
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Frequency-dependent conductivity
of concentrated electrolytes: A stochastic
density functional theory

Cite as: J. Chem. Phys. 161, 244501 (2024); doi: 10.1063/5.0236073
Submitted: 30 August 2024 • Accepted: 3 December 2024 •
Published Online: 23 December 2024

Haggai Bonneau,1,a) Yael Avni,2,b) David Andelman,1,c) and Henri Orland3,d)

AFFILIATIONS
1 School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
2University of Chicago, James Franck Institute, 929 E 57th Street, Chicago, Illinois 60637, USA
3 Institut de Physique Théorique, Université de Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette Cedex, France

a)haggai.bonneau@mail.huji.ac.il
b)yavni@uchicago.edu
c)Author to whom correspondence should be addressed: andelman@tauex.tau.ac.il
d)henri.orland@ipht.fr

ABSTRACT
The response of ionic solutions to time-varying electric fields, quantified by a frequency-dependent conductivity, is essential in many electro-
chemical applications. Yet, it constitutes a challenging problem due to the combined effect of Coulombic interactions, hydrodynamics, and
thermal fluctuations. Here, we study the frequency-dependent conductivity of ionic solutions using a stochastic density functional theory. In
the limit of small concentrations, we recover the classical Debye and Falkenhagen (DF) result, predicting an increase in conductivity with field
frequency. At higher concentrations, we use a modified Coulomb interaction potential that accounts for the hard-core repulsion between the
ions, which was recently employed in the zero-frequency case. Consequently, we extend the DF result to concentrated electrolytes. We discuss
experimental and numerical studies and the complexity of observing the DF effect in such setups.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0236073

I. INTRODUCTION

The transport properties of electrolyte solutions have been the
subject of long-standing fundamental and applied research. Ion
dynamics in a solvent is essential in many physical and chemi-
cal processes.1–4 Furthermore, diverse technological applications of
ion transport range from electrochemical energy storage in batter-
ies to the flow of ions and charged molecules through biological cell
membranes (e.g., ion channels and pumps).5–10

Debye and Hückel were the first to propose a theory of elec-
trolytic conductivity that included ion–ion interactions.11 Their
approach involved the concept of an ionic cloud, wherein each ion
is assumed to be surrounded by a smeared ionic distribution of a
net opposite charge that gets distorted by the central ion’s move-
ment. A few years later, Onsager refined the Debye–Hückel theory
to account consistently for central-ion diffusion. This resulted in the

century-old Debye–Hückel–Onsager (DHO) theory for DC (zero
frequency) conductivity of electrolytes.12,13

One of the earliest investigations into frequency-dependent
conductivity was conducted by Debye and Falkenhagen (DF). The
DF theory14 assumes a continuum solvent medium in the low-
frequency limit. Moreover, the influence of ion–solvent interactions
was not incorporated. The DF theory predicts that the real part of the
conductivity increases with frequencies in the low-frequency limit.14

This result can be understood in the following way. The ionic cloud
asymmetry exerts a drag force on the moving ion. This asymmetry
is established over a timescale of the Debye time, tD ∼ λ2

D/D, where
λD is the Debye screening length and D is the ion diffusion constant.
When an AC driving force with a period shorter than the Debye time
is applied, the asymmetric shape of the ion cloud does not reach its
maximum distortion (see Fig. 1). Hence, the drag force is reduced,
and the conductivity increases.
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FIG. 1. Numerically obtained drawing of the negatively charged ionic cloud sur-
rounding a cation in an electrolyte under an oscillatory external uniform electric
field, E0 cos(ω0t), with amplitude E0 and frequency ω0. The three superimposed
red circles depict the distribution of the ionic cloud relative to the cation’s posi-
tion. Their shape is derived from the density–density correlation function between
anions and cations [Eq. (32)], and it illustrates the cloud in its most distorted
configuration over the oscillation period.

