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a b s t r a c t

The dielectric sphere has been an important test case for under-
standing and calculating the vacuum force of a dielectric body
onto itself. Here we develop a method for computing this force in
homogeneous spheres of arbitrary dielectric properties embedded
in arbitrary homogeneous backgrounds, assuming only that both
materials are isotropic and dispersionless. Our results agree with
known special cases; most notably we reproduce the prediction of
Boyer and Schwinger et al. of a repulsive Casimir force of a perfectly
reflecting shell. Our results disagreewith the literature in the dilute
limit. We argue that the Casimir self-stress cannot be regarded
as due to pair-wise Casimir–Polder interactions, but rather due to
reflections of virtual electromagnetic waves.

© 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Julian Schwinger et al., in a paper from 1977 [1], described the Casimir force as ‘‘one of the
least intuitive consequences of quantum electrodynamics’’. Four decades later, although extensive
work has been made in the field, the mystery has yet to disappear. Observed to good accuracy in
experiments [2–4] , Casimir forces are known to originate from the ubiquitous vacuum fluctuations
of the electromagnetic field that excite dielectric and conducting materials [5,6] or directly from
fluctuating sources [7], causing them to interact with one another [8]. Our ability of predicting these
forces, however, is limited, in particular for predictions of Casimir forces inside dielectric bodies [9–
13]. Inspired by the work [14] of Milton, DeRaad and Schwinger on the Casimir self force of a
perfectly conducting shell, we solve the problem of calculating the Casimir stress in an arbitrary
dielectric sphere embedded in an arbitrary dielectric background, both assumed to be isotropic and
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Fig. 1. Dielectric sphere of radius a surrounded by dielectric background. The sphere is subject to pressure arising from vacuum
fluctuations. The dielectric properties of the sphere and the background are incorporated in their permittivity and permeability
(ε and µ respectively), which determine the response of the materials to vacuum fluctuations.

dispersionless (Fig. 1). Our findings could be experimentally tested by probing the resonances of
microspheres. Our results agree with known special cases [15–17], but disagree with what was
perceived as the dilute limit [18–20]. We found that the physical picture of Casimir forces as arising
due to pair-wise van der Waals interactions is no longer justified in the dilute limit of the dielectric
sphere. We develop an alternative physical picture based on reflections of virtual waves instead of
summations of forces. Such a change of perspectivemay have implications for awide range of Casimir-
related phenomena.

Thanks to an immense progress in numerical methods over the last decade [21], the Casimir
force between any arbitrary number of distinct objects with finite separation between them can
be resolved using path integral approach combined with scattering theory (also known as the EGJK
method) [22,23]. However, thismethod relies on renormalizing the force by subtracting the scattering
of each individual object when it is infinitely separated from the rest, which cannot be done when
considering the Casimir self-stress that each object experiences upon itself. Therefore this method
cannot predict the self-stress of a dielectric sphere, which is the main focus of this paper.

The spherical problem dates back to Casimir himself, who proposed that vacuum fluctuations
might cause a conducting spherical shell to attract itself, in a way analogous to the case of two
conducting plates [24,25]. The problem of the spherical shell can be reduced to the problem of the
sphere (Fig. 2). Casimir’s motivation came from a semi-classical model for the structure of an electron
in which the Casimir stress might have played an important role (similarly, the Casimir stress was
considered to affect the ‘‘bag model’’, a model of hadrons [26,27]). It was rather a surprise when
Boyer [28] showed in 1968 that the Casimir stress in a perfectly conducting spherical shell is repulsive,
i.e. tends to expand the sphere [28] (although two conducting hemispheres attract each other [29]).
Boyer’s calculation, which was based on a mode summation method, lacked a physical justification
for some of its renormalization techniques, but his result was re-derived by different papers [30,31]
including the work of Milton, DeRaad and Schwinger [14] on which the present paper has greatly
relied on.

Since then, there have been several attempts to generalize this result from the perfectly conducting
spherical shell to dielectric spheres, most notably the pioneering work by Milton [32]. They all found
that the Casimir force of a dielectric sphere is cutoff dependent, and no clear results were obtained,
except for two special cases: the dilute ball [18–20,33], and the case where the speed of light is
identical both inside and outside the sphere (but ε and µ, the permittivity and permeability, are
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Fig. 2. A conducting spherical shell can be viewed as the sum over two cases: a vacuum cavity in a conducting background and
a conducting sphere in vacuum.

different) [15–17]. In these special cases a finite term, independent of any cutoff was extracted and
the additional diverging termswere sometimes dismissed either by amathematical trick or simply by
claiming that these terms are unobservable. To our knowledge, there is no clear statement regarding
the physicality of the cutoff dependent terms. To quote from a thorough review of developments in
the Casimir effect published in Ref. [34]:

‘‘Despite the mentioned results the situation with a dielectric body remains unsatisfactory.... It is
impossible to identify a unique quantum energy. But on the other hand, we are confronted with real
macroscopic bodies and the clear existence of vacuum fluctuations of the electromagnetic field constituting
a real physical situation, so that no infinities or arbitrariness should occur’’. One may of course disagree
to which extent vacuum fluctuations are real, but the physical phenomena of Casimir self-forces are
real and finite, whereas the current theory is plagued with problems.

