 
therein) thus fail to exhibit any of these properties for any problem with 
suboptimal local optima. 

Lundy and Mees (1986) and Romeo and Sangiovanni-Vincentelli (1984) 
analyze static implementations (with exponential a.p.f.'s) where the control 
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parameter is kept constant throughout the algorithm. Sufficient conditions for 
(some of) the three convergence properties (b)-(d) were independently 
obtained by Geman and Geman (1984), Mitra et al. (1986), Hajek (1985) and 
Gidas (1985), all for the special case of exponential a.p.f.'s (Gidas (1985) 
obtains these conditions for a number of related a.p.f.'s, see below). Again for 
exponential a.p.f.'s, a necessary condition for property (d) was independently 
obtained by Hajek (1985) under two additional conditions which seem to be 
verifiable for symmetric neighborhood structures only, see below. Mitra et al. 
(1986) also obtain a characterization of the convergence rate which is similar 
to ours (for exponential a.p.f.'s). 

Section 2 introduces the notation and some preliminary results and Section 
3 contains all of the main results. 

2. Notation and preliminaries 

A combinatorial optimization problem may be viewed as the problem of 
minimizing a given function f: X - R with X = {1, *. , N) its finite set of 
feasible solutions. For example, in the traveling salesman problem (TSP) with n 
cities, X consists of all feasible routes (N = (n - 1)!) and f denotes the length 
of the ith tour. Assume the elements of X are numbered in ascending order of 
their objective function values {f, i = 1,. * , N). 

Iterative solution methods specify a topology or neighborhood structure on 
X; each soution i (1 _ i < N) is uniquely associated with a neighborhood 
Xi c X of all the solutions that can be reached from i in a single iteration. In a 
reasonable neighborhood structure, one of the global optima (say solution 1) 
can be reached from any other solution through neighbor switches. Thus, let n 
be an integer such that solution 1 can be reached from any solution through no 
more than n switches. For the K-median problem, with K a given positive 
integer, for example, the greedy add/interchange methods are among the most 
powerful heuristics, see Cornuejols et al. (1977). In one such method the 
neighborhood of a given set of medians is given by the collection of sets which 
may be obtained by adding a point outside of the current set or by substituting 
this point for one that currently is in the set. In this case n is given by the 
number of points and Xi I = O(Kn)<N = O(nK) (iEX). Note that the 
neighborhood structure is not symmetric, i.e. ifj E Xis a neighbor of i EX, the 
converse may fail to hold. 

The dynamics of a simulated annealing method are as follows: assume the 
current solution is i (1 _ i _ N). A specific neighbor j E X is generated (as a 
potential successor) with probability g1j. (For the sake of convenience we 
assume i EX, for all iEX, i.e. g, >0, i EX.) Let G =(gij). The switch 
(between i and j) is implemented according to a positive acceptance prob- 
ability aij; aij depends on a control parameter c (i.e. aij aij(c)) which is 
decreased to 0 in the course of the algorithm. The functions aj(c) satisfy the 
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property 
aij(c) 0 for c sufficiently small, iff > fi 

(1) a,j(c)t 1 for c sufficiently small, iff> > 

lim aij(c) exists, iff; = j. 

Let Ck be the value of the control parameter in the kth iteration. Observe that 
the sequence {Sk })k-1 is generated by a non-stationary Markov chain with state 
space X and transition probability matrices P(k) = (pij(Ck)), k > 1 where 

gi,ai(c), j i, 
(2) Pj(c) = 1 - S gilal(c), j = i 

EXi\ {i} 

Let 7r(k) denote the unique steady-state vector associated with P(k) and let 
P(oo) = limk- P(k). 

In addition to (1), the a.p.f.'s are assumed to satisfy certain mild regularity 
conditions guaranteeing that t(c), the steady-state distribution associated with 
the matrix (pij(c)) (c > 0), is a (vector) function of bounded variation (see e.g. 
Royden (1968), p. 98). Anily and Federgruen (1985a), theorem 2, prove that 
the a.p.f.'s may for example be taken from the following classes of functions. 

Definition 1. A class F c C' of functions defined on (0, 1] is a closed class 

of asymptotically monotone functions (CAM) if 
(a) f F f' EF and - fEF, 
(b) f, gEF (f+ g) and (f.g)EF, 
(c) allfEF change signs finitely often on [0, 1]. 

