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ABSTRACT
Planet formation begins with collisional growth of small planetesimals accumulating into larger
ones. Such growth occurs while planetesimals are embedded in a gaseous protoplanetary disc.
However, small planetesimals experience collisions and gas drag that lead to their destruction
on short time-scales, not allowing, or requiring fine-tuned conditions for the efficient growth
of ∼metre-sized objects. Here we show that ∼104 interstellar objects such as the recently
detected 1I/2017-U1 (‘Oumuamua) could have been captured, and become part of the young
Solar system, together with up to hundreds of ∼km-sized ones. The capture rates are robust even
for conservative assumptions on the protoplanetary disc structure, local stellar environment,
and planetesimal interstellar medium density. ‘Seeding’ of such planetesimals then catalyses
further planetary growth into planetary embryos, and potentially alleviates the main challenges
with the metre-sized growth barrier. The capture model is in synergy with the current leading
planet formation theories, providing the missing link to the first planetesimals. Moreover,
planetesimal capture provides a far more efficient route for lithopanspermia than previously
thought.

Key words: astrobiology – comets: general – minor planets, asteroids: general – minor plan-
ets, asteroids: individual: 1I/2017 U1 (‘Oumuamua) – planets and satellites: formation.

1 IN T RO D U C T I O N

The early stages of planet formation are thought to occur in gaseous
protoplanetary discs (PPD). The primordial PPD consists mostly of
gas, and roughly ∼1 per cent of dust (Chiang & Youdin 2010). The
small dust grains grow into cm-sized pebbles, which later grow into
km-sized planetesimals that later form planets.

While the growth up to cm-sized pebbles and the growth of
planetesimals into planets are fairly well understood, the formation
of the first planetesimals poses a major challenge. While small
grains are tightly coupled to the gas flow and can efficiently
grow to mm-cm pebbles, larger ∼metre-sized boulders experience
collisional fragmentation and erosion, or interact through bouncing
rather than sticking, and are susceptible to strong gas-drag-induced
radial drift (Weidenschilling 1977b). Such boulders are therefore
rapidly lost, not allowing for planetesimal growth beyond these
typical sizes.

Various pathways to overcome the metre-sized barrier problem
were suggested (Chiang & Youdin 2010; Blum 2018). These include
the gravitational collapse of overdense regions into large planetes-
imals, where the overdensity of dust and pebbles is catalysed by
streaming instabilities (Youdin & Goodman 2005; Johansen et al.
2007). Other channels involve rare cases of successful collisional
growth into large planetesimals under favourable conditions in terms
of velocity distribution and/or composition (Windmark et al. 2012;
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Blum 2018; Booth et al. 2018). However, all of these scenarios
encounter major challenges and are not robust, as they require
highly fine-tuned conditions (see refs. Chiang & Youdin 2010; Blum
2018 for an overview). Once planetesimals reach km size, further
growth is achieved by gravitational interactions, and accretion of
dust (Xie et al. 2010) or pebbles is efficient in the presence of
massive planetary embryos (Ormel & Klahr 2010; Lambrechts &
Johansen 2012). One of the main challenges for planet formation is
therefore the initial formation of km-sized planetesimals.

The recent flyby of the interstellar object ‘Oumuamua (Meech
et al. 2017) suggests that encounters of interstellar planetesimals
with different Solar systems are much more common than pre-
viously thought (Do, Tucker & Tonry 2018). Such interstellar
planetesimals were suggested to be potentially recaptured later
on into other Solar systems through purely dynamical processes
(Adams & Spergel 2005; Valtonen et al. 2009; Levison et al. 2010;
Belbruno et al. 2012; Perets & Kouwenhoven 2012), but they are
inefficient and/or occur at late times after planet formation processes
take place.

Here we propose that a different efficient gas-assisted cap-
ture process takes place when a gaseous PPD still exists. Gas–
dust/planetesimals interactions are known to play an important
role in planet formation and the evolution of bound planetesimals
embedded in PPDs (Adachi, Hayashi & Nakazawa 1976; Weiden-
schilling 1977b; Ćuk & Burns 2004; Perets & Murray-Clay 2011;
Fujita et al. 2013; Grishin & Perets 2015). Small grains and pebbles
are decelerated by aerodynamic gas drag in the disc. Here we show
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that gas-drag-assisted capture of interstellar planetesimals capture
is no less important.

In this paper, we show that planetesimal capture through this
process could play an important role in the initialization and
catalysis of efficient planet formation, thereby alleviating the
metre-sized barrier problem and providing a robust mechanism
for the initial ∼km-sized planetesimal seeds needed for efficient
planet formation. Therefore, gas-assisted capture of interstellar
planetesimals can potentially resolve some of the main difficulties
in our understanding of planet formation through the provision of
planetesimal seeds into young PPD.

Our paper is organized as follows: In Section 2 we estimate the
encounter rate of interstellar medium (ISM) planetesimals from
the mass function of ejected planetesimals (Section 2.1) and the
local stellar environment (Section 2.2). In Section 3 we present the
analytical planetesimal capture model. We review the PPD structure
(Section 3.1), derive the capture condition (Section 3.2) and the
capture rates (Section 3.3). We compare our results with Monte
Carlo simulations (Section 3.4) and estimate the number of captured
objects during the PPD’s lifetime (Section 3.5). In Section 4 we
discuss the implications and caveats of the model and summarize
in Section 5.