In this paper we present a method to calculate the Casimir self-stress of a homogeneous sphere
inside a homogeneous background, which is a modification of previous calculations: it uses the radial
distance from the surface of the sphere as a regularizer rather than a frequency or a wavenumber
cutoff. Our method is inspired from correcting an unjustified mathematical procedure we spotted
in previous calculations, namely the interchange between a limit and a sum which should be made
the other way round. Taking the correct order of limits we develop a way of extracting the finite
macroscopic contribution to the Casimir self-stress for general dielectric constants (but constants
in frequency). We interpret the other terms as originating from the microscopic description, that
includes the finite separation between the atoms in a medium, which is lost in the macroscopic
description. Our method applies only to dispersion-less materials since, to our understanding, only
in this case there is a clear distinction between the finite macroscopic term and the other cutoff
dependent terms. We calculate the macroscopic contribution to the self-stress as a function of the
dielectric constant and give an estimation for the correction to the surface tension of the sphere that
arises from it, which scales like a−3, a being the radius of the sphere.

We show that this method, although different in essence, reproduces known results such as the
stress in the limit of a perfectly conducting spherical shell and the case in which the speed of light is
identical both inside and outside the sphere. Although the finite terms are reproduced, we interpret
them differently: they are the macroscopic contributions to the stress, but microscopic corrections
exist, as is evident from the cutoff dependent terms.

Our results disagree with the previous calculation of the dilute case (a sphere with ε ≈ 1 in
vacuum) [19]. We show that by taking the correct order of limits an additional termwhich is linear in
ε− 1 emerges. This suggests that the Casimir stress inside dielectric bodies – the Casimir self-stress –
cannot be understood by a simple pairwise summation over van derWaals interactions, as claimed in
Ref. [19]. We present an alternative picture based on reflections of the electromagnetic field from the
boundaries. This picture coincides with the van der Waals interactions picture when the boundaries
are flat, as in a system of two conducting plates, and for Casimir forces between bodies in general.

The paper is organized in the following way: In Section 2 we briefly review the framework of
Lifshitz theory. In Section 3 we develop our method of calculating the stress by keeping a finite
distance from the surface of the sphere and derive from it a formula for the macroscopic part of the
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self-stress in a dielectric sphere. In Section 4 we show numerical results for this contribution to the
stress for different cases, compare them to previous results and discuss their meaning. In Section 5
we discuss the inclusion of dispersion.

2. Renormalization and Lifshitz theory

The main tool in this work is Lifshitz theory [35,36] (and its interpretation in Refs. [8,37]) that
supplies a comprehensive framework to calculate the Casimir force in dielectric materials. In this
theory, the force density,

f = ∇ · σ , (1)

is described in terms of the vacuum expectation value of Maxwell’s electromagnetic stress tensor:

σ = ⟨0|σ̂ |0⟩ = ⟨0|Ê ⊗ D̂|0⟩ + ⟨0|B̂⊗ Ĥ |0⟩ −
1
2

(
⟨0|Ê · D̂|0⟩ + ⟨0|B̂ · Ĥ |0⟩

)
13 . (2)

Here 13 denotes the three-dimensional identity matrix and D̂ and Ĥ are related to Ê and B̂ by the
constitutive equations (in SI units):

D̂ = ε0εÊ, B̂ = ε0εĤ, ε0µ0 = c−2. (3)

A naive calculation of the Casimir force produces infinity, which is due to the divergence of
elements of the form: ⟨0|Ê(r)2|0⟩, ⟨0|B̂(r)2|0⟩. However, these infinities are usually not physical. To
see this we regularize the divergence by ‘‘point splitting’’:

⟨0|Ê(x)⊗ Ê(x)|0⟩ → ⟨0|Ê(x)⊗ Ê(x′)|0⟩

⟨0|B̂(x)⊗ B̂(x)|0⟩ → ⟨0|B̂(x)⊗ B̂(x′)|0⟩
(4)

where x is a 4-vector. As long as x ̸= x′ the expectation values are finite, and so the limit x → x′ is
taken only at the very end.

The above correlators can be obtained from a single fundamental function: the classical Green’s
function G, which is defined by the equation:

∇ ×
1
µ
∇ × G− ε

ω2

c2
G = 13 δ

(
r − r ′

)
. (5)

The Green’s function G is a second rank tensor that is proportional to the classical electric field at
spatial position r generated by a dipole at spatial position r ′ oscillating with frequency ω. The dipole
may point in all three spatial directions, which is described by the unity matrix in the right-hand
side of Eq. (5). The relations between the field correlators and G follow from the quantum theory of
electromagnetism in media [5,6,8] and in particular from the fluctuation–dissipation theorem [8]:

⟨0|̃A (r, ω)⊗ Ã
(
r ′, ω′

)
|0⟩ = −

h̄
ε0c2π

(2π )2 ImG δ(ω − ω′) (6)

for the vacuum correlator of the Fourier-transformed vector potential Â at positive frequencies (the
correlator vanishes for negative frequencies). In fact, one obtains [8] from E = −∂A/∂t and B = ∇×A
by Fourier transformation in the limit t ′ → t:

⟨0|Ê (r)⊗ Ê
(
r ′

)
|0⟩ = −

h̄
πε0c2

∫
∞

0
ξ 2G

(
r, r ′, iξ

)
dξ ,

⟨0|B̂ (r)⊗ B̂
(
r ′

)
|0⟩ =

h̄
πε0c2

∫
∞

0
∇ × G

(
r, r ′, iξ

)
×
←−
∇ dξ .