Conversely, a more recent analysis15 of the original experimen-
tal results by Falkenhagen16 has shown that the DF effect has never
been adequately validated. The challenge in observing this effect is
that its magnitude is relatively small, and the model can be justified
only at very low concentrations. More recently, calculations have
been carried out for the conductivity at higher concentrations using
the mode-coupling theory, incorporating relaxation of the ionic cloud
and hydrodynamic effects.17–21 These investigations describe the
coupling between a tagged ion and the collective slow-mode dynam-
ics in terms of several self-consistent equations. It allows a numerical
(but not closed-form expressions) evaluation of the conductivity
in various cases, including high-concentration and time-dependent
external fields.

Advances in nonequilibrium statistical mechanics included the
formulation of the stochastic density functional theory (SDFT)22,23

and led to a different approach to calculating the ionic conductiv-
ity in the dilute limit.24,25 The governing equation in this approach
is often called the Kawasaki–Dean equation and does not rely on
an ionic cloud or coupling to the system’s collective variables.
Instead, SDFT accounts for the microscopic ion–ion interactions
and allows a systematic derivation of macroscopic quantities in the
dilute regime.

Quite recently, SDFT has been employed26,27 with a modified
interaction potential between the ions, taking into account the short-
range steric interaction. This modified electrostatic potential allowed
a better treatment than DHO at a higher concentration range, in
which the ions, on average, are much closer to one another. The
theory successfully predicted the conductivity of NaCl solutions
(and other monovalent salts) up to a few molars without any fit
parameters; the DHO theory fails above 10 mM. Moreover, this
framework and the modified potential were used to predict viscosity
corrections in concentrated electrolytes.28 However, other studies29

emphasize that despite the advantages of SDFT coupled with a modi-
fied potential, it should be handled with caution above a few hundred
millimolars.

In separate studies, several dynamic aspects of electrolytes have
been investigated using SDFT.30,31 It was found that the current
response of an electrolyte to a quench of the electric field from
finite values to zero is rather complex. The main finding is a non-
monotonic response followed by an algebraic relaxation of the
conductivity as a function of time.

In this study, we employ SDFT to compute the frequency-
dependent conductivity of binary monovalent electrolytes. We
present the conductivity as a function of the interaction poten-
tial between the same and oppositely charged ions. We follow
Refs. 26 and 27 and consider similarly the modified ion–ion inter-
action potential that takes into account approximately the ionic
hard-core repulsion. Using such modified potential, we compute
a closed-form expression for the electrolyte conductivity at finite
frequencies of an AC external electric field and for an extensive
range of concentrations. We show that our theory reduces to the
DF one without short-range steric interactions. Finally, we show
that our theory is relatively robust to different choices of short-range
repulsion.

The outline of this paper is as follows. In Sec. II, we present
the model and derive the general expressions for the conductivity
of an ionic solution with an arbitrary number of species for any
interaction potential and time-dependent applied field. In Sec. III,
we focus on binary electrolytes and derive the frequency-dependent
conductivity for different interaction potentials under the weak
amplitude limit of the electric field. In Sec. IV, we discuss our results
and their connection to experiments and simulations. Finally, in
Sec. V, we conclude and suggest future experiments to test our
predictions.

II. MODEL
A. Equations of motion

We consider a system composed of a continuous and homoge-
neous solvent (e.g., water) with a dielectric constant ε = εrε0, where
ε0 is the vacuum permittivity in SI units and εr is the relative
(dimensionless) dielectric constant. Besides the dielectric constant,
the solvent is characterized by its viscosity η, and the system is
kept at temperature T. Cations and anions are modeled as charged
Brownian particles, solubilized in a three-dimensional fluid, forming
an electrolyte solution. The system is then subjected to a time-
dependent external electric field that is uniform in space and of the
form E(t) = E0g(t) x̂, where x̂ is the unit vector along the x axis and
E0 is the electric field amplitude. The function g(t) is a dimension-
less function of order unity that encodes the time dependence of the
external electric field and has a Fourier transform ĝ(ω).

