Diffusive Dynamics of Charge Regulated Macro-ion Solutions
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Onsager’s variational principle is generalized to address the diffusive dynamics of an electrolyte solution composed of
charge-regulated macro-ions and counterions. The free energy entering the Rayleighian corresponds to the Poisson-
Boltzmann theory augmented by the charge-regulation mechanism. The dynamical equations obtained by minimizing
the Rayleighian include the classical Poisson-Nernst-Planck equations, the Debye-Falkenhagen equation, and their
modifications in the presence of charge regulation. By analyzing the steady state, we show that the charge regulation
impacts the non-equilibrium macro-ion spatial distribution and their effective charge, deviating significantly from their
equilibrium values. Our model, based on Onsager’s variational principle offers a unified approach to the diffusive
dynamics of electrolytes containing components that undergo various charge association/dissociation processes.

Charged macro-ions in solution do not keep their charge
fixed but rather respond to the local environment by modi-
fying their surface charge density and surface potential, de-
pending on their local concentration and the bathing solution
conditions"™. This conceptual framework is called charge
regulation (CR), encompassing charging equilibria of macro-
molecules in ionic solutions. It is ubiquitous and governs im-
portant aspects of electrostatic interactions in biological sys-
tems™",

The CR phenomenon is essential in understanding how pro-
teins and charged biomolecules change their state via charge
association/dissociation processes” involving ions in solu-
tions”. In particular, it affects polyelectrolytes that undergo
protonation/deprotonation reactions on acidic/basic sites™",
protein complexation, polyelectrolyte gel swelling’, ad-
sorption of charge particles onto surfaces™", bacterial ad-
hesion™, viral capsids assembly™, zwitterionic colloids and
nanoparticles'®", as well as many other bio-processes.

Equilibrium CR effects have been extensively studied by
including the association/dissociation equilibrium into the
mean-field Poisson-Boltzmann (PB) theory®. However, de-
spite the large progress in the study of equilibrium CR phe-
nomena®, starting from the seminal work of Ninham and
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Parsegian'®, a theoretical understanding of dynamical CR be-
havior is less developed. Nevertheless, the latter has pro-
nounced importance in numerous physical and chemical pro-
cesses, such as the kinetics of surfactant adsorption at the
air/water interface™ ", interactions and dynamics of poly-
electrolytes, gels, and colloids™ %, and ionic conductance
through nano-tubes* and nano-channels™**.

Conventional theoretical studies of charged macro-ion dy-
namics driven by external electric fields are typically based
on the Poisson-Nernst-Planck (PNP) theory””. This theory is
a diffusive kinetic extension of the PB formulation of electro-
statics. It has been generalized to include ion-ion interactions
and steric effects”®. However, a complete theory of CR dy-
namics would need even further modifications. It should in-
clude a description of the charge dissociation processes™*50,
either on the system bounding surfaces™ or on the surface of
the mobile macro-ions** containing the dissociable moieties.
In order to formulate these ideas into a consistent theoretical
description, we select the framework outlined by Onsagers
variational principle (OVP)***°, The OVP provides an ele-
gant foundation for addressing non-equilibrium processes in
soft matter systems. It is a useful framework because it offers
significant flexibility in choosing appropriate pairs of state
variables and velocities based on Rayleigh’s principle of least
energy dissipation. This crucial aspect tackles the main chal-
lenges in formulating kinetic descriptions of Onsagers theory
and deriving thermodynamically consistent dynamical equa-
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tions. Consequently, many established kinetic equations de-
scribing various soft matter systems can be systematically de-
rived within this framework"® =%,