2 EN C O U N T E R R AT E

2.1 Planetesimal mass function

During the planet formation process, a large amount of planetes-
imals is ejected from a given planet-forming system, and these
become unbound interstellar objects (Dones et al. 1999; Melosh
2003). These ejections occur both during the early planet formation
phase, or on longer time-scales throughout the stellar and dynamical
evolution of the system, long after the PPD dissipates. Adams &
Spergel (2005) estimate that for each young star at least �M⊕ of
solids are ejected into the ISM with a typical ejection velocity
of 〈veject〉 = 6.2 ± 2.7 km s−1. They consider a mass function of
dNeject/dm ∝ m−p, where the total number of ejected planetesimals
up to mass m is (Adams & Spergel 2005)

Neject(m) = 2 − p

p − 1

MT

mp−1m
2−p
up

(1)

where MT is the total mass, and mup is the upper cut-off of the largest
mass possible. Following Adams & Spergel (2005) we adopt mup =
0.1 M⊕ and MT = M⊕ (a conservative value).

The power law depends on the details of the formation of the
first planetesimals. Adams & Spergel (2005) use a power law with
p = 5/3, which is also consistent with recent streaming instability
(SI) simulations p = 1.6 ± 0.1 (Simon et al. 2017). However,
the SI formed planetesimals are too large, (R � 10 km), and it is
more reasonable to consider Dohnanyi-like distributions (Dohnanyi
1969) of collisional cascade, leading to p = 11/6 (Raymond et al.
2018a). For p = 11/6, the number of ejected planetesimals of mass
>m1 is then Neject(m > m1) ∼ 0.3(m1/M⊕)−5/6.

Another alternative possibility is that a fraction of interstellar
planetesimals was disrupted during ejection (Raymond, Armitage &
Veras 2018b found 0.1–1 per cent.) at preferred radius rdisr ≈ 100 m.
Given a total mass of MT ≈ 10−3 M⊕, the number of planetesimals
of size rdisr is N = MT/(4πr3

disrρp/3) ≈ 1012, which is comparable
to the number density from the original distribution N(mdisr) ≈ 0.3
× 1012. Thus, the enhancement is by at most a factor of a few. If
there is a distribution of rdisr, or if rdisr is increased, the resulting
enhancements will be smaller.

The encounter rate of ‘Oumuamua-like objects might be higher.
Do et al. (2018) infer a number density of 100 m objects of order
∼2 × 1015 pc−3, which implies ∼1016 objects are produced per
star. Assuming homogeneous objects of the same size, Do et al.
(2018) infer that ∼50 M⊕ of solids is ejected from each star. Even if
planetesimal mass function is ignored, this scenario is implausible
since the solid disc reservoir per star is insufficient and alternative
scenarios are suggested. In what follows we compare our nominal
rate with enhanced rates based on the estimate of Do et al. (2018).
We enhance the total mass of ejected planetesimals to MT = 50 M⊕,
but keep the planetesimal mass function.

2.2 Encounter rates at different environments

The number of planetesimals entering the disc region is therefore
Nenter ≈ nISMσ env〈v〉τ env, where nISM = n�Neject is the number density
of interstellar planetesimals, n� is the number density of stars, σenv =
πb2

max is the cross-section, with a maximal impact parameter bmax,
above which no significant encounter occurs, 〈v〉 = √

8/πσ is the
mean velocity where σ is the velocity dispersion of the environment,
and τ env is a typical time-scale during which encounters with the
disc can occur.

One may consider two types of environments; (1) A cluster-
/stellar-association environment in which a group of stars is bound
together and their relative velocities are low; and (2) a field envi-
ronment where stars and/or interstellar planetesimals are unrelated
to each other and the relative velocities between them are high.
For the cluster environment we consider a stellar density of nc

� ∼
750/πN1/2

� pc−3, where N� = 100–1000. In this case, the velocity
is dominated by the dispersion velocity of ejected planetesimals
σ = 6.2 ± 2.7 km s−1 (Adams & Spergel 2005). In the field, the
velocity is dominated by the (observed) stellar velocity dispersion
σ ∼ 30 km s−1, and the stellar density is nf

� ∼ 0.1 pc−3. Young
systems are likely to form in the central parts of the Galactic disc (De
Simone, Wu & Tremaine 2004). The velocity dispersion of young
stars and stars residing in the central part of the disc is therefore
typically lower than assumed here (i.e. ∼20 km s−1), and therefore
our fiducial choice is likely to be conservative. Moreover, additional
environments can be considered, such as globular clusters, and
moving stellar groups (De Simone et al. 2004) that have larger
number density or small velocity dispersion, respectively.

For the cluster, τ env = r/σ ∼ 0.3 Myr is the cluster crossing time.
In the field, the typical time is dominated by the disc lifetime τ env =
tdisc = 3 Myr. In the case of a young cluster environment the timing of
material ejection is important. In particular, if ejections take place at
times much longer than the lifetime of PPDs they will not contribute
to the reservoir of interstellar planetesimals available for capture.
However, models suggest the actual time-scale for material ejection
is comparable to that of the gaseous disc lifetime (Morbidelli 2018).