Each ionic species α = 1, . . . , M, has a charge zαe, where zα is
the valency and e is the electronic unit charge, and its bulk number
density is n0

α. The external field induces a charge current density,
J(E), along the same direction as the external field E. Finally, the DC
conductivity is defined by the ratio

κ =
J(E)
E0
∣

E0=0
with g(t) = 1. (1)

J. Chem. Phys. 161, 244501 (2024); doi: 10.1063/5.0236073 161, 244501-2

© Author(s) 2024

 23 D
ecem

ber 2024 20:20:17

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

At infinite dilution (n0
α → 0) and constant external field

E = E0 x̂, the ions perform a Brownian motion with a mean veloc-
ity of ezαμαE0 along the field direction, where μα is the ion mobility
related to Dα by the Einstein relation μα = Dα/kBT, and kB is the
Boltzmann constant. The conductivity κ0 in the infinite dilution
limit n0

α → 0 is called the Nernst–Einstein conductivity and is given
by κ0 = e2

∑α z2
αμαn0

α.
At low ionic densities, the interactions between the ions reduce

the conductivity. The zero-frequency correction to κ0, to leading
order in n0

α, is given by the DHO result.12 For a binary monovalent
electrolyte, it is given as

κ(ω = 0) = κ0[1 −
rs

λD
−

1
3
(1 −

1
√

2
)

lB
λD
], (2)

where rs = (6πημ)−1 is the Stokes’ hydrodynamic radius of charged
particles, in which

λD =

√

ϵkBT/2n0
αe2, (3)

is the Debye length, and lB = e2
/(4πεkBT) is the Bjerrum length. At

room temperature in water, lB ≃ 7 Å. In the dilute limit, the charac-
teristic length for which the electrostatic interactions are screened is
the Debye length, λD. Together with the diffusion coefficient aver-
aged over the species types, D, a time scale (called the Debye time)
can be constructed,

tD = λ2
D/D, (4)

and it describes the characteristic relaxation time of the ionic cloud.
Similar to the definition of the DC conductivity in Eq. (1), the

frequency-dependent conductivity is defined as

κ(ω) =
Ĵ(ω, E)
E0ĝ(ω)

∣

E0=0
, (5)

where Ĵ(ω, E) is the Fourier transform of J(t, E).
In the following, we study the dynamics of the number density

current jα of the ionic species α. These currents are related to the
total average ionic current by

J = e
M

∑

α=1
zα⟨ jα⟩, (6)

where ⟨. . .⟩ is a thermal average over the fluctuations. We proceed by
describing the temporal evolution of the ionic density field nα(r, t)
of the species α using SDFT22,24 that also includes the hydrodynamic
interactions,25,27,32

∂nα

∂t
= −∇ ⋅ jα,

jα = nαu −Dα∇nα + μαf α +
√

2Dαnα ζα.
(7)

The first equation is the continuity equation, while the second
describes the fluctuating dynamics of the ionic number current den-
sity, jα. The first and second terms of jα in Eq. (7) are the advection
and diffusion terms, respectively, where u(r, t) is the solvent veloc-
ity field. The third term accounts for the motion due to the external

field and inter-ionic forces, where f α(r, t) is the force density act-
ing on the α species particles. Finally, the fourth term in Eq. (7) is a
stochastic field, where ζ(r, t) is a three-dimensional Gaussian white
noise satisfying

⟨ζα(r, t)⟩ = 0,

⟨ζn
α(r, t)ζm

β (r
′, t′)⟩ = δαβδnmδ(r − r′)δ(t − t′),

(8)

where ζn
α and ζm

α denote the nth and mth Cartesian coordinates of
the vector ζα, respectively, δij is the Kronecker delta function, and
the δ-function is the Dirac delta function in the appropriate dimen-
sion. Throughout this paper, we use the Itô convention22,33 for the
multiplicative noise [as in Eq. (7)].

The force density f α is the sum of the forces exerted by the
external field and the force density due to pair interactions with
other ions,

f α = nαzαeE − nα

M

∑

β=1
∇Vαβ ∗ nβ, (9)

where Vαβ(r) is the interaction potential between the α and β
species, and the symbol “ ∗ ” denotes the convolution operator,
h ∗ g ≡ ∫ d3r′ h(r′)g(r − r′).