OVP allows us to combine the CR theory already studied in
thermodynamic equilibrium® with the non-equilibrium dissi-
pation phenomenology, as represented by diffusion currents™,
charge currents™ and chemical reaction kinetics™'. By gener-
alizing OVP even further and including the CR equilibrium
free energy and its corresponding diffusive-current densities,
we derive the Rayleighian that contains the CR diffusive com-
ponents. Furthermore, our augmented theory yields a set of
diffusive dynamic equations. They reduce, in the limit of
fixed ionic charge, to the PNP“**? and Debye-Falkenhagen™
equations. We explicitly solve these modified PNP diffusive-
dynamic equations in the steady-state limit* and show that
the CR significantly influences the spatial distribution and
charge density in externally driven systems. There is a clear
advantage in formulating the CR dynamics based on OVP. It
presents a universal approach for deriving the CR diffusive dy-
namics directly from the equilibrium free energy while mak-
ing it applicable to various CR models with potential implica-
tions for biological systems.
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FIG. 1.  Schematic presentation of our CR diffusive dynamical

model. A positively charged wall (red) induces an external elec-
tric field, and is placed in contact with a semi-infinite ionic solu-
tion. The solution contains negatively charged macro-ions (green)
and monovalent positive counter-ions (B, red) of bulk concen-
tration n, and py, respectively. Each CR macro-ion contains N
negatively charged sites (A~, blue). However, due to the associ-
ation/dissociation process, the effective macro-ion charge can vary
from —Ne to zero. The yellow semicircular arrow corresponds to the
association/dissociation reaction in Eq. ().

We consider a positively charged planar boundary placed
at x = 0. This plane induces a static electric field on a semi-
infinite ionic solution, as shown in Fig. [. The solution is com-
posed of negatively charged macro-ions of spatially varying
concentration n(r) and bulk value ny, and positively charged
counter-ions concentration p(r) of bulk value py, (denoted as
B™). Each macro-ion contains N negatively charged sites (de-
noted as A7), and each of the A~ sites can change its charge

by an association/dissociation process,
A +BT=AB (1)

The dynamical number fraction of A~ sites that are neutral-
ized by BT is ¢(r) and it varies from zero (when the macro-
ions are fully charged) to unity (when the macro-ions are com-
pletely neutral).

In our model, the overall electro-neutral solution has no co-
ions. This requires that the integrated number of A™ sites is
equal to that of BT. The electro-neutrality condition in bulk
can be expressed as p, = npN(1 — ¢ ), where @y, is the equili-
brated number fraction of neutralized A~ sites in the bulk.

Within the mean-field framework, the thermodynamic free
energy F is a sum of the electrostatic free energy, the mobile
ion translational entropy term TS(p,n), and the CR free en-

ergy per macro-ion g(¢). Hence, F can be written as”*’

F[‘I/’Pﬂv(f’] :/f(l//,p,n,q))d3r

:/<_§(VW)2+6V’[P_”N(1_¢)} )

+TS(p,n)+ ng(q))) d’r,

where y(r) is the electrostatic potential, T is the temperature,
€ = &€, is the dielectric constant of the solution, & is the
vacuum permittivity, &, is the relative permittivity, and e is the
elementary charge. Furthermore,

S(p,n) =kp (p [ln(paS)—1]+n[ln(na3)—1]) 3)

is the mixing entropy of counter-ions and macro-ions in the
dilute solution limit, and kg is the Boltzmann constant. For
simplicity, the molecular size difference is ignored, and both
macro-ions and counter-ions are assumed to have the same
molecular volume, a°.

To describe the charge association and dissociation pro-
cesses governed by Eq. (), we utilize the standard Langmuir
isotherm. Although one can pursue a conventional kinetic
derivation” starting from Eq. (), it is more straightforward
to employ an equivalent mean-field formalism based on the
CR free energy™*?, from which the Langmuir isotherm natu-
rally arises through its minimization. Within this framework,
¢ is an annealed variable whose equilibrium value is deter-
mined by free energy minimization. The CR free-energy den-

sity g(¢) is given by
§(9) =N(ag +keT[plng+(1—9)In(1-9)]), (4

where « is the association/dissociation parameter, the last
two terms correspond to the mixing entropy of N adsorption
sites on each macro-ion. We note that generalized CR pro-
cesses (beyond the Langmuir isotherm)™®, can be incorpo-
rated into our formalism™'. For example, CR processes can



entail short-range interactions between adjacent charged ad-
sorption sites**.