Using the aforementioned relations, the number of planetesimals
that enter the PPD as a function of their size is given by

Nenter(R) = Neject(R)n�b
2
max

√
8πστenv. (2)

For field (cluster) environments the typical numbers are
n� = 0.1 (7.5) pc−3, bmax = 50 (130) au, σ = 30 (6.2) km s−1,
τenv = 3 (0.3) Myr, leading to Nenter(R > 1 km) ≈ 104 (1.1 ×
105) (R/km)−5/2. This is likely a lower limit, since the inferred
encounter rate of ‘Oumuamua-like objects (with effective diameter
of ∼100 m), given its recent detection, is at least ∼50 times higher
than the above estimated rate for 100 m-sized bodies entering the
Solar system in today’s field environment (Do et al. 2018).
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3 C A P T U R E R AT E S

3.1 Protoplanetary disc structure

The radial and vertical structure of the PPD can be modelled from
the Chiang–Goldreich simple flared disc model (Chiang & Goldre-
ich 1997). The radial gas surface density is �g = �g, 0(a/au)−β ,
where �g,0 = 2 × 103g cm−2. The normalization �0 and scaling
β = 3/2 corresponds to the Minimal Mass Solar Nebula (MMSN)
profile (Weidenschilling 1977a; Hayashi 1981). Larger normaliza-
tions and various power laws (β ∼ 0.5–2.2) have been invoked in
order to explain the formation of super-Earth planets, though there
is a large spread and uncertainty in the observed systems (Chiang &
Laughlin 2013; Raymond & Cossou 2014).

The vertical structure is governed by hydrostatic equilibrium,
which leads to a Gaussian profile, where in cylindrical coordinates
ρg(r, z) = ρg(r, 0)exp (− z2/2h2), where h = cs/	 is the disc scale
height, cs and 	 is the sound speed and the Keplerian frequency,
respectively (Perets & Murray-Clay 2011; Grishin & Perets 2015).
The surface density is then �g(r) = ∫

ρg(r, z)dz = √
2πhρ(r, 0).

3.2 Capture condition

Consider an interstellar object coming from infinity with velocity
v∞, going through a gaseous PPD around a star of mass M�. For a
spherical body with density ρp = 1 g cm−3, radius Rp, and relative
velocity vrel which crosses a region of the disc with density ρg, the
aerodynamic gas drag force is

FD = −1

2
CDπR2

pρgv
2
relv̂rel, (3)

where CD(Re) is the drag coefficient, which depends on the
Reynolds number Re = Rpvrel/νm, where νm = (1/2)v̄thλ is the
molecular viscosity of the gas, v̄th is the thermal velocity, and λ is
the mean free path of gas–gas collisions.

Large planetesimals are in the ram pressure regime with constant
coefficient CD = 0.44. Small dust grains are in the Epstein regime,
with CD ∝ R−1

p . The transition to Stokes regime occurs at Rp =
9λ/4. In the Stokes regime, CD ∝ R−3/5

p . We follow the prescription
of Perets & Murray-Clay (2011) for the Reynolds number and drag
laws.

For a planetesimal that crosses the disc face on at radial location
ā, the amount of energy loss during the interaction with the disc is
the total work applied on the planetesimal

�E =
∫

FD · vreldt = −πCDR2
pρ0

2

∞∫
−∞

exp

(
−v2

relt
2

2h2

)
v3

reldt

≈ −πCD

2
R2

p�gv
2
rel, (4)

where ρ0 = ρg(ā, z = 0) is the density at the mid-plane, and we
assume that the relative velocity vrel = v∞ + vesc(ā) is constant
throughout the passage, where vesc = √

2GM�/ā is the escape
velocity.

There are two regimes: Either v∞ � vesc, the geometrical regime,
or v∞ � vesc, gravitational focusing regime, letting v2

rel ≈ v2
∞ + v2

esc

takes both options into account.
The body is captured if it has dissipated more energy than its

initial energy Ein = mpv
2
∞/2, or |�E| > Ein. In terms of the body’s

size, the capture condition is

Rp � 3

4

CD�g

ρp
(1 + s) , (5)

where s ≡ v2
esc/v

2
∞ is the gravitational focusing Safronov number.

For s � 1 gravitational focusing is important, while for s � 1 the
scattering is mostly in the geometric collision regime. Intuitively, in
the geometric regime, capture requires a velocity change of order of
the incident velocity δv ∼ v∞, thus corresponds to a requirement that
the disc surface density exceeds a fixed fraction of the planetesimal
mass per unit area.

Fig. 1 shows an example of a typical trajectory and evolution of
interstellar planetesimals as they encounter the disc, dissipate their
energy, and become embedded in the disc. In the following we use
a detailed analysis to provide a quantitative study of the capture rate
of such planetesimals.

3.3 Capture rates

In order to evaluate the fractions and total number of planetesimals
captured through this process, we need to consider the properties of
the orbits and the PPD, as well as properties of the environment.

For the encounter properties, we consider the distributions of
the velocity, impact parameters, and relative impact angles to the
disc, as well as the size distribution of the incoming planetesimals.
We assume that interstellar objects have a Maxwellian velocity
distribution (similar to their progenitor stellar hosts)

fV (v∞, σ ) =
√

2

π

v2

σ 3
exp

(
− v2

∞
2σ 2

)
; v ∈ [0, ∞), (6)

where σ is the velocity dispersion. Faster planetesimals collide more
frequently so the distribution of rate of collisions per unit time is
further weighted by an additional factor of v∞. The distribution
of impact parameters follows a simple geometric cross-section, i.e.
a uniform distribution of the impact parameter B2 ∼ U [0, b2

max]
(the trajectory can later change due to gravitational focusing, which
we account for when relevant), where bmax is the maximal impact
parameter for an effective close encounter. Both of these depend on
the stellar environment.