The small ionic size typically results in a very low Reynolds
number, meaning that hydrodynamic effects in electrolyte systems
are adequately described by the incompressible laminar flow.12

Therefore, we assume that the fluid velocity field u(r, t) satisfies the
Stokes’ equation for incompressible fluids,

∇ ⋅ u = 0,

η∇2u −∇p = −∑
α

fα, (10)

where p is the fluid pressure field.
As we focus hereafter on the frequency-dependent response,

our approach neglects inertial effects corresponding to the relax-
ation of the ion velocity. This occurs on a time scale tI = mionD/kBT,
with mion being the ion mass. For frequencies larger than
1/tI ∼ 1013 s−1

= 10 THz, the overdamped dynamics description
is insufficient. Instead, it would be necessary to consider the full
Newtonian description of the ions and the solvent, as in the
Navier–Stokes equation. In addition, our model neglects the fre-
quency dependence of the solvent permittivity. This dependence
significantly reduces the permittivity for frequencies larger than
10 GHz.35,36 Note that we discard the noise term in the Stokes’ equa-
tion, as this term is divergence-free and will not affect the species
density nα (see, e.g., Ref. 31 for further discussion).

We can integrate over the solvent degrees of freedom u(r) to
obtain a closed-form expression for the current densities, jα. The
solution for Eq. (10) is given by34

u =∑
β

O ∗ fβ, (11)

and

Oij(r) =
1

8πη
(

δij

r
+

rirj

r3 ), i, j = 1, 2, 3. (12)
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Substituting this result in the expression for the density current,
Eq. (7), we get

jα = −Dα∇nα + μαfα + nα∑
β

O ∗ fβ +
√

2Dαnαζα. (13)

B. Conductivity calculation
Substituting Eq. (13) in Eq. (6) leads to

J = κ0E −∑
α,β

ezαμα⟨nα∇Vαβ ∗ nβ⟩ +∑
α,β

e2zαzβ⟨nα O ∗ nβ⟩E. (14)

Note that the stochastic (noise) term in Eq. (13) cancels as it is
uncorrelated with the density fields at time t. Moreover, the gra-
dient term cancels as the system is assumed to be homogeneous
on average. Finally, a term that is third order in the concentra-
tion is discarded as it does not contribute to the linearized theory
(see Ref. 31 for further discussion).

Now, we introduce the density fluctuation δnα(r, t) for each
α species,

δnα(r, t) = nα(r, t) − n0
α, (15)

and express the average ionic current J as a function of the
density–density correlation, which is given by

Cαβ(r − r′, t) ≡ ⟨δnα(r, t)δnβ(r
′, t)⟩. (16)

Writing the convolution explicitly and using the correlation as
defined in Eq. (16), we find

J = κ0E −∑
α,β

ezαμα ∫ d3r ∇Vαβ(r)Cαβ(r, t)

+∑

α,β
e2zαzβE∫ d3r O(r)Cαβ(r, t). (17)

The correction to the bare current, κ0E, is the sum of two
contributions. The first term involves the electrostatic potential
Vαβ and is referred to as the electrostatic correction (also known
as the relaxation correction). It represents the deformation of the
counterion cloud around each of the ions by the external electric
field. The second term involves the Oseen tensor O and the exter-
nal field E. It is called the hydrodynamic correction (also known
as the electrophoretic correction). It contains the effect of the flow
created by the counterion cloud under the action of the external
field.

The diagonal part of the correlation matrix contains the self-
interaction term related to the diffusion constant. Our theory treats
diffusion and hydrodynamic interaction separately, so, to compute
the hydrodynamic correction correctly, it is necessary to subtract the
self-interaction. This is performed by substituting

Cαβ(r − r′, t)→ Cαβ(r − r′, t) − n0
αδαβδ(r − r′). (18)

We remark that this modified correlation does not affect the
electrostatic correction.