Minimization of the free energy F with respect to y leads
to the Poisson equation

V2y == [p—nN(1-9)], 5)

while the minimization with respect to the other variables p,
n and ¢ yields the respective chemical potentials. Such ther-
modynamic equilibrium equations for a variant of the above
model have already been investigated in Ref.*? and will not
be presented explicitly here.

Our system contains negatively charged macro-ions in one
of the i =0, ..., N charge states, each with a number density #;,
and counter-ions of density p, where all sites on the macro-
ion surface are assumed to be identical, with no interactions
between them. The velocity of each macro-ion v; with mag-
nitude v; = |v;| depends on its charge state. Therefore, there
are N + 1 possible velocities fields of the macro-ions, and the
velocity of the counter-ions is denoted as v,. The dissipa-
tion function ® stems from the friction in the diffusive mo-
tion, as the mobile ions migrate with their respective velocities
through the solvent. It is given as

(6)

1 N
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where {&;} and &, are the corresponding N + 2 friction coeffi-
cients.

In the spirit of the mean-field equilibrium theory, we pro-
ceed to simplify the above ® by the following assumptions: (i)
the macro-ions in any charge state are moving with the same
average velocity v; = v, where v relates to the macroscopic
transport under the external field. (ii) Their friction coefficient
is proportional to the number of B absorbed ions. This as-
sumption arises from a hydrodynamic consideration: a spheri-
cal particle moving in a viscous fluid exhibits a friction coeffi-
cient proportional to its size. This proportionality validates the
linear size dependence & = N&+i&,,,i=0,...,N, where N&
the macro-ion’s friction coefficient has no absorbed counter-
ions and &, is the added friction for the i-th charge state.
It indicates that macro-ions’ friction coefficient in different
charge states results from the macro-ions bare friction coef-
ficient and an additional increment dependent on adsorption,
which is proportional to the number of absorbed counter-ions.
Note that YV on; = n as n is the total density of the macro-
ions. In addition, on the mean-field level, we replace Z?’:o in;
by an average over all the {i} charge states n{i) =nN¢ =w,
where w = s¢ and s = nN. Also, recall that ¢ is the number
fraction of neutralized sites on the macro-ion. Then, Eq. (B)
can be simplified and becomes

— % / (s&sv2 + wéwv2 +p épvf,) &3 @)

On the mean-field level, the above equation implies that it
is equivalent to consider that the dissipation comes from three

types of mobile components: macro-ions that have no B as-
sociation with site density s = Nn, macro-ions with an average
of N¢ associated B* counter-ions and density w = Nn¢ = s¢,
and free positive counter-ions of density p. The velocities of
the first two mobile components can, in principle, be defined
as vg and vy, respectively. Still, for simplicity and clarity, we
assume the same average velocity v for macro-ions in differ-
ent charge states and a different velocity v, for free mobile
counter-ions in the limit of weakly charged macro-ions and
dilute solution.

It is more convenient to express the free energy F, Eq. (0),
as F[y,s,w, p]. We now write down the Rayleighian for the
three mobile components and employ the Onsager’s varia-
tional principle (OVP) to derive the dynamical equations™**>.
The dissipation function can now be rewritten in terms of the
respective particle current densities for each mobile compo-
nent. In terms of the currents defined by j; = svg, j,w = wyy,
and j, = pvp, we have

cp:i/

where { is the mobility coefficient, and all three friction co-
efficients are assumed to be equal, =&, =&,=1/{. Finally,
the Rayleighian, R = ® + d,F, is composed of the dissipation
function @ plus the temporal free energy rate J,F = JF /dt,
and R is written as

) 2
I dw ol g, ®)

R:¢+at
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We assume that the electrostatic potential y is a fast dynam-
ical variable, as it responds much faster than the diffusion
of the macro-ion. The characteristic time scale is related to
the build-up of a diffusive double layer (the Debye relaxation
time) Tp = l]% /D, where Ap (the Debye length) is about 1nm,
and D (the diffusion constant) is about 10~°m?/s. Clearly, as
Tp is on the order of nanoseconds, it is much faster than the
typical dynamic diffusion timescale for macro-ions, which is
in the order of milliseconds. This assumption justifies the va-
lidity of the Poisson equation, Eq. (B), 8F /0y = 0. We fur-
ther assume that the continuity relations always hold for the
density variables s, w, and p. They connect the time deriva-
tive with the divergence of the respective current density,