3.3.1 Geometric regime

In this case s � 1 (negligible gravitational focusing), i.e. the tra-
jectory of an incoming interstellar planetesimals follows a straight
line before encountering the disc, and is negligibly affected by the
gravitational pull from the host star. The capture criterion is then

3CD�g

4ρpRp
< 1 . (7)

taking a density profile �g = �g, 0(a/au)−β we get( a

au

)β

<
3CD�g,0

4ρpRp
. (8)

For geometric scattering, the closest approach is q ≈ b, so the
criterion is

bc(Rp) <

(
3CD�g,0

4ρpRp

)1/β

au, (9)

or with the dimensionless parameter x = bc/bmax, the capture
probability is

fc(Rp) =
(

bc

bmax

)2

=
(

3CD�g,0

4ρpRp

)2/β ( au

bmax

)2

= 0.16

(
CD

25

)4/3 (
bmax

130 au

)−2 (
Rp

2 m

)−4/3

, (10)
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Capture of interstellar objects 3327

Figure 1. Flyby and capture orbits of interstellar planetesimals. Left: The 3D trajectories of initially hyperbolic, interstellar planetesimals. The dashed green
line represents a hyperbolic (non-capture) encounter, similar case of ‘Oumuamua, for planetesimals of size Rp = 104 m. The blue line corresponds to a smaller
planetesimal (Rp = 10 m) which efficiently dissipates its energy through gas drag, decelerates and becomes embedded in the disc (red circle). The initial orbital
elements are the same. Right: Time evolution of the orbital elements of the captured orbit. Top panel shows the evolution of the height z above the PPD, the
semimajor axis a and the pericentre approach a(1 − e). The bottom panel shows the evolution of the inclination and the eccentricity e.

where we used β = 3/2 and the disc normalization of Section 2.1.
The geometric regime is independent of the initial velocity and the
PPD profile. The geometric regime is valid mostly for small grains
and pebbles, and thus neglecting gravitational focusing underpre-
dicts the capture probability of large �100 m planetesimals.

3.3.2 Gravitational focusing regime

In the gravitational focusing regime, (s � 1; which corresponds
to small impact parameters and/or low velocities), the capture
condition is( a

au

)β

v2
∞ <

3CD�g,0

2ρpRp

GM

a
, (11)

which depends both on the velocity and the impact parameter. In
order to proceed, we use the parabolic approximation to find the
closest approach a = q,

q = GM

v2∞

[√
1 + b2v4∞

G2M2
− 1

]
≈ b2v2

∞
2GM

(12)

so the capture condition is

b2(1+β) ≤ 2β 3CD�g,0

ρpRp

(
GM

v2∞au

)2+β

au2(1+β) ≡ b2(1+β)
c . (13)

The velocity dependent capture probability is

Pc(Rp|v∞) =
bc(v∞)∫

0

fB (b)db =
(

bc(v∞)

bmax

)2

, (14)

where bc(v∞) is given by equality in equation (11). Now we want
to look at the different rates of arrival: faster planetesimals have
higher encounter rates than slower one. The integrals that involve
the probability have an additional v factor, e.g. P ∝ ∫

vfV (v)dv.
Namely, the weighted capture probability for a given time is

fc(Rp) = Ncaptured(Rp)

Nenter(Rp)

=
∫

Nenter(v,Rp, bmax)fV (v∞)Pc(Rp|v∞)dv∞∫
Nenter(v,Rp, bmax)fV (v∞)dv∞

. (15)

Since Nenter(Rp) ∝ v∞ we have

fc(Rp) = 1

〈v∞〉fV

∫
v∞fV (v∞)Pc(Rp|v∞)dv∞

=
∫∫

Dc

2b

b2
max

v3

2σ 4
e−v2/2σ 2

dbdv , (16)

where 〈v∞〉fV
= √

8/πσ is the mean thermal speed. The integration
is on the fractional domain Dc of parameters that result in capture.

The latter is equivalent to drawing the velocity from a χ (4)
distribution:

f̃V (v) = 1

2

v3

σ 4
exp

(
− v2

2σ 2

)
. (17)

The capture probability is encapsulated in the new random
variable x ≡ (b/bmax)α(v∞/σ )2, where α = 2(1 + β)/(2 + β). We
show in Appendix A that the distribution function for x can be
expressed in terms of incomplete Gamma functions,

fX(x) = 2−(2+β)/(1+β) 2 + β

1 + β
�

(
β

1 + β
,
x

2

)
x1/(1+β) . (18)

For the special case of β = 3/2, fX(x) ∝ x2/5�
(

3
5 , x

2

)
. The

weighted capture probability is

fc(Rp) =
xc(Rp)∫
0

fX(x)dx

xc = 2β/(2+β)

(
3CD�0

ρpRp

)1/(2+β) (
GM

σ 2au

)(
bmax

au

)−α(β)

.

(19)

Since the gravitational focusing regime is relevant for large
planetesimals, it requires close approach, which is possible only
with either small velocity or impact parameter. In either case, xc �
1, and the (weighted) probability (equation 3.3.2) can be expanded
into leading terms,

fc(xc) =
(xc

2

)(2+β)/(1+β)
�

(
β

1 + β

)
+ O(x2

c ). (20)
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Figure 2. Fractions of captured planetesimals as a function of their size. Blue area is the estimated probability in the geometric scattering regime, green area
is the estimated probability in the gravitational focusing regime. Black dots are result of a numerical simulation. The error bars are estimated from shot noise
of the captured orbits. Choices of drag coefficients are discussed in the Methods. Generally, planetesimals above Rp � 100 m follow the gravitational focusing

prediction fc ∝ R
−2/5
p . The transition to geometric scattering regime is near ∼10 m for both environments ∼100 m.