Using Parseval’s theorem, we express the above-mentioned
equation in Fourier space and obtain

J(t) = κ0E(t) +∑
α,β

ezαμα ∫
d3k
(2π)3 (ik)Ṽαβ(k)C̃αβ(k, t)

+∑

α,β
e2zαzβE(t)∫

d3k
(2π)3 Õ(k)C̃αβ(k, t), (19)

where we denote the spatial Fourier transform of h(r) as ̃h(k)
≡ ∫d3r h(r)e−ik⋅r . Note that the Fourier transform of the interaction
potential and the Oseen tensor is even in k, Ṽαβ(k) = Ṽαβ(−k) and
Õ(k) = Õ(−k).

As we are interested in the frequency-dependent conductivity,
we perform an additional Fourier transform from the time domain,
t, into the frequency domain, ω,

Ĵ(ω) = κ0Ê(ω) +∑
α,β

ezαμα ∫
d3k
(2π)3 (ik)Ṽαβ(k)Ĉαβ(k, ω)

+∑

α,β
e2zαzβ ∫

d3k
(2π)3 ∫ dω′ Õ(k)Ĉαβ(k, ω′)Ê(ω − ω′),

(20)

where the spatio-temporal Fourier transform of a function h(r, t)
is denoted as ̂h(k, ω) ≡ ∫d3r dt h(r, t)e−ik⋅r−iωt . Equation. (20) is
the general expression for the Fourier transform of the current
Ĵ(ω) expressed in terms of the Fourier transform of any two-body
potential Ṽαβ(k), external electric field Ê(ω), and density–density
correlations Ĉαβ(k, ω). Finally, note that in our study, J and E are
homogeneous temporal functions in space.

C. Linearized SDFT
To get more straightforward analytical results, we return to

Eq. (13) in position space and linearize it around the ionic bulk
densities, n0

α. The resulting evolution equation for the ionic density
fluctuations of the α species, δnα = nα − n0

α, reads

∂

∂t
δnα = Dα∇

2δnα − μαezαE(t) ⋅∇δnα + μαn0
α∇

2
⎡
⎢
⎢
⎢
⎢
⎣

∑

β
Vαβ ∗ δnβ

⎤
⎥
⎥
⎥
⎥
⎦

+

√

2Dαn0
α ∇ ⋅ ζα.

(21)

The dynamic equation can be written in a simplified form in the
Fourier k-space,

d
dt

δ ñα = −Aαβδ ñβ + χα, (22)

where the matrix A is given by

Aαβ(k, t) = δαβ[Dαk2
+ iμαezαE(t)kx] + μαn0

αk2Ṽαβ. (23)

We also introduced a scalar Gaussian noise χα(k, t) that satisfies

⟨χα(k, t)χβ(k
′, t′)⟩ = 2(2π)3Bαβ δ(k + k′)δ(t − t′), (24)

with a diagonal noise correlation matrix Bαβ = δαβn0
αDαk2. Hence, in

Fourier space, the density–density correlations are given by

⟨δ ñα(k, t)δ ñβ(k
′, t)⟩ = (2π)3δ(k + k′)C̃αβ(k, t). (25)
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Using the Itô product rule (see Secs. 4.3 and 4.4 of Ref. 37) in
Eq. (22), we find that the correlation matrix C̃ satisfies

d
dt

C̃ = 2B −AC̃ − C̃A∗, (26)

where the matrix A∗ is the complex conjugate of A. Equation (26) is
a set of linear inhomogeneous (with a source) and non-autonomous
(with an explicit dependence on the time variable t) first-order ordi-
nary differential equations (ODEs). In Sec. III, we consider binary
monovalent electrolytes for which Eq. (26) can be further simplified.

III. RESULTS
A. Binary monovalent electrolyte

For binary monovalent 1:1 electrolytes (such as table salt,
NaCl), the electrolyte comprises cation–anion pairs, α = ±, with
charges z±e = ±e. Because of the overall charge neutrality, n0

± = n0,
we further assume that the ionic mobilities are the same, μ± = μ,
implying D± = D.