Definition 2. A class F of functions defined on [0, 1] is a rationally closed 
class of bounded variation (RCBV) if 

(a) fEF f is of bounded variation on (0, 1], 
(b) fEF - fEF, 
(c) f, g EF (f + g) and (f.g)EF, 
(d) f, g E F with f/g bounded on (0, 1 ] fig is of bounded variation. 

For example, rational functions of polynomials and exponential functions in 
c or c -1, or even piecewise combinations thereof (splines) all fall in one or both 
of these classes, see Proposition 1 in Anily and Federgruen (1985a). 

The properties of annealing methods thus follow from the behavior of the 
chain {P(k))k}I. For example, asymptotic independence of the starting 
solution and convergence in distribution (properties (b) and (c)) are equivalent 
to weak and strong ergodicity respectively: (let P(m'k)= P(m) P(k); if 
m > k, p(mk) I.) 

Definition 3 (see Isaacson and Madsen (1976)). {P(k)} is weakly ergodic if 
lim, [pk) -_ pmk)] = 0 for all i, I, j EX and all m > 1. 
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Definition 4 (see Isaacson and Madsen (1976)). {P(k)} is strongly ergodic if 
a steady-state distribution n exists with limk-. p , k) = 7j for all m > 1 and all 
i,jEX. 

The analysis in Section 3 uses the ergodic coefficient of the matrices P(k). 

Definition 5 (see Dobrushin (1956) and Isaacson and Madsen (1976)). The 
ergodic coefficient of a stochastic matrix P is defined by: 

a(P) = min m min(Pij, P,j). 
i,l j 

Theorem 1 below exhibits some important relationships between the proper- 
ties (a)-(d). 

Theorem 1. 
(i) (d) (c) (b). 

(ii) Assume property (b) holds. Then property (c) holds, limk-, 7n(k) exists 
and limk-., n(k) = n (see Definition 2). 

(iii) Assume property (b) holds and lim supk-oo 7z(k)l > 0. Then property (a) 
holds. 

Proof. Part (i) is straightforward. Part (ii) follows from Corollary 1 in Anily 
and Federgruen (1985a), in view of the assumed regularity conditions on the 
a.p.f.'s. Part (iii): in view of (ii), limk., p(l,k) = z1 > 0 for all i EX. Let qik be 
the probability of reaching solution 1 for the first time at iteration k when 
starting with solution i. Note that 

k oo 
p(,k) , Ip(l+ l,k) = # k(l)p(+ ,k) with lk(l) = 1 1 { k})q Pi 

=l 
I I 

Note the {#k(')} converges setwise on the set of positive integers. Using 
Royden (1968), p. 232, and letting k tend to oo we conclude that 71 = 
(E- I ql)rl and since 7r > 0, 2 l q! = 1, thus proving (a). 

The equivalence of weak and strong ergodicity ((b) (c)) fails to hold for 
general non-stationary chains, see Isaacson and Madsen (1976) and Anily and 
Federgruen (1985a). 

For any matrix A, let || A || = maxi IAj I . 

3. Main results 

Theorem 2 below states necessary and sufficient conditions for properties 
(a)-(d). Let 

(3) a(c)= min aij(c); d(c)= max aij(c) 
iEX,j EXj iEX*,jEXi\X* 

where X* is the set of recurrent states under P(oo), i.e., all local optima. 
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Theorem 2. 
(i) If 2= 1 a(Ckn) = oc, properties (a)-(c) hold and limk o, 7r(k) exists; thus, 

if limk, 7r(k)j = 0 for all j, with f > f, property (d) holds as well. 
(ii) If suboptimal local optima exist and S ` 

a(ck) < o then none of the 
properties (a)-(d) hold. 

Proof. 
(i) Let d = min,x,jEx, gij > 0. Let k* be large enough that a(ck) is monotone 

in k for k > k*, see (1). Note that Pi(l)> daq(c) for all i EX, j E X, l > 1. 
Solution 1 can be reached from any other solution in n or less iterations and 
since 1 EX, also in exactly n iterations. It follows from Definition 3 and (3) 
that a(P(kn + 1,(k + 1)n)) > mini p(k + +k + )n) > d"a" (C(k + 

)n ) for all k > [k*/n 1. Let 

pk = Pr{n , = 1, = 1,. ,k s, = i}. Then, 

pk = Pr{s, 1,. · (k-2)n 1 , S(k )n, = }(1 - p )n+kn) 

_-(1 - d"a(ckn,))pk- 1 

and 
k 

Pk f (1 - dnan(cn))I O 
/=1 

in view of Theorem 1.2.5 in Isaacson and Madsen (1976). This proves (a). Also, 
Zkl aC(P(kn+l,(k+l)n))= c, and {P(k)})=1 is weakly ergodic, in view of 
Theorem V.3.2. in Isaacson and Madsen (1976). Thus property (b) holds. The 
remaining assertions all follow from Theorem 1. 