For the special case β = 3/2 we have

fc(Rp) = �
(

3
5

)
27/5

x7/5
c + O(x2

c )

≈ 0.86

(
3CD�0

ρpRp

)2/5 (
GM

σ 2au

)7/5 (
bmax

au

)−2

. (21)

Note that in either regime of the capture fraction (equation 3.3.1
and 3.3.2) it is proportional to ∝ b−2

max, which cancels out with
the ∝ b2

max from the encounter rate. Thus, the total number of
captured planetesimals Nenter · fc is independent of bmax, hence
the choice of bmax is rather arbitrary, as expected. Multiplying by
nISM(

√
8/πσ )πb2

max yields the total number of captures:

N (Rp) ≈ 4.29

(
3CD�0

ρpRp

)2/5 (
GM

σ 2au

)7/5

nISMστenvau2, (22)

and it is independent of bmax, as expected.

3.4 Numerical modelling and comparison

In order to better verify the analytical estimates, we run N-
body simulations that include gravity and a prescription for gas
drag (equation 3), based on fourth-order Hermite integrator (Hut,
Makino & McMillan 1995). We truncate the disc density at rdisc =
250 au. The aspect ratio is h/r = 0.022(r/au)2/7. The velocity of
the gas is slightly sub-Keplerian due to pressure gradients, namely
vgas = ηvKep, with η = (1 − (3/2 + β + 3/14)(h/r)2)1/2 (see
Grishin & Perets 2015, 2016 for more details). The relative velocity
is vrel = vp − vgas, where vp is given in Cartesian coordinates after
rotation of the hyperbolic orbit to the disc’s reference plane. We
initialize the planetesimal to start from r0 = 20 000 au with orbital
parameters and disc inclination drawn from distributions described
in the main text. We stop the simulation if the distance from the
sun exceeds 50 000 au and negative energy and conclude the orbit
is unbound. For bound orbits we stop if either the distance is
r < 0.02 au or the orbital eccentricity is e < 0.1.

For each planetesimal size we run 104 − 3 × 105 numerical
integrations with b and v∞ distributed from uniform in b2 and
χ (4) distributions, respectively. The relative angles between the
planetesimal trajectories and the PPD were drawn from an isotropic
distribution (uniform in the argument of pericentre and the longitude
of ascending node angles, and uniform in the cosine of the
inclination angle).

Fig. 2 shows the comparison between the analytic estimates and
the simulations. Small pebbles, up to ∼1 m, are the most susceptible
to gas drag, and are efficiently captured. These can be captured even
at the lower density regimes of the disc at large separations. Larger
planetesimals require progressively close pericentre approach of
their trajectory, near the high-density inner regions of the disc.
Therefore, large planetesimals are in the gravitational focusing
regime, where the gas drag is ram pressure dominated and the drag
coefficient has a constant value CD = 0.44. For geometric scattering
we expect to be somewhere near the Epstein–Stokes transition, i.e.
near CD = 24.

Fig. 2 shows good converge of the analytical models, both in
the power-law scaling and in the gas drag regime. Planetesimals
in the field have much higher velocities and Reynolds numbers,
hence they are rarely in the Epstein regime and have smaller drag
coefficients.

3.5 Total number of captured planetesimals and radial
distribution

Using the size-dependent capture probability, we obtain the total
number of captured planetesimals of a given size.

The left-hand panel of Fig. 3 shows the expected size-dependent
number of captured planetesimals for a collisional planetesimal
mass function with p = 11/6. Many small pebbles and planetesimals
up to �100 m are captured, which could lead to efficient seeding
and subsequent planet formation. At least one planetesimal as large
as ∼6 km (∼1 km) is captured in a cluster (field) environment.
The inferred rate, based on ‘Oumuamua passage, is enhanced by
∼50 times. The latter would then result in the capture of even
∼23 km (∼4 km) for a cluster (field) environment. The right-hand
panel of Fig. 3 shows the number of captured planetesimals from SI
mass function, p = 5/3. In this case, there are less planetesimals to
begin with, therefore the overall numbers are lower, although still
significant.

Fig. 4 shows the empirical cumulative radial distribution of cap-
tured planetesimals for different size ranges. As mentioned above,
disc dissipation can be efficient for small planetesimals even at the
disc outskirts where the gas densities are low. The capture of larger
planetesimals, however, requires higher gas densities. Therefore
the larger the planetesimals, the more centrally concentrated is their
radial distribution.
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Figure 3. The number of captured planetesimals during a typical lifetime τ env, given the theoretically estimated rates. The left-hand and right-hand panels
represent collisional (Dohnanyi) and SI induced mass functions, respectively. Green area corresponds to the rates for the cluster, while blue area corresponds
to the rates for the field. The boundaries are determined by different drag coefficients, similar to Fig. 2. Red vertical line stands for the effective radius of
‘Oumuamua, ∼100 m. The observed rate, based on ‘Oumuamua passage, are enhanced by ∼50 times. The enhanced rates represented by the transparent green
and blue areas for the cluster and the field, respectively.