Using the symmetry of the 1:1 electrolytes, we know that
Ĉ−− = Ĉ++ and Ĉ+− = Ĉ∗−+. Hence, the elements of the 2 × 2 cor-
relation matrix can be expressed via three independent functions:
ĉ, r̂, and m̂, where

ĉ(k, ω) ≡
1
n0

Ĉ++(k, ω),

r̂(k, ω) ≡
1
n0

Re[Ĉ+−(k, ω)],

m̂(k, ω) ≡
1
n0

Im[Ĉ+−(k, ω)].

(27)

We then choose the following form of the modified electro-
static potential in k-space: Ṽαβ = (e2

/ε)vαβ(k, a), where k ≡ ∣k∣ and
a is a length scale related to the short-range repulsion between the
ions. The behavior of vαβ at ka≪ 1 recovers the standard Coulomb
potential, ∼1/k2, but deviates when ka ≈ 1, where its functional form
depends on a.

It is convenient to introduce dimensionless variables. The spa-
tial coordinates are rescaled by the Debye length so that q ≡ kλD,
while time and frequency are rescaled by the Debye time so that
Ω ≡ ωtD and τ ≡ t/tD. Applying these dimensionless variables, the
integrals in Eq. (20) are rewritten in a dimensionless form. By
dividing Ĵ(Ω, E) by ĝ(Ω)E0, one gets the frequency-dependent
conductivity,

Ĵ(Ω, E)
ĝ(Ω)E0

= κ0 + κel(Ω) + κhyd(Ω), (28)

where the electrostatic and hydrodynamic corrections read

κel(Ω, E) = − κ0

2π2
lB
λD

1
ĝ(Ω)E ∫

d3q qx m̂(Ω, q)v+−(q),

κhyd(Ω, E) = 3κ0

4π2
rs

λD

1
ĝ(Ω) ∫

dΩ′ ∫
d3q
q2 (1 − q2

x/q
2
)

× [̂c(Ω′, q) − r̂(Ω′, q) − δ(Ω′)]̂g(Ω −Ω′),

(29)

respectively, where E ≡ eλDE0/kBT is the dimensionless electric
field. Using the same rescaling, we can write the SDFT equation for
the correlation functions as

d̃c
dτ
= −q2

(2 + v++)̃c(τ) − q2v−+ r̃(τ) + 2q2,

d̃r
dτ
= −q2

(2 + v++)̃r(τ) − q2v−+c̃(τ) + 2Eqxg(τ)m̃(τ),

dm̃
dτ
= −q2

(2 + v++)m̃(τ) − 2Eqxg(τ)̃r(τ).

(30)

Finding a general closed-form solution to the set of Eq. (30) is diffi-
cult. Hence, we look for periodic solutions in the small electric field
E limit. To do so, we examine the temporal Fourier transform of
Eq. (30),

ĉ(Ω) =
2q2δ(Ω) − q2v−+ r̂(Ω)

Λ(Ω)
,

r̂(Ω) =
2Eqx( m̂ ∗ ĝ)(Ω) − q2v−+ĉ(Ω)

Λ(Ω)
,

m̂(Ω) = −
2Eqx(̂r ∗ ĝ)(Ω)

Λ(Ω)
,

(31)

where Λ(Ω) = iΩ + q2
(2 + v++).

Solving these equations that give the system’s limit cycle is
not straightforward. Yet, one can solve them to the leading order
in E and get the frequency-dependent conductivity computed at
vanishing electric fields as

ĉ (0)(Ω) =
4 + 2v++

(2 + v++)2
− v2
−+

δ(Ω),

r̂ (0)(Ω) = −
2v+−

(2 + v++)2
− v2
−+

δ(Ω),

m̂ (1)(Ω) =
4qxv+−ĝ(Ω)

[(2 + v++)2
− v2
−+][iΩ + q2

(2 + v++)]
,

(32)

where the superscript (i) denotes the ith term in the power expan-
sion of E. Note that the terms m̂ (0), ĉ (1), and r̂ (1) are equal to
zero and are discarded. In Fig. 2, the real-space and time-dependent
correlation function c+−(x/λD, y/λD, t) is computed for Coulombic
interactions and with g(t) = cos(ω0t).