(7)

Here the property G(−ω) = G(ω)∗ was used for real frequencies ω and then the integration contours
were deformed to the positive imaginary frequency axis with ω = iξ (for details see Ref. [8]).

The use of the Green’s function formalism translates the problem into the problem of finding the
interaction between a fluctuating dipole at r ′ and a test particle at r . The interaction between the two
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points can be divided into direct interaction mediated by ‘‘outgoing waves’’, and indirect interaction
which consists of waves that scatter from their surroundings [13]. In Lifshitz theory one subtracts the
contribution of the direct interaction, which is the free Green’s function (without boundary conditions
except going to zero at infinity). It corresponds to the interaction of the dipole with itself which is
unphysical. We are then left with the physical renormalized stress

σ (r) = lim
r ′→r

(
σ

(
r, r ′

)
− σ∞

(
r, r ′

))
(8)

where σ∞
(
r, r ′

)
is the direct interaction part of the stress.

Lifshitz theory predicts a finite Casimir force between separated materials. However, when con-
sidering a single object such as a sphere, we are interested in Casimir self-stresses. In that case cutoff
dependent terms can originate from the breaking of the continuum picture, but as we will show, it
will be along-side finite terms that arise solely from the macroscopic description of the problem.

3. The force on a homogeneous sphere

Consider a homogeneous sphere of radius a surrounded by a homogeneous background, with
different isotropic permittivities and permeabilities ε1,2, µ1,2 at zero temperature.We follow Ref. [14]
(which contains a similar calculation for a perfectly conducting spherical shell) andmerely generalize
it.

3.1. The stress and the force density

First we find the Green’s function and from it obtain the renormalized stress components (the full
derivation is described in Appendix A):

σ = diag
(
σ r
r , σ

θ
θ , σ

φ

φ

)
(9)

σ r
r (r) =

h̄c
8π2r2a2

∑
l

∫
∞

0
(2l+ 1)

(
l (l+ 1)+ y2i ρ

2
−

d
dρ

ρ
d
dρ ′

ρ ′
)
gl

(
y, ρ, ρ ′

)
|ρ′→ρ dy (10)

σ θ
θ (r) = σ

φ

φ (r) = −
h̄c

8π2r2a2
∑

l

∫
∞

0
(2l+ 1) l (l+ 1) gl

(
y, ρ, ρ ′

)
|ρ′→ρ dy (11)

where ρ = r/a, y1 = y
√

ε1µ1, y2 = y
√

ε2µ2, y is a normalized imaginary frequency and gl is the
function

gl
(
y, ρ, ρ ′

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ci

√
1

ρρ ′
Il+ 1

2
(ρy1) Il+ 1

2

(
ρ ′y1

)
r, r ′ < a

Co

√
1

ρρ ′
Kl+ 1

2
(ρy2) Kl+ 1

2

(
ρ ′y2

)
r, r ′ > a

(12)

with coefficients

Ci =
∑

ν=ε,µ

ν1√
y1
Kl+ 1

2
(y1)

(
√
y2Kl+ 1

2
(y2)

)′
−

ν2√
y2
Kl+ 1

2
(y2)

(
√
y1Kl+ 1

2
(y1)

)′
ν2√
y2
Kl+ 1

2
(y2)

(
√
y1Il+ 1

2
(y1)

)′
−

ν1√
y1
Il+ 1

2
(y1)

(
√
y2Kl+ 1

2
(y2)

)′
Co =

∑
ν=ε,µ

ν1√
y1
Il+ 1

2
(y1)

(
√
y2Il+ 1

2
(y2)

)′
−

ν2√
y2
Il+ 1

2
(y2)

(
√
y1Il+ 1

2
(y1)

)′
ν2√
y2
Kl+ 1

2
(y2)

(
√
y1Il+ 1

2
(y1)

)′
−

ν1√
y1
Il+ 1

2
(y1)

(
√
y2Kl+ 1

2
(y2)

)′
. (13)
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Here the primes mean derivatives with respect to the variables (y1 and y2). The limit of a perfectly
conducting spherical shell is obtained by the substitutions:

Ci →−
Kl+ 1

2
(y)

Il+ 1
2
(y)
−

(
√
yKl+ 1

2
(y)

)′
(
√
yIl+ 1

2
(y)

)′
Co →−

Il+ 1
2
(y)

Kl+ 1
2
(y)
−

(
√
yIl+ 1

2
(y)

)′
(
√
yKl+ 1

2
(y)

)′
(14)

and ε1 = µ1 = ε2 = µ2 = 1.
Note that a similar derivation with dielectrics was done in Ref. [16], but there the focus was on

the stress on the surface of the sphere, whereas we are interested in the stress as a function of the
distance from the sphere (for a reason that will soon become clear). Our results agree with Ref. [16]
when substituting r = a.

From Eq. (1) we get:

fr = (∇ · σ)r =
1
r2

d
dr

(
r2σ r

r

)
−

1
r
σ θ

θ −
1
r
σ

φ

φ (15)

where fθ = fφ = 0 from symmetry considerations. By substituting the stress components in Eq. (15)
we obtain that the force density is strictly zerowhenever r ̸= a. Moreover, the cancellation is valid for
each l and y in the sum and integral separately. The Casimir force differs from zero only at the ‘‘jump’’,
as expected.