Figure 4. The size-dependent cumulative radial distribution of captured planetesimals. Several planetesimal sizes are shown; Rp = 104, 103 , 100, 10 , 5 , 1 m
(blue, green, red, cyan, purple, and black respectively), for the cluster (left) and the field (right). Once captured, the circularization time-scale is much shorter
than radial drift time-scales (see Fig. 1b and Adachi et al. 1976), thus the final semimajor axis is close to the first pericentre approach.

4 D ISCUSSION

4.1 The metre size barrier and the first planetesimals

The gas-assisted capture mechanism can seed a few up to thou-
sands of ∼ km-sized planetesimals in the disc. Such relatively
small number of seeds can then rapidly grow to 100 km size on
short time-scales before collisional erosion starts (although for a
fraction of systems with extremely strong turbulence planetesimals
may not grow by dust accretion, Xie et al. 2010). We therefore
expect the effective initial distribution of cores and asteroids to
be at large radii, somewhat similar to that expected from the
SI models and consistent with suggestions and observations that
asteroids were born big and that the asteroids were formed from
a small number of asteroid families (Morbidelli et al. 2009;
Dermott et al. 2018). A fraction of these grown planetesimals
later ejected from the systems, and further replenish the population
of interstellar planetesimals. These, in turn, can be recaptured by
other systems and further catalyse planet formation, and so on,
i.e. leading to a chain reaction – like exponential planet-seeding
process.

One may still question how did large planetesimals and later
planets formed in the first system that initialized the seeding.
Formation of km-sized planetesimals is a long-standing problem
in planet formation theories (Chiang & Youdin 2010; Blum 2018).
The disc capture scenario cannot account for this initial formation,
however, it can alleviate the problem, by allowing for the first

formation of such planetesimals to be a rare event, and even under
fine-tuned condition.

4.2 Initial population and propagation

We have assumed that every star has contributed to the ISM
planetesimal population. Here we present an order of magnitude
estimate on the fraction of stars required to initially produce ISM
planetesimals and find that even one star per cluster could be
sufficient. More accurate estimations that verify or negate our results
and assumptions should be developed in the future.

Assuming that only a fraction f� of stars forms planetesimals, the
spatial distribution of planetesimals is uniform after a mixing time
τ � ∼ l�/σ ∝ (n�f�)−1/3σ−1, where l� is the average distance between
stars that contribute planetesimals. Remarkably, the combination
n1/3

� σ has roughly the same value for both cluster and field
environments, therefore the mixing time τ � depends only on the
fraction f�, and not on the environment. As long as the mixing time
is less than the disc lifetime, we evaluate the capture rate as before,
only with the number density of ejected planetesimals multiplied by
f� that account for the efficiency of planetesimal formation per star.

Most stars are thought to form in stellar associations and clusters.
Even if only one star in an N� ∼ 1000 (f� = 10−3) cluster contributes
planetesimals, the cluster mixing time is comparable to the crossing
time and much less than the disc lifetime τenv ∼ 0.3 Myr � τdisc. We
therefore regard the cluster planetesimal number density uniform
and reduced by f�. From equation (15), the number of captured
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Table 1. Fraction of captured planetesimals lost due to ablation in field
environments. Starred (∗) entries are uncertain due to very low or none
capture below the ablation limit.

Cluster Rp = 1 m Rp = 10 m Rp = 102 m Rp = 103 m

Ice <1 per cent 37 per cent 31 per cent 32 per cent
Carbonate <0.1 per cent 25 per cent 19 per cent 16 per cent
Rock <0.1 per cent 16 per cent 10 per cent 6 per cent∗
Iron <0.1 per cent 9 per cent <6 per cent <1 per cent∗

Field Rp = 1 m Rp = 10 m Rp = 102 m Rp = 103 m
Ice 7 per cent 78 per cent 66 per cent 57 per cent∗
Carbonate 3.7 per cent 69 per cent 33 per cent 28 per cent∗
Rock 1 per cent 53 per cent 16 per cent 28 per cent∗
Iron 0.6 per cent 34 per cent 8 per cent 14 per cent∗

large planetesimals is Ncaptured(> 1 km) ∼ 170f� (and numerous
smaller ones). If only a few large ∼1 km planetesimals are
sufficient for seeding a given planetary system (Ormel & Kobayashi
2012; Levison, Kretke & Duncan 2015), or a larger number of
smaller planetesimals (Booth et al. 2018), then only a small
fraction of planetary systems is needed in order to seed all of
the other protoplanetary systems in the cluster, f� ≈ 6 × 10−3.
Thus, even few stars that form planetesimals populate the entire
cluster.

Similar arguments apply for the field, where reduction by f� =
10−3 leads to capture of a few R ∼ 100 m objects (since still
τ� ∼ 0.3 Myr � τdisc) during disc lifetime (and numerous smaller
ones), which could also lead to subsequent planetesimal formation
and field population. In addition, using the ∼50 times higher rates
directly inferred from ‘Oumuamua detection, even smaller fraction
is required. We finally note that in the optimistic cases, even large
planetary embryos of 10–30 km can be captured directly.