Expressing the integrals in Eq. (29) using Eq. (32) yields

κel(Ω) = −
8κ0

3π
lB

λD
∫

∞

0
dq

×
q4v2
+−

[(2 + v++)2
− v2
+−][q2

(2 + v++) + iΩ]
,

κhyd = −
2κ0

π
rs

λD
∫

∞

0
dq

v++ − v+−
2 + v++ − v+−

.

(33)

Equation (33) gives the frequency-dependent conductivity for a
binary monovalent electrolyte as a function of the interaction
potential between the ions.
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FIG. 2. Density–density correlation function c+−(x/λD, y/λD, t), where the lengths are measured in units of λD. The correlation c+− is computed by taking numerically the
Fourier transform of the solution in Eq. (32), for g(t) = cos(ω0t). A pure Coulomb interaction potential is used. The three panels show a colormap of c+− at t = 0 (when
the electric field magnitude is at its maximum) for different values of ω0. In order to enhance the figure’s deformation visibility, we set E = 3. The arrows indicate the
direction of the electric field. The oscillation in panel (a) is slow compared to tD. Therefore, the correlation shape reaches a strongly asymmetric form along the direction of
the electric field. Panel (c) shows the opposite case, when the field oscillation is fast compared to tD, leading to an almost spherically symmetric correlation. Panel (b) shows
an intermediate case. See the supplementary material for an animation of the correlation function evolution over time.

B. Pure Coulomb potential
Evaluating the integrals in Eq. (33) for Coulomb potential,

namely

v++ = −v+− = 1/k2, (34)

recovers the well-known Debye–Falkenhagen (DF) result,14

κel(ω) = −
κ0

3
lB
λD

1
2 +
√

2 + 2iωtD
, (35)

where the DF result is expressed in terms of the physical frequency,
ω = ΩtD. Examining Eqs. (29) and (32), we see that the hydrody-
namic correction depends on the zeroth order terms in E of the
correlations. Therefore, it is independent of ω,

κhyd = −κ0
rs

λD
. (36)

We can also see that the standard DHO correction is recovered at the
ω→ 0 limit [Eq. (2)]. Similar to the DHO result, Eqs. (35) and (36)
are limited to small concentrations, typically lower than 10 mM.

C. Modified potentials
The original DF result can be improved by introducing an

interaction potential that accounts for the repulsion between the
ions at short ranges.

An effective potential that takes into account the steric interac-
tion should contain the scale for which the steric repulsion between
ions becomes substantial, namely, when the distance between the
two particle centers is equal to the sum of their radii, rα + rβ. For
simplicity, we define a as such a characteristic length, ignoring the
size difference between ions of different species.

The truncated Coulomb potential has been previously pro-
posed to account for the short-range interaction between ions.26,27,38

It is written as

Vαβ(r) =
e2zαzβ

4πε
θ(r − a)

r
, (37)

where θ is the Heaviside function. Using the truncated potential in
Eq. (33) gives the following expressions for the two conductivity
correction terms:

κel(ω) = −
2κ0

3π
lB
λD
∫

∞

0
dq

×

q2 cos2
(

aq
λD
)

[cos ( aq
λD
) + q2

][cos ( aq
λD
) + 2q2

+ iωtD]
,

κhyd = −
2κ0

π
rs

λD
∫

∞

0
dq

cos ( aq
λD
)

cos ( aq
λD
) + q2

.

(38)

We recall that the truncated potential is a useful approxima-
tion for the interaction between ions in an electrolyte as it takes
into account the finite ionic size, but it comes with certain draw-
backs. The two terms in Eq. (38) diverge at high concentrations
even for DC fields (ω = 0). This divergence occurs when the term
[cos (aq/λD) + q2

] in the denominator crosses zero. For large con-
centrations, a/λD that scales as n1/2 becomes large so that the cosine
term becomes negative while q ≤ 1, leading to the divergence of the
integral.