3.2. The force on the surface of the sphere

Since the force density is zero anywhere but at r = a and has spherical symmetry, we can write:

4πr2fr = 4πr2
(

1
r2

d
dr

(
r2σ r

r

)
−

2
r
σ θ

θ

)
= Fδ (r − a) . (16)

Note that F is defined as the integral of the pressure over the surface of the sphere and not as the net
force applied on the center of mass (which is of course zero).

To better understand the left hand side we analyze r2σ r
r . In Appendix B we show that it can be

written as the following series expansion:

r2σ r
r (∆) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=−3

ain∆
n
+

∞∑
n=0

bin∆
n log (∆) for r < 0

∞∑
n=−3

aon∆
n
+

∞∑
n=0

bon∆
n log (∆) for r > 0

(17)

where ∆ ∝ |r − a|.
To satisfy Eq. (16), each term in the above expansion must be canceled by a counter term in the

expansion of σ θ
θ (∆), except at the surface of the sphere. Therefore Eq. (16) becomes

4π · lim
∆→0

[
∞∑

n=−3

(
aon − ain

)
∆n
+

∞∑
n=0

(
bon − bin

)
∆n log (∆)

]
δ (r − a) = Fδ (r − a) , (18)

which amounts to

F = 4π · lim
∆→0

[
ao
−3 − ai

−3

∆3 +
ao
−2 − ai

−2

∆2 +
ao
−1 − ai

−1

∆
+

(
bo0 − bi0

)
log (∆)

]
+ 4π

(
ao0 − ai0

)
. (19)
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Table 1
Comparison between the macroscopic contribution to the force in units of h̄ca−2 obtained by Eq. (20) and published in Refs.
[14,16]. The results in Refs. [14] and [16] are presented to the first disagreeing digit. The agreement with Ref. [14] is better since
the calculation in Ref. [14] includes corrections to the first order approximation. In Ref. [16] only the first order was considered.

Our result Result [14] Result [16]

Perfectly conducting spherical shell (0.0461± 0.0001) 0.04617 –
ε1 = µ2 = 1, ε2 = µ1 = 1.5 (0.00162+ 0.00001) – 0.00155
ε1 = µ2 = 2, ε2 = µ1 = 1 (0.00387± 0.00001) – 0.0035

Eq. (19) reveals that the force has two contributions. One is the sum of all the diverging terms
(with ∆−3, ∆−2, ∆−1 and log∆). These divergences result from the artificial smoothening of the
medium that occurs in a macroscopic model, i.e. the assumption that the constituents of the medium
are infinitesimally close to one another. These terms will be modified depending on the microscopic
structure of the sphere and the finite separation between atoms and molecules, and therefore they
are cutoff dependent. The second is the macroscopic contribution which does not require any cutoff.
To calculate it, one needs to extract the finite parts in the expansion of Eq. (17) and compute:

Fm = 4π (ao0 − ai0) (20)

(the subscriptm stands for macroscopic).
Looking at Eq. (19), one should ask whether the expansion is unique, whether the constant part

ao0 − ai0 is well defined. If we substitute ∆ → C∆ the terms which are power laws transform like
an
∆n →

Cnan
(C∆)n and do not affect the constants. The logarithmic term however, induces a constant as

A log (∆) → A log (C∆) − A log (C). Therefore ao0 − ai0 depends on the specific scale we choose. As
there is only one scale in this problem – the radius of the sphere – it is natural to use δ ≡ |r − a|/a
as the parameter of the expansion. Strictly speaking, there is no completely water-tight justification
of preferring δ over 1

2δ (the radius rather than the diameter). However, for not too large dielectric
constants our results do not change by replacing δ by Cδ where C is of order 1, as we show in
Appendix C.

In previous calculations [16,18,32] that used the stress-tensor approach, a finite part was extracted
in a different manner: the limit of r → a was taken for each wavenumber (l) separately, and the
summation over the wavenumber was carried out at the very end. Then, a termwhich did not depend
on a wavenumber cutoff was obtained.

However, from Eq. (15) it is clear that the correct order of operations is first the summation, which
simply gives the stress as a function of r and then the limit r → a. Indeed, the methods share
similarities and aswewill see, in some cases theyproduce the same results, but in others theydisagree.

In the following section we compute Eq. (20) – the macroscopic contribution to the stress – in
different cases.

4. Numerical results and discussion

To extract the constants ai0 and ao0 we evaluated ∆r2σ r
r (r) ≡ r2outσ

r
r,out − r2inσ

r
r,in as a function of

δ =
|r−a|

a at the points 1
100 ≤ δ ≤ 1

1000 , ∆δ = 1
5000 , and fitted it to the model:

y =
4∑

n=−3

ainδ
n
+

4∑
n=0

binδ
n log (δ) , (21)

in accordance with Eq. (17) (the choice of n = 4 as the upper bound is explained in Appendix C).
To speed up the computationwe used the asymptotic expansion of the Bessel functions.We carried

the asymptotic expansion to sixth order to get an accurate result. The results are presented in Table 1
and Figs. 3 and 4.