4.3 Binary star systems

The structure of the protoplanetary disc implicitly assumes a
single star. However, most solar-type stars are in binary systems
(Duchêne & Kraus 2013) and ∼20 per cent of exoplanets are
in binary–star systems, some of them are in tight configurations
(Thebault & Haghighipour 2015). The tidal interactions with the
binary may disrupt or truncate the disc (Artymowicz & Lubow
1994). The lifetime of existing discs is also shortened (Müller &
Kley 2012), τdisc � 1 Myr, although a small fraction has discs even
at t ∼ 10 Myr (Kraus et al. 2012). Disc truncation will decrease the
overall capture of small pebbles (in the geometric regime), while
the capture of larger planetesimals will not be affected too much,
since larger objects are captured at closer separations (see Fig. 4).
Shorter disc lifetime equally and linearly decrease the total number
of captured objects on all scales in the field. Cluster environment
is less affected since the typical time-scale is the cluster crossing
time, which is still shorter than the disc lifetime.

4.4 Planetesimal ablation

Planetesimal ablation could potentially affect, or even destroy
a planetesimal as it crosses a PPD for the first time at high
velocity. However, using simplified ablation models (Appendix
B Pinhas, Madhusudhan & Clarke 2016) we find the expected
ablation rates of the captured planetesimals in Table 1. ∼37 per cent
of icy planetesimals and ∼16 per cent of rocky planetesimals of
10–103 m sizes are ablated during crossings in stellar clusters, and

∼78 per cent icy and ∼53 per cent rocky planetesimals of 10–103 m
are ablated in field environments. Most of the ablated objects are
in the range of 10–103 m; smaller pebbles are captured far enough,
while larger bodies are harder to ablate. These do not significantly
affect the overall results.

4.5 Chemical composition

The composition of meteorites in the Solar system is typically
thought to relate to the primordial composition of the PPD.
However, there is evidence for the existence of material captured
from external sources. In particular, there is evidence for short-
lived radioactive nuclei which were likely formed in a relatively
nearby supernovae (Ouellette, Desch & Hester 2010). In addition,
analysis of heavy 60Fe −60 Ni isotopes in asteroids suggests the
early injection of 60Fe into the primordial PPD of our Sun (Bizzarro
et al. 2007). The disc-capture mechanism allows for embedding
such external material in the disc, and may help explain its
origin.

These issues are not the main focus of our study, but it is
interesting to consider the possibility of composition peculiarities
in some meteorites originating from capture of material from other
systems through this process. In particular, discovery of rocky/solid
material older than the Solar system can provide a signature of
material exchange.

4.6 Lithopanspermia

The exchange of rocky material between planetary systems may
also be considered the leading mechanism for lithopanspermia;
the transfer of living organisms or other biotic elements between
different planetary systems (Napier 2004; Wesson 2010; Lingam &
Loeb 2018). Biologically active material is expected to survive the
ISM environment if the rock is above m > 10 g. Previously sug-
gested dynamical exchange mechanisms are typically inefficient;
most effective mechanisms requiring planetesimal encounter with
a binary system, and subsequent capture, mostly through collisions
with planets (Adams & Spergel 2005). Capture of planetary material
following the dispersal of the host cluster is another suggested
much more efficient mechanism (Levison et al. 2010; Perets &
Kouwenhoven 2012); however, it introduces capture at typically
large distances from the host star.

Even if a small fraction of biologically active material is ejected
by interstellar planetesimals, the large efficiency of gas-assisted
capture of 1 m-sized rocks could be far more efficient (as much
as ≥105 larger) than previously suggested lithopanspermia mecha-
nisms (Adams & Spergel 2005).

5 SU M M A RY

The current paradigm for planet formation involves a bottom up
evolution of dust grains growing into planetesimals, then planetary
embryos, and finally into planets in gaseous PPDs around young
stars. One of the main open questions over the last 40 yr deals with
the early stages of forming km-sized planetesimals from initially
small dust grains (Weidenschilling 1977a; Chiang & Youdin 2010).
Metre-sized pebbles experience a both significant gas drag and
collisional erosion, and thus rapidly inspiral on to the star or
fragment, respectively. Together, these issues give rise to the ‘metre-
sized barrier’ problem in which the lifetime of small pebbles
in the disc is too short compared with their growth rate. Thus,
planet formation requires a ‘jump’ over small planetesimals as to

MNRAS 487, 3324–3332 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/3/3324/5510437 by TEL AVIV U
N

IVER
SITY user on 21 Septem

ber 2021



Capture of interstellar objects 3331

already begin with larger-sized planetesimals not susceptible to
these growth constraints.

In this paper we have shown that the majority of planetary systems
could have been ‘seeded’ by large ∼km-sized interstellar planetes-
imals. These could have formed elsewhere and then captured via
gas drag experienced by the planetesimal as it passes through the
PPD. This gives rise to early insertion of large planetesimals, and
it thereby potentially alleviates the metre-sized barrier. The gas-
assisted capture model does not account for the first generation of
planetesimals, but rather makes their formation into a much easier
exponentially small challenge. Planetesimal formation is no longer
required to form in every planetary system in isolation, but rather in
a small subset of systems, perhaps under fine tunes conditions. Even
one successful planetesimal formation per system could populate
the entire young stellar cluster with planetesimals, and perhaps even
the young systems in the field.

We present a novel model of gas-assisted capture of interstellar
planetesimals. We construct a robust, analytical model of the
capture probability and overall capture rates as a function of the
planetesimal size and orbit distribution, the protoplanetary disc
structure, and the local environment. We verified the analytical
derivation with direct Monte Carlo integrations and found good
correspondence.