Moreover, while the total conductivity was shown27 to agree
well with experimental results up to 3M, a recent comparison of
each contribution to Brownian dynamic simulations suggested that
each term by itself (κel and κhyd) is unreliable at high concentrations
(roughly above 1M). Therefore, our results are presented only for
concentrations up to 1M. See Refs. 26 and 29 for more details.

Another modified potential is a soft truncated potential that
was proposed in Refs. 39–41,

Vαβ(r) =
e2zαzβ

4πε
(

1
r
−

e−r/a

r
). (39)
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This potential gives simpler polynomial expressions in Fourier space
that can be integrated exactly. However, the exact expressions are
rather elaborate and will not be presented here. Substituting Eq. (39)
in Eq. (33), we get

κel(ω) = −
2κ0

3π
lB
λD
∫

∞

0
dq

q2

[(
a

λD
)

2
q4
+ q2
+ 1]

×
1

[2( a
λD
)

2
q4
+ q2
(2 + i a2

D ω) + iωtD + 1]
,

κhyd = −κ0
rs

λD

1
√

1 + 2a/λD
.

(40)

Unlike the truncated potential, the soft truncated potential does not
produce the divergence of the two correction terms at high concen-
trations. However, for concentrations below 1M, the two potentials
give very similar results.

IV. DISCUSSION
By examining Eq. (33), we can see that the electrostatic correc-

tion κel depends on the external-field frequency ω. In contrast, the
hydrodynamic correction κhyd remains the same as in the station-
ary case. In Fig. 3, we compare the numerical evaluations of κ(ω)
[Eq. (28)] with the three different potentials: Coulomb, truncated
Coulomb, and soft truncated Coulomb.

For simple ions in aqueous solutions at room tempera-
ture, the parameter values used are lB = 7 Å, λD = 3 Å /

√

n[M],
rs = 1.5 Å, and a = 3 Å. The Debye time has a typical value of
tD = (10−10

/n[M]) s. One can see that the conductivity increase
starts when ω tD ≃ 1. The truncated and soft truncated Coulomb
potentials give roughly the same conductivity for a ≃ λD at moder-
ate frequencies. Different choices of potentials affect the correction
to the conductivity at driving frequencies that exceed ω tD ≳ 1000.
However, within this range of very high frequencies, our model does
not hold as it is based on overdamped dynamics.

FIG. 3. Real part of the normalized conductivity as a function of ωtD for the three
interaction potentials. The Coulomb potential [Eqs. (35) and (36)] is plotted with a
dashed line, the truncated potential [Eq. (38)] with a solid line, and the soft trun-
cated potential [Eq. (40)] with a dotted line. The solution concentration is taken as
n = 0.1M. The other parameter values are lB = 7 Å, λD = 10 Å, rs = 1.5 Å, and
a = 3 Å.

FIG. 4. Real part of the normalized conductivity rescaled by κ0 for different con-
centration values as a function of the external field’s oscillation frequency, ω.
The normalized conductivity is plotted for the truncated potential (solid) and the
Coulomb potential (dashed) for concentrations of 30 mM and 1M. The frequency
value at which the conductivity transitions from a pseudo-plateau that equals the
static conductivity to an increasing function scales roughly with n. Other parameter
values are the same as for Fig. 3.

FIG. 5. Imaginary part of the normalized conductivity (rescaled by κ0) for Coulomb
potential (dashed line), truncated potential [solid line—Eq. (38)], and the soft trun-
cated potential [dotted line—Eq. (40)] for n = 0.1M. For high frequencies, ω≫ t−1

D
and low ones ω≪ t−1

D , the imaginary part is small, and the charge current is in
phase with the external field. Other parameter values are the same as for Fig. 3.

The real part of the normalized conductivity is plotted in
Fig. 4 for two very different concentration values, 30 mM and 1M,
as a function of the driving oscillation frequency in Hz. At low
frequencies, the conductivity behaves as the static one (ω = 0), but as
ω increases, the conductivity increases toward κ = κ0 + κhyd, i.e.,
κel approaches zero. One can see that the frequency value at