Table 1 shows that our method reproduces the limit of the perfectly conducting spherical shell
(compared with Ref. [14]), and the case in which the speed of light is identical both inside and outside
of the sphere (compared with Ref. [16]). For the latter, our results are more accurate than the ones
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Fig. 3. Fm as a function of ε. Gray: ε2 = µ1,2 = 1, ε1 = ε. White: ε1 = µ1,2 = 1, ε2 = ε. Black: The sum of the gray
and white points, which is meaningful only in the limit ε → ∞. Dashed: the limit of a perfectly conducting spherical shell:
Fm = 0.04618h̄c/a2 .

of Ref. [16] as there only the first order in the asymptotic expansion was taken. However, while in
Refs. [14] and [16] the cutoff dependent terms are discarded by mathematical tricks, our calculation
indicates that a cutoff dependent term, proportional to 1/δ, does not vanish, meaning that the results
are incomplete without knowledge of the microscopic structure.

Fig. 3 includes new results: it presents the macroscopic part of the force as a function of the
dielectric constant in two cases: a dielectric sphere inside vacuum and a vacuum cavity inside a
dielectric background. The macroscopic part of the stress of a dielectric sphere inside vacuum is
repulsive for low values of ε, but for very large values of ε it becomes attractive. The case of a cavity is
the opposite, the macroscopic part of the stress is attractive for low ε and becomes repulsive for high
ε (but note that in the case of a dielectric sphere and the case of a vacuum cavity the force differs not
just by a minus sign, but also in magnitude).

From these results one can estimate a correction to the surface tension γ of a dielectric sphere. The
typical macroscopic part of the Casimir force per unit area, as seen in Fig. 3, is:

Fm
A
∼

0.01h̄c
4πa4

. (22)

In a sphere F/A = 2γ /a and therefore:

γm ∼
10

a[nm]3
[
dyn
cm
]. (23)

Note that the correction to the surface tension highly depends on the radius of the sphere: for large
radii the surface tension is expected to equal its planar value, but at high curvatures the correction
becomes significant. Comparing Eq. (23) to common materials such as the water–vapor interface (73
dyn/cm) and water–oil interface (57 dyn/cm) [38], we see that the correction starts being relevant
only at sub-micron radii.

One could experimentally test the Casimir contribution to the surface tension by acoustic reso-
nances of micro droplets. The restoring force of deformations of the droplets is the capillary force
due to surface tension [39]. The eigenfrequencies thus depend on the value of the surface tension,
including the Casimir contribution that is radius dependent. These eigenfrequencies appear as reso-
nances with sound waves and therefore can be measured with precision. By making measurements
with droplets of various radii one can identify the Casimir contribution.

Another feature shown in Fig. 3 is that in the limit of ε→∞, the sumover the two cases (vacuum–
dielectric and dielectric–vacuum) gives the famous result of the stress in a perfectly conducting
spherical shell (see Fig. 2 in the introduction). That is due to the fact that when the boundary is a
perfect reflector, the inside of the sphere ‘‘does not know’’ about the outside and vice versa. Therefore
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Fig. 4. Fm in a dilute dielectric sphere inside vacuum: ε1 = ε ≈ 1, ε2 = µ1,2 = 1.

the stress inside a perfectly reflecting spherical shell is the same as the stress of a vacuum cavity
inside a high ε background, and the stress outside a perfectly reflecting spherical shell is the same as
the stress of vacuum surrounding a high ε sphere.

Fig. 4 presents the most surprising of our results: it shows that the Casimir force of a very dilute
homogeneous sphere inside vacuum, when ε − 1 ≈ 1, is to first order linear in ε − 1 rather then
quadratic. This is a feature of the finite macroscopic term alone (the cutoff dependent terms are to
first order quadratic in ε − 1). This result is a contradiction to the present understanding that the
Casimir force in dilute systems can be derived by pairwise summation of van der Waals interactions
using the Casimir–Polder retarded potential [40]. The Casimir–Polder potential between two identical
atoms is proportional to α2, where α is the atoms’ polarizability. In the dilute case ε ≈ 1 + Nα/ε0
where N denotes the number density, and therefore pairwise summation would give an interaction
proportional to (ε − 1)2. The Casimir force between two dilute planar walls is indeed quadratic in
ε− 1 and coincides with the force derived by pairwise summation. However, that is not the case in a
sphere.

A physical example of a very dilute sphere is a Bose–Einstein condensate of alkali atoms [41]. Using
light one can, in principle, create sharp boundaries (limited of course by the diffraction of light) and
confine the atomic gas if not in a sphere, but certainly in the related case of a cylinder. Interestingly,
a linear dependence on the density was also seen [42] for the optomechanical strain in a cold cloud
of atoms. There a plane wave of light, illuminating the atomic cloud, is focused by the lens-like shape
of the cloud. In turn, the atoms experience the recoil of the light and expand when released. Naively
one would expect that both the focusing and the recoil is linear in the density of the atoms such
that the overall effect is quadratic in density, but experiment [42] proves it is not — it is linear.
Similarly, we have found theoretically that in the dilute limit the Casimir force is linear in density.
The experiment [42] also shows that a dilute gas with peak ε = 0.00002 still acts as a dielectric, and
not as a collection of individual atoms. Therefore, ourmodel of the dilute dielectric spheremay remain
valid even in the extremely dilute limit.