(ii) Let i be a local optimum with f > f. Solutions 1 and i are part of two 
distinct subchains C1 and C2 of P(oo), see (1) and (2). Note that for C = Cl, C2 
and all jEC, Z,ecP(k)j =-- -l gc,al(Ck)> 1 -a(ck). Thus the proba- 
bility of eternally staying in a subchain C is bounded from below by 
nI 1l [ - a(ck)] > 0 since Zk a(ck) < x; see, for example, Theorem 1.2.5 in 
Isaacson and Madsen (1976). Thus property (a) fails to hold. Also, 
lim inft - P(Ik) > O. To prove the remaining assertions, assume to the con- 
trary that (b) holds (see Theorem 1(i)). In view of Theorem l(ii), 
limk- 7r(k)l = limk,, P(k') > O. Thus, in view of Theorem l(iii), (a) holds, a 
contradiction. 

We now discuss the implications of Theorem 2 for the most commonly used 
a.p.f.'s. 

1. Exponential or Metropolis a.p.f.'s: aM(c) = min{ , exp((f - f)/c)}, 
there exists a symmetric matrix Q such that gij = Qil/l1 Qi. 

2. Hastings'a.p.f. 's (see Hastings (1970) and Gidas (1985)). 

1 + 2[½ min{(gij/gji) exp((j - f)/c), (g,jig,j) exp((f - f)/c)}]Y 
' at =1 + (gij/gji) exp(( - f)/c) 

7Y1. 

662 



Simulated annealing methods 

(The cases y = 1 and y = oo correspond with 'generalized Metropolis' and 
'heat bath' probabilities respectively.) 

It is easily verified that both types of a.p.f.'s satisfy (1) and the regularity 
conditions stated in Section 2. In both cases, closed-form expressions for 
{r(k)} are easily derived and limk_-, (k)j = 0 ifj is not a global minimum 
(see Hastings (1970), Lundy and Mees (1986), Romeo and Sangiovanni- 
Vincentelli (1984) and Anily and Federgruen (1985b)). Let 

A = max { -f Ij EXi, , > f}; A- = min{f -f i EX*, j EX \X*}. 
ij 

Theorem 2 implies that all four properties (a)-(d) hold if ck > nA+/log k, 
k - oo, while none holds for any problem with (suboptimal) local optima if 

Ck _ A-/(log k), k - oo. The necessary and sufficient conditions in Theorem 2 
are thus quite tight for both types of a.p.f.'s. 

We now give examples of a.p.f.'s which could be used as alternatives for the 
Metropolis or Hastings functions. 

Example 1. For all i EX, j E Xi let tij(c) be a polynomial in c with positive 
coefficients. For all i EX, let gij = 1/ I Xi I, j E X and let y > 1. Define 

(4) aij(c) = min{ 1; a'(c) + t,i(c) exp((f - f)/cY)} 

and Ck > nA+/log k. Note that the term ti(c) exp((fi - fj)/c) dominates the 
'Metropolis' term at the beginning of the algorithm when k is small, while the 
Metropolis term dominates towards the end. (In the beginning relatively faster 
decreases in the acceptance probabilities can thus be achieved.) It is again 
easily verified that the a.p.f.'s in (4) satisfy (1) and the regularity conditions 
stated in Section 2. (The a.p.f.'s belong to a CAM, see Definition 1.) We show 
that limc,o z(c)i = 0 if i is not a global minimum. In view of Theorem 2, this 
establishes that all four properties (a)-(d) hold. 

Let P(c) = (pj(c)) and PM(c) = (p'M(c)) where p'(c) is defined by (2) with 

a(.) = aM( ). Let IM(c) be a matrix with identical rows nM(c), the steady state 

probability vector associated with PM(c). As stated above, a closed-form 
expression for 7M(c) is easily obtained and given by (see e.g. Lundy and Mees 

(1986)): (set fA = 0, without loss of generality), 

(5) 7rM(c)i = exp( - f/c) + exp( - f/c) i = 1,..., N. 
/ 1 -2 

Also, let YM(c) denote the deviation matrix associated with PM(c): 

YM(c) [I - PM(c) + TlM(c)]-' - fl(c). 