Ok = =V - ji for k=s,w,p. (10)

Thus, the terms in the volume integral of the Rayleighian R in
Eq. (B) can be transformed into purely spatial derivatives. The
variation of R with respect to the current density variables,
OR/ 4 ji = 0 then yields,

& O
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Note that the CR parameter & does not appear in the ionic cur-
rents as detailed in the above equations. This is because the
CR parameter o lacks spatial dependence, resulting in a zero
gradient in the term V(8g(¢)/8¢). However, « still deter-
mines the equilibrated number fraction of neutralized A™ sites
and influences the CR strength. Currents of more general CR
models™ % can be derived within the OVP framework and
will explicitly include the CR parameter.

A few special cases derived from Eq. (ITl) are of interest. In
thermodynamic equilibrium, the time derivatives in Eq. (I)
vanish, and we recover the equilibrium distribution of ions as
was analyzed in Ref.*’. In addition, Eq. (IT) can also de-
scribe a steady-state situation, which differs from the equilib-
rium one as it allows for a non-vanishing, spatially uniform
charge current density™, as is discussed below.

Furthermore, in the limit of ¢ =0 and N = 1 (meaning s =
n), the system contains only monovalent cations and anions.
Equation ([T) then reduces to the standard PNP equations

Jn=—C(—enVy+kgTVn),
Jjp=—C(epVy +kgTVp).

In addition, for the fixed charge (non-CR) case, the charge
density is ¢ = e(p —n), and the number density is p = p+n.
Then, Egs. () and () simplify to

9q =" [keT V2q+V-(pVy)]. (13)

12)

We compute the product divergence in the second term of
Eq. (I3) and use the Poisson equation (8) for V2y. To
the lowest order in the electrostatic potential with A2 =
ksTe/[e*(p +n)] = kpTe/(e*p), the above equation be-
comes d,qg = kpT&(Vig— A5 24), which is exactly the Debye-
Falkenhagen equation®, describing the dynamics of the
charge density.

Returning to the CR case, we define the density of the A~
sites combined with the total associated and dissociated B
particles as p =s+w-+ p = Nn(1+¢)+ p, and the net charge
density as g = e[p —s(1 — ¢)]. Note that p should not be con-
fused with the local number density, p + n, and only in the
fixed single charge (non-CR and N = 1) case, p = p+n as
discussed above. Additionally, we define the p and ¢ conju-
gate currents: jp = js 4 juw +Jp and j, = e(—js +ijw +ip)-

We examine the CR effect in the steady state by setting the
time derivatives in Eqs. (I0)-(I) to zero and assuming spa-
tial dependence only in the direction parallel to the external
field (x-axis). This effectively reduces the problem to a one-
dimensional one. To maintain a steady state, we assume that
the total flux of the number density vanishes j, = 0, while the
net charge fluxes, j, = jg and j,, = j°, are constant. Here-
after, we use the electric field E(x) = — o,y instead of v, and
the two ordinary differential equations for E(x) and ¢(x) can
be derived (more details are provided in the Supplementary
Material).

The boundary conditions are chosen similarly to those
by Bier*. In the bulk, we stipulate that the electric field
E(o00)=Ey, the number density p(e)=pp, p(ec)=p, and
from charge neutrality, ¢(co)=¢p, = 1 — 2py/py. For the
boundary condition at x=0, we choose e¢E(0)Ap/kgT =

4

40 /0s, Where o is the surface charge density and O =
4ekpT /(eAp) is the saturation charge density as defined in
Ref.™. Note that a related steady-state case without CR effect
was recently analyzed analytically in Ref.**; however, the CR
model can only be analyzed numerically.