Our results contradict the accepted picture of the Casimir forces, but they lend support to an
alternative picture (Fig. 5) that follows naturally from Lifshitz theory. As Section 2 describes, the
starting point of Lifshitz theory is the fluctuation–dissipation theorem of Eq. (6) that connects the
noise of the field as described in the field correlator to the classical Green function emitted at source
point r ′ and received at point r ′. Note that the source has unity strength (independent of ε and µ), as
Eq. (5) shows. The reflected part of the Green function gives rise to the renormalized stress. For piece-
wise homogeneous materials such as dielectric plates [24,35,36] or the dielectric sphere considered
here, the reflections occur at the interfaces between the different homogeneous regions. In the dilute
limit, each reflection goes with a factor of ε − 1. When the boundaries are flat, the first reflection
gets canceled in the force calculation. This is due to a cancellation between the magnetic and electric
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Fig. 5. Direct interactions versus scattering. a: diagram illustrating the physical picture of the Casimir force as the result of
direct molecular interactions. In the dilute limit, a given molecule (white point) interacts with each of the other molecules
(other white points) by Casimir–Polder forces; triple or higher interactions can be neglected. In this picture the Casimir stress
would depend quadratically on the density, i.e. quadratically on ε− 1. b: diagram showing the scattering of a wave emitted by
themolecule (white point) at the boundary of themedium. The reflected wave gives rise to the Casimir stress. As one reflection
already generates stress, the Casimir stress should scale linearly with ε − 1 in the dilute limit, which does agree with our
numerical results. The figure shows the imaginary part of the difference between awave in themedium and the outgoing wave
(for a scalar wave in 2D, for simplicity).

contributions to the stress, which is attributed to the fact that in a single reflection the magnetic
field gains a minus sign (π phase) relative to the electric field. This means that the lowest-order
contribution goes with (ε − 1)2 as in the pairwise summation of van der Waals forces. However, this
symmetry does not apply when the walls are curved, as seen by our results. The first reflection makes
a non-zero contribution to the Casimir force, which is why we get a contribution linear in ε − 1 in
a sphere. The dielectric sphere is thus the first crucial case known so far for discriminating between
Lifshitz theory and pairwise van der Waals theory.

To be clear, we do not claim that the linear ε− 1 term appears in Casimir forces between dielectric
bodies in the dilute limit [43]. There curved surfaces are commonly used in experiments [4]. The linear
term arises from curved geometries, but it only affects self-stresses. This is because in any inter-body
interaction the linear term in the stress will not depend on the distance between the bodies, and
therefore cannot generate any force between them. However, the linear term does depend on the
curvature, which in our case is quantified by the radius of the sphere, and therefore it affects self-
stresses. One can think of two dilute curved walls interacting: each has its own self-stress with a
linear ε − 1 term, but the interaction between the two walls must be quadratic, i.e. proportional to
(ε − 1)2.

The fluctuation–dissipation theorem, Eq. (6), justifies the picture of the Casimir forces as being
caused by reflections of virtual waves emitted and received at each molecule of the medium, the
reflections being caused by all the other molecules acting as a medium. The case of the sphere rules
out the picture of the Casimir force as a multitude of pair-wise van der Waals interactions between
molecules. Yet in Ref. [19] an equivalence was shown between the Casimir force and the pairwise
summation in a dilute sphere. Note that this calculation, though impressive, mistakenly changes the
order of limits (the limit r → a is taken before the l summation) which is what causes the linear
term to vanish. The mistake is similar to changing the order between the limit and the integral of the
expression limε→0

∫
∞

0 εe−rεdr , which changes the result from 1 to 0. By taking the correct order of
limits, one obtains the linear contribution. This means that the pairwise interaction are a part of, but
not the entire story.
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5. The inclusion of dispersion

All the above results do not include dispersion in them, i.e. they are an idealization of materials
whose response to fluctuations does not depend on the frequency of the fluctuation,which is of course
not physical. When trying to account for dispersion, for instance by using a simple model for the
dielectric constant:

ε = 1+
ω2

P

ω2
0 − ω2 − iγω

, (24)

we get that the terms δ−3, δ−2 and δ vanish from the expansion in Eq. (21) such that the highest
order term is the logarithm. As we increase ωp and ω0, Fm becomes very large. That is even though
the limit of ωp, ω0 → ∞ is suppose to coincide with the dispersionless case. We suspect that there
are two reasons to it: 1. The dispersion introduces a new scale into the system, and so the argument
of taking a to be the scale of the logarithm, because it is the only scale, does not apply anymore. 2.
The clear distinction between the finite macroscopic contribution, and the cutoff dependent terms
which are related to the microscopic description is lost when dispersion is included. The terms are
mixed within each other, and although the total force must coincide between the dispersionless
case and the limit of ωp, ω0 → ∞, Fm does not coincide since it assumes separation between the
different contributions, which does not exist with dispersion. Our conclusions from this discussion
are as follows: the method we introduced to calculate the macroscopic contribution to the Casimir
self-stress of a sphere applies only to non-dispersive materials. It can provide us with insights and
estimations of orders ofmagnitude, but for accurate calculations of realmaterials, one cannot separate
the macroscopic contribution: a microscopic calculation is needed either way.