The gas-assisted capture model is compatible with late stage
planetesimal growth models (snowball phase, pebble accretion,
Xie et al. 2010; Lambrechts & Johansen 2012) and provides the
missing link to the initial population of large dust grains and small
planetesimals. In addition, the gas-assisted capture model supports
the observation that asteroids formed big from a small number
of asteroid families. The capture model can be tested by future
measurements of composition peculiarities in some meteorites,
which already has some evidence for early injection of heavy
radioactive nuclei into the primordial protoplanetary disc of our
Sun (Bizzarro et al. 2007; Ouellette et al. 2010).

Besides the importance for planet formation, the gas-assisted
capture scenario allows for far more efficient exchange of biologi-
cally active material between different planetary systems. In fact, it
could be as much as a million times more efficient than previously
estimated (Adams & Spergel 2005), making the possibility for
such panspermia events into the Solar system and/or between other
planetary systems far more likely.
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A P P E N D I X A : D E R I VAT I O N O F T H E
G R AV I TAT I O NA L FO C U S I N G R E G I M E

Here we derive equations (3.3.2) and (14). We start from a χ (4)
distribution for the velocity:

f̃V (v) = 1

2

v3

σ 4
e−v2/2σ 2

(A1)
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and uniform distribution of b2, namely fB(b) ∝ b. In order to proceed,
we define a new random variable x ≡ (b/bmax)α(v∞/σ )2, fX(x), with
α is related to the disc power-law density and defined in the main
text.

First, we transform to k = bα and dk = αbα − 1db, so

fK (k) = fB (b)
db

dk
= 2k(2−α)/α

αb2
max

. (A2)

Similarly, the distribution function of u ≡ v2 is

f̃U (u) = f̃V (v)
dv

du
= 1

4

u

σ 4
e−u/2σ 2

. (A3)

Now, the distribution of z ≡ bαv2 is given by

fZ(z) =
∫∫

f̃U (t)fK (k)δ(ku − z)dkdu

= 1

2ασ 4b2
max

∫∫
k(2−α)/αe−u/2σ 2

δ(k − z/u)dkdu

= z(2−α)/α

2ασ 4b2
max

∞∫
z/kmax

u(α−2)/αe−u/2σ 2
du, (A4)

where δ(s) is Dirac’s delta distribution. Taking x = z/bα
maxσ

2 and
w = u/2σ 2 we get

fX(x) = x(2−α)/α

α
21−2/α

∞∫
x/2

w1−2/αe−wdw

= 2−(2+β)/(1+β) 2 + β

1 + β
�

(
β

1 + β
,
x

2

)
x1/(1+β) (A5)

where �(s, z) = ∫ ∞
z

t s−1e−tdt is the upper incomplete Gamma
function. By using the integrals of the incomplete Gamma functions∫

xb−1�(s, x)dx = 1

b

(
xb�(s, x) − �(s + b, x)

)
, (A6)

the cumulative distribution function (CDF) is given by

FX(x) =
∫

fX(x)dx =
(x

2

) 2+β
1+β

�

(
β

1 + β
,
x

2

)
− �

(
2,

x

2

)
.

(A7)

The linear expansion of the incomplete Gamma function is
�
(
s, x

2

) = �(s) − xs

2−s s
+ O

(
xs+1

)
, therefore the leading term in

the CDF is

FX(x) = 2− 2+β
1+β x

2+β
1+β �

(
β

1 + β

)
− 1 + β

β
2− 2

1+β x2 − 1 + 2x2.

(A8)

For β > 0, the first term is the dominant one, thus the capture
probability is

fc(Rp) = FX(x) − FX(0) = 2− 2+β
1+β x

2+β
1+β �

(
β

1 + β

)
+ O

(
x2
)

.

(A9)

APPENDIX B: PLANETESIMAL ABLATION

The ablation equation is (Pinhas et al. 2016)

dm

dt
= −CH

2

ρgv
3
relπR2

p

Qabl
, (B1)

where m = 4πR3
pρp/3 is the mass, ρp is the solid density, ρg is the

gas density, CH is the dimensionless heat transfer coefficient, vrel is
the relative velocity, Rp is the radius, and Qabl is the specific ablation
heat per unit mass. The ablation time is

tabl =
∣∣∣∣ Rp

dRp/dt

∣∣∣∣ ≈ 8

CH

ρp

ρg

Qabl

v3
rel

Rp ≈ 104

(
Rp

m

)( a

au

)53/14
s .

(B2)

Significant ablation occurs if the ablation times is shorter than the
minimum of the disc crossing time tcross and the stopping time tstop =
|mvrel/FD|. For pebbles of �1 m or larger bodies, the crossing time
tcross = h/vrel is the relevant. Comparing the time-scale gives the
condition for ablation. The critical radial disc separation for ablation
as a function of the planetesimal size and disc and planetesimal
parameters is

aab =
√

CH

8

ρg

ρp

h

Rp

v2
rel

Qabl
au . (B3)

For typical compositions of ices (see table 1 of Pinhas et al. 2016),
CH = 0.01, Qabl ≈ 3 × 1010 erg g−1, ρp = 1 g cm−3, and ρp and
vrel ≈ vesc normalized to their values at 1 au the critical radial
separation is

aab =
(

R

7.3 m

)−1/2

au . (B4)

Fig. B1 shows the critical separation as a function of the
planetesimal size for various compositions. We compare the critical
separation for each composition with the cumulative fraction of cap-
tured planetesimal to estimate the fraction of ablated planetesimals.
The results are summarized in Table 1.

Figure B1. Critical separations for significant planetesimal ablation. Spe-
cific ablation heat coefficients and densities are taken from table 1 of Pinhas
et al. (2016).
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