Thermodynamic equilibrium is characterized by j'; =0, as
shown by the solid and dashed black lines in Fig. B. For non-
zero but constant j°, the system deviates from equilibrium
into a steady state (the solid and dashed red lines). In addi-
tion, the CR process can also be controlled through the bulk
value @,, governed by the CR parameter ¢ and the charge
neutrality relation ¢, = 1 —2p,/pp. Note that ¢, = 0 or
Pb = Pb/2 corresponds to a constant maximum charge den-
sity on the macro-ion surface. Equivalently, it corresponds to
the fixed charge (non-CR) case (dashed red and black lines).
Therefore, we present four cases with the equilibrium/steady
state and CR/non-CR state combinations in Fig. . These four
schematic presentations are shown in Fig. Di(a), respectively.
Figure D(b) demonstrates that the electric field E = —d, y for
the steady state decreases from its surface value to its bulk
value for large x/Ap. Hence, the CR process displays small
differences compared to the non-CR case (solid vs. dashed
red line in Fig. Q(b)).

However, a significant CR effect in the steady state is seen
for both the macro-ion concentration profile n(x) and the di-
mensionless density of the A~ sites combined with the to-
tal associated and dissociated B particles p(x), as shown in
Fig. D(c) and (e). More negatively charged macro-ions mi-
grate towards the wall due to the electrostatic attraction, as
shown in Fig. D(c). The CR curve (red solid line) shifts signif-
icantly to the right, towards larger distances from the wall.
Thus, the macro-ion density at the same distance from the
wall is smaller in the CR steady state than in the equilibrium
cases (solid/dashed black lines) but is larger than in the non-
CR case. Additionally, as the macro-ions migrate closer to
the wall, more counter-ions dissociate from their surfaces, de-
creasing ¢ (x), as shown in Fig. B(d). This difference amounts
to almost 50 % in the CR steady state.

For the non-CR case, we recall that the macro-ions trivially
keep a constant charge, i.e., ¢ = 0 (dashed red line in Fig. D).
The p and ¢ plots in Fig. Di(e) and (f) follow similar tendencies
as in n when comparing the four cases. In the counter-ion-
only case, the distribution of the charge and particle densities
are dominated by spatial dependence of macro-ions.

In the steady state, the current density of each component,
denoted as ji, (k = s,w,p), has a linear dependency on the
bulk value jg as charge neutrality is obeyed. For example,
for the CR case, j, = (pv/epy) jg, and this linear dependence
slope is different from that of the non-CR one, j, = jlq’ /(2e).

While the electric current densities jg, jp, and j, in the
steady state, should be constant, it is interesting to note that
each component exhibits a pronounced spatial dependence.
Specifically, the charge and particle number currents j, and
Jp consist of four components, denoted as j,; and jp;, with
i =1,2,3,4, whereas the macro-ion current j, contains only
two components j,; and j,2. The four components mentioned
previously correspond to different physical mechanisms driv-
ing currents. The first component is proportional to the elec-
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FIG.2. (a)Schematic presentations of the four charge cases. (b) The dimensionless electric field £ (in units of eAp /kgT), (c) the dimensionless
macro-ion density n/pj, and (d) the fraction ¢. (e) The dimensionless density of the A~ sites combined with the total associated and dissociated
B particles p, and (f) the dimensionless charge density g/p;, as a function of x/Ap, for different values of j; = j';?LD /(ekgTEpy) =0
(pb/Ppb=0.2, CR equilibrium case, black line), j; =0 (py/pP,=0.5, non-CR equilibrium case, black dashed line), j; = 6 (pp/pp=0.2, CR
case, red line), and fq =6 (pp/pp=0.5, non-CR case, red dashed line). The other parameters are py/p,=0.2, N=10, py, =2 X 10~"M, and
0/ 0sat=2.5, where Osy = 4kgT€/(eAp) is the saturation charge density on the wall.
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FIG. 3. (a) fq and its four contributions, (b) fp and its four contributions, and (c¢) fp and its two contributions, where fq is the current jj,
rescaled by Ap/(ekgT {py), whereas j, and j, are rescaled by Ap/(kgT{pp) and denoted as jp, and j,. Other parameters are py,/p, = 0.2,
N =10, p, =2 X 1077M, G /0g = 2.5, and ]’3 = 2. The four contributions in (a) and (b) denoted as 1,...,4 are the electric component
and the three diffusive components, proportional to electrostatic field —d, ¥ and concentration gradients dyp, dyp and dyq respectively. Two
components in (a) are proportional to —dy W and d,p (see Eq. (13)-(15) of the Supplementary Material). Note that the insets are added to show
the variation of the curves more clearly over a smaller y-axis range.