6. Summary

In this paper we proposed a method to calculate the Casimir stress in a homogeneous sphere
inside a homogeneous background for dispersionless materials, in which the radial distance from
the sphere plays the role of the regularizer. We believe that our procedure is more accurate than
previous calculations, as themathematical operations and order of limitswe take have amathematical
justification. We give an estimation for the correction to the surface tension that comes from the
macroscopic effect in dispersionlessmaterials. The correction has a special dependence on the radius:
it is proportional to a−3, which as expected, makes it noticeable only at very small radii. However, one
could probably measure the effect using acoustic resonances with micro droplets.

Our findings agree with previous results in several cases, including the famous limit of a perfectly
conducting spherical shell, but disagrees in other cases. The most important disagreement is the
Casimir self-stress of a very dilute dielectric ball, for which our results shutter the picture of the
equivalence between themacroscopic effect and pairwise summation, by showing the existence of an
additional term that cannot be explained by pairwise summation. We give an interpretation for this
termusing a picture of reflections ofwaves from the boundaries.While the Casimir force remains ‘‘one
of the least intuitive consequences of quantum electrodynamics’’ [1], we have uncovered evidence for
a physical picture that may eventually lift part of the mystery.
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Appendix A. The calculation of the stress components

In this appendixwe derive Eqs. (9)–(13). Applying themachinery of Lifshitz theorywe calculate the
relevant Green’s function. More precisely, we solve Eq. (5) with the appropriate boundary conditions:
continuity of

r̂ × G , r̂ · εG , r̂ ×
1
µ
∇⃗ × G , r̂ · ∇⃗ × G

and the requirement that G is finite at r → 0 and behaves like a spherical outgoing wave at r →∞.
Following Ref. [14] where this calculation was done for a perfectly conducting spherical shell, and
generalizing it to dielectrics we obtain the solution:

G
(
r, r ′, ω

)
=

∑
lm

{µFl
(
r, r ′

)
Xlm (θ, φ)⊗ X∗lm

(
θ ′, φ′

)
+

c2

εω2 ∇⃗ ×
[
Gl

(
r, r ′

)
Xlm (θ, φ)⊗ X∗lm

(
θ ′, φ′

)]
×
←−
∇
′

}

(A.1)

where the Xlm are the vector spherical harmonics related to the well-known spherical harmonics Ylm
as

Xlm (θ, φ) =
1

[l (l+ 1)]
1
2

1
i

(
r × ∇⃗

)
Ylm (θ, φ) . (A.2)

The Fl and Gl are scalar functions representing the two different polarizations defined by

Fl =

{
ik1jl (k1r<)

(
Al

µjl (k1r>)+ hl (k1r>)
)

r, r ′ < a

ik2hl (k2r>)
(
Bl

µhl (k2r<)+ jl (k2r<)
)

r, r ′ > a

Gl =

{
ik1jl (k1r<)

(
Al

εjl (k1r>)+ hl (k1r>)
)

r, r ′ < a

ik2hl (k2r>)
(
Bl

εhl (k2r<)+ jl (k2r<)
)

r, r ′ > a

Al
ν =

ν1hl (k1a) ∂r (rhl (k2r))− ν2hl (k2a) ∂r (rhl (k1r))
ν2hl (k2a) ∂r (rjl (k1r))− ν1jl (k1a) ∂r (rhl (k2r))

|r=a

Bl
ν =

ν1jl (k1a) ∂r (rjl (k2r))− ν2jl (k2a) ∂r (rjl (k1r))
ν2hl (k2a) ∂r (rjl (k1r))− ν1jl (k1a) ∂r (rhl (k2r))

|r=a

ν = ε, µ , ki =
√

εiµi
ω

c

(A.3)

where jl and hl are spherical Bessel and spherical Hankel functions, and r> (r<) is the larger (smaller)
between r and r ′.

In accordance with the standard Lifshitz renormalization, we subtract the free Green’s function
responsible for the direct interaction, which is equivalent to the omission of ik1jl (k1r<) hl (k1r>) and
ik2jl (k2r<) hl (k2r>) from the scalar Green’s function inside and outside, respectively. We are then left
with

F ren
l = i

{
Al

µk1jl (k1r) jl
(
k1r ′

)
r, r ′ < a

Bl
µk2hl (k2r) hl

(
k2r ′

)
r, r ′ > a

(A.4)

Gren
l = i

{
Al

εk1jl (k1r) jl
(
k1r ′

)
r, r ′ < a

Bl
εk2hl (k2r) hl

(
k2r ′

)
r, r ′ > a.

Nextwe use the renormalized Green’s function to calculate the correlators in Eq. (7). Therewe need to
write our expressions for imaginary frequencies. In order to simplify the functionsweuse the relations
between the spherical Bessel and Hankel functions and the modified Bessel functions I and K :

jl (ix) =
√

π

2x
ilIl+ 1

2
(x) , hl (ix) = −

√
2
πx

il
(
(−1)lKl+ 1

2
(x)

)
. (A.5)
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The scalar Green’s functions then take the form

F ren
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ãl

µ

Il+ 1
2
(κ1r) Il+ 1

2

(
κ1r ′

)
√
rr ′

r, r ′ < a

B̃l
µ

Kl+ 1
2
(κ2r) Kl+ 1

2

(
κ2r ′

)
√
rr ′

r, r ′ > a

(A.6)

Gren
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ãl

ε

Il+ 1
2
(κ1r) Il+ 1

2

(
κ1r ′

)
√
rr ′

r, r ′ < a

B̃l
ε

Kl+ 1
2
(κ2r) Kl+ 1

2

(
κ2r ′

)
√
rr ′

r, r ′ > a

where Ãl
ν =

π
2 (−1)lAl

ν , B̃l
ν =

2
π
(−1)lBl

ν and κi =
√

εiµi
ξ

c .
We combine Eqs. (2) and (7) to compute the stress, taking the limit r → r ′. We use the

dimensionless variables: y = aκ , y1,2 = y√ε1,2µ1,2, ρ = r/a, redefine the scalar Green’s functions

(such that they are dimensionless as well): F̃l = aFl , G̃l = aGl, and obtain:

σ r
r (r) =

h̄c
8π2r2a2

∑
l

∫
∞

0
(2l+ 1)

(
l (l+ 1)+ y2i ρ

2
−

d
dρ

ρ
d
dρ ′

ρ ′
)(

F̃l + G̃l

)
|ρ′→ρ dy (A.7)

σ θ
θ (r) = σ

φ

φ (r) = −
h̄c

8π2r2a2
∑

l

∫
∞

0
(2l+ 1) l (l+ 1)

(
F̃l + G̃l

)
|ρ′→ρ dy (A.8)

σ n
m = 0 for n ̸= m (A.9)

where the index i is 1 if the function is evaluated inside the sphere and 2 if it is evaluated outside the
sphere.

For simplicity we define: gl (x) = F̃l (x) + G̃l (x), Ci (x) = Ãl
ε (x) + Ãl

µ (x), Co (x) = B̃l
ε (x) + B̃l

µ (x)
and finally arrive at Eqs. (9)–(13).

Appendix B. The behavior of ∆r2σr
r (δ)

To analyze the behavior of ∆r2σ r
r (δ) at δ ≪ 1 we apply the asymptotic expansion of the modified

Bessel functions [44]:

Iν (νz) =
eνη

(2πν)
1
2
(
1+ z2

) 1
4

∞∑
k=0

Uk (p)
νk (B.1)

Kν (νz) =
( π

2ν

) 1
2 e−νη(

1+ z2
) 1

4

∞∑
k=0

(−1)k
Uk (p)

νk

where

η =
(
1+ z2

) 1
2 + ln

⎛⎝ z

1+
(
1+ z2

) 1
2

⎞⎠ , p = (1+ z)−
1
2

and the Uk(p)’s are polynomials defined by the recurrence relation:

Uk+1 (p) =
1
2
p2

(
1− p2

)
U ′k (p)+

1
8

∫ p

0

(
1− 5t2

)
Uk (t) dt ,

U0 (p) = 1 . (B.2)
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Fig. 6. Convergence of the fit (a) and of the asymptotic expansion (b). The figures show Fm with the parameters ε2 = µ1,2 = 1,
ε1 = ε as a function of ε. In (a) N is the highest order taken in the linear fit: y =

∑N
n=−3a

i
nδ

n
+

∑N
n=0b

i
nδ

n log (δ) while in (b) N
is the highest order taken in the asymptotic expansion.

Fig. 7. Fm as a function of ε with the parameter fit of Eq. (21), δ, replaced by αδ. From bright to dark: α = 1/2, 1, 2. Full line:
ε2 = µ1,2 = 1, ε1 = ε. Dashed line: ε1 = µ1,2 = 1, ε2 = ε.

When δ = 0 the function∆r2σ r
r (0) diverges. When δ ̸= 0we analyze∆r2σ r

r (δ) bymaking the change
of variables:

r =
√

εiµix2 + ν2, t = sin−1
(

ν
√

εiµix

)
(B.3)

and, in order to get a qualitative behavior, we replace the sum over l by an integral, and disregard the
contribution of small x’s and l’s. We get (for δ ≪ 1):

σ r
r ∼

∞∑
n=0

∞∑
m=0

Cnm

∫
∞

r0

e−2rδr2−nδmdr. (B.4)

The result is a sum over integrals, where each of the integrals can be expanded for small δ by a Laurent
series plus a Taylor series multiplied by a logarithm. The highest order term in the Laurent series is
δ−3, which is obtained for n = m = 0. The highest order term in the Taylor-times-logarithm series is
log(δ) and it is obtained for n = 3,m = 0. Hence we get the series in Eq. (17).

Appendix C. Convergence of the ∆r2σr
r (δ) fit

The series in Eq. (17) is infinite. However, when fitting a function numerically to a model, the
modelmust have a finite number of parameters. Luckily, aswe approach the boundary, all the positive
powers of δ in the expansion approach zero, and therefore become more and more negligible. Thus,
in order to extract the constant to good accuracy, we can fit the numerically evaluated function to
a truncated series while making sure that we include all the elements in the expansion which are
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not negligible. To achieve this, we fit the function several times, each time adding another higher
order term, and stop when the constant converged within the desired accuracy. Fig. 6a shows the
convergence process and the reason for choosing N = 4 as the maximal order in our calculations [Eq.
(21)].

We used a similar procedure to determine the number of orders in the asymptotic expansion we
take into account.We increased the number of orders untilwe reached a converging result, as depicted
in Fig. 6b.

Fig. 7 shows the modification of the results if we replace δ by αδ where α is of order unity. We see
that for small dielectric constants the results barely change, whereas for large dielectric constants the
force does depend on α and can even change from attractive to repulsive.
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