Finally, let A(c) = P(c)- PM(c). The following perturbation result follows 
from Schweitzer (1968), see e.g. Meyer (1980): 

|11 (C) - 7(M(c) 1< M(C) A(C) | YM(c) || /(1 - || A(c) || || YM(c) ||). 
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Since 11 z^(c) 11 < 1, it suffices to verify that limc,0 II A(c) 11 1 YM(c) 1 = 0. 
Note from (2) and (5) that each entry of the matrix [I - PM(c) + rM(c)] is of 
the form (Z,e, q, exp( - fl/c))/(Z,e, q, exp( - ,B/c)) with I, I' finite index sets 
and all pfl, l; > 0. Since this class of functions is closed under addition, 
multiplication and division, it follows from Cramer's rule that each entry in 
[I - PM(c) + HM(c)] 

- 
and hence each entry in M(c) is of this form as well. 

Since 1I A(c) || = o(exp( - f/c)), c \ 0 for any fP > 0 it follows that 

lim 1I A(c) l 10 M(c) 11 = 0. 
cI0 

Example 2. Consider the K-median problem and the neighborhood struc- 
ture described in Section 2. Consider an expanded neighborhood structure 
{Xi: i EX} where the neighborhood of a given set of medians is given by the 
collection of sets which may be obtained by adding one or two points outside of 
the current set or by substituting this (these) point(s) for one (two) that 
currently is (are) in the set. Clearly, Xi c Xi, i = 1, * * , N. Again, for all i, j E X 
let tij(c) be a polynomial in c with positive coefficients. Let gi = 1/I X I, i EX, 
j E Xi and choose y > 1. 

Define 

ai,(c), E Xi, 
aij(c)= 

-- 

min 1; tij(c) exp(f;- f)/cY)}j, jE Xi . 

In the initial phase of the algorithm (when c is relatively large), these a.p.f.'s 
allow for deteriorating switches in the expanded neighborhoods. As c is 
decreased to 0, such switches become progressively less likely than inter- 
changes within the restricted neighborhoods {Xi: i EX). The proof that 
properties (a)-(d) hold is analogous to that in Example 1. 

Theorem 2 shows, in addition, that many popular schemes (e.g., Ck = fk with 
,f < 1, as well as the scheme proposed in Aragon et al. (1985))fail to exhibit any 
of the desired properties when applied to any problem with (suboptimal) local 
optima. Schemes in which c is only decreased at a prespecified sequence of 
iterations {kl/}/ 1(i.e., Ck, = Ck+ 1 = * * = C- ) fail if Ck, = I- and kl = lf for 
any choice of fI, E > 0. (Note that 201 ad(cr) = 1-1 1 exp( - A-I) < oc, see 
Theorem 2(ii).) 

The following example shows that for some a.p.f.'s, property (d) cannot be 
achieved regardless of how slowly {Ck} decreases to 0. 

Example 3. Let aij(c) = yi(c)/(J - fi) if f > fi and aij(c) = 1 otherwise, 
where yi(c) 0, as c l 0. Note that these a.p.f.'s satisfy (1) as well as the 
regularity conditions provided the y,( ) functions do. Let X = {1, *, 4} with 
f, = 0,f2 = 1,f3 = f4 = 2. Let X = {1, 3, 4}, X2= {2, 3, 4}, X3= {1, 2, 3}, X4 = 

1, 2, 4} and all gij = 1/3. Finally let yl(c) = c and y2(c) = c2. The steady-state 
equations for {7r(k)} show that 
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Ck((k)l = 4cl(k)2 or I(k)2/l(k)l = l/(2ck)- o0 

for any decreasing sequence {Ck}. Hence limk,-oo (k)l = 0. Choose Ck = k-l. 
All entries in the second column of products P(k)P(k + 1) are bounded from 
below by (9k) -1 and in view of Theorem V.3.2 in Isaacson and Madsen (1976) 
property (b) holds. We conclude using Theorem l(ii) that the method con- 
verges to the local optimum 2 with probability 1 however slowly {Ck} is 
decreased to 0. Note also that in this example there is a positive probability of 
always generating solution 2 thus showing that the condition 
lim supk-,oo (k)l > 0 is essential in Theorem l(iii). 