trostatic field E = —o, . The three other components are dif-
fusive and proportional to three concentration gradients: the
free counter-ions (dp), the total ionic sites (dyp), and the net
charge (dyq) (see Eq. (13) of the Supplementary Material for
complete expressions).

The separate spatial dependence of these components is
shown in Fig. B(a), (b) and (c). Clearly, each of the com-
ponents, (jq2,jg3,Jq4) and (jp2, jp3, jpa), varies significantly
as a function of the distance from the wall, despite their sum
remaining constant. Additionally, the diffusive components

Jp3 and jp4, corresponding to the density of the A™ sites com-
bined with the total associated and dissociated Bt particles
and the net charge density are significantly closer in magni-
tude than the j,3 and jg4.

We have generalized Onsager’s variational principle to de-
scribe the diffusive dynamics of an ionic solution contain-
ing charge-regulated (CR) macro-ions. The derived equations
represent a consistent generalization of the standard PNP the-
ory that describes fixed charge particles. By examining the
steady state, we find significant CR effects on the spatial dis-



tribution of the macro-ions, particularly in the vicinity of the
surface. Moreover, the electric and diffusive contributions to
the current and electric charge densities have pronounced spa-
tial variation, including a significant contribution from the CR
components.

At a fixed distance from the charged surface, the macro-ion
density decreases when compared with the equilibrium CR
case but increases when compared to the steady-state non-
CR (fixed charge) case. The CR effects, therefore, always
increase the macro-ion concentration close to the boundary.
In addition, the change in the number of dissociated ions from
the macro-ion surface is significantly larger in the steady state
compared to the equilibrium one, implying that the CR ef-
fect strengthens in the non-equilibrium steady state. In the
steady state, the macro-ions’ distribution is more compressed.
It shifts closer to the charged wall, as shown in Fig. D(c).
This compression results from the steady-state current. Un-
like the pure electrostatic mechanism in equilibrium systems,
the CR effect in NESS differs from its equilibrium counter-
part due to the coupling with the ionic diffusive dynamics.
These findings indicate that the CR effect is more pronounced
in experiments under non-equilibrium conditions. For exam-
ple, it affects the charge of proteins as they move in cellular
environments, affecting their adsorption or binding affinity to
membranes. Likewise, it influences the stability of charged
nanoparticle suspensions.

This study employs four assumptions. (i) We assume that
the Poisson equation also holds for the slow dynamics con-
sidered here, implying that the electrostatic potential is a fast
dynamical variable and is always equilibrated. (ii) The CR
process is coupled only to the ionic diffusive dynamics. (iii)
The charged wall maintains a constant surface charge density,
serving as a boundary condition. We focus on the diffusive
process occurring in the intermediate spatial region, which is
neither close to nor far from the wall. This agrees with experi-
mental situations where the current has not yet neutralized the
charged wall. Hence, we ignore the current absorption kinet-
ics at the wall. (V) We utilize the OVP approach within the
mean-field description. This limits the model to cases where
fluctuations are small, and the electrolyte solution is dilute and
weakly charged. Our theory offers a unified and consistent
way to deal with CR diffusive dynamics for systems undergo-
ing charge association/dissociation processes with the bathing
solution. Our results, along with the generalization of On-
sagers variational principle, provide insights into understand-
ing diverse experimental systems that involve charge regula-
tion mechanisms. These systems encompass the electrophore-
sis of DNA/RNA in microfluidic channels, as well as the trans-
port of biomolecules, such as proteins and other components
of living matter.
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