We conclude with a general upper bound for the rate of convergence. For 
exponential a.p.f.'s, a similar bound was obtained independently in Mitra et al. 
(1986). 

Theorem 3 (rate of convergence). 
(i) Assume (b) (and hence (c)) hold and let a* = a(Gn). Then, 

l((k-V/k-n)/nJ--1 

, Ip('_ k)-T l 2 exp a* (ck_rn)) 
j r~-=O 

(6) 
+ E 11 (r)- (r+ 1)I, k > 1. 

r -(k -n)"2J-n 

(ii) In particular, for exponential a.p.f.'s with Ck = nA+/log k there exists a 
constant U such that 

( 1 \ a*/n 

i p(l k) - i 2 k + Uk(-fNo+ -f)/2nA+ 
J k n 

where No= max{i I fi = f}. 

Proof. 
(i) Let T and Tk be N X N matrices with identical rows ;r and 7r(k) 

respectively, k > 1. In view of the proof of Theorem V.4.3 in Isaacson and 
Madsen (1976), we get 

00 

|| P(l) - T II|| < p(ll)p(l+lk)_ T+P(l+l,k) 1 + Z n(r) - (r + 1)I, 
r=l 

(7) 1 k. 

Choose 1 = 1* = max{l 1 k - n and k = 1 + mn for some m - 1}. It 
suffices to show that the first term to the right of (7) is bounded by the 
corresponding term in (6). 

Using the proof of Theorem V.4.3 and Lemma V.2.3 in Isaacson and 
Madsen (1976) we get 
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B 1 p(1,1')p(l' + 1 ,k)_ rl ' + p(l* + l,k) 

< 2(1 - a((l' + 
1,k)) 

m- 1 

< 2 I (1 - a(p(l*+l+ 
+ rn,l* + (r+l)n))) 

r=O 

m 

_ 2 I (1 - a*an(cl*+rn)) 
r= 1 

m -1 

=2 nI (1 -c*a (Ck-,rn)) 
r=O 

To verify the last inequality, let P = P('*+ 1 + +r+ 1)n) Note that 

a(P) = min min(P,i, P,j)) an (c*.+r) in min(G(n), G)) . 

Note that m = (k - I*)/n > (k - Jk - n)/n; thus, 

(l(k - k-n)/n J 

B < 2 exp E log(1 -a*an ( 
r=0 

and use log(1 - z) < - z. 

(ii) Follows from (i) as in Mitra et al. (1986) and Anily and Federgruen 
(1985b). 

Note from the definition of the ergodic coefficient that dn (or Ndn if every 
solution is reachable in n steps from every other solution) is a lower bound for 
a* in (6). 

General results for the rate of convergence of non-stationary Markov chains 
are only known (see Huang et al. (1976)) for the special case where P(oo) has a 
single subchain, i.e., no local optima exist (in which case deterministic search 
methods are clearly to be preferred). Incidentally, applying Huang et al. (1976) 
to this special case with exponential a.p.f.'s, results in a O(k-4/nA+) conver- 
gence rate bound where A = min{(j- f > f, jEXi,}. This bound is in 

many settings inferior to the one obtained in Theorem 3. Information about 
the distribution of {f, i = 1,- * , N) in specific problem settings may, of 
course, be exploited to refine the bounds in Theorem 3. 

4. Unrestricted random searches 

If unrestricted random searches were performed, i.e., if all Xi = X, i E X, 
then P(oo)il > d for all i EX and any {ck}. By Theorem V.3.2 in Isaacson and 
Madsen (1976), property (b) holds and limk , 7r(k)j > 0 if and only if j is a 
global optimum. Thus, in view of Theorem 1 all four properties (a)-(d) hold. 
Following the proof of Theorem 3, one concludes that the convergence rate is 
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O((1 -(1/N)k), k - oc (provided {ck} decreases to 0 sufficiently fast). Thus 

convergence is extremely slow even though the rate is geometric. 

Note added in proof. Recent empirical studies (I. Bohachavsky, M. Johnson 
and M. Stein, Generalised simulated annealing for function optimization, 
Technometrics 28 (1986), 209-217), suggest that annealing methods with 
generalized a.p.f's of the form: aij(c) = exp{ ff(f - fj)/c} (i,j EX; g _ 0) 
outperform corresponding methods with standard exponential a.p.f.'s (where 
g = 0). This class of a.p.f.'s clearly satisfies the conditions in our paper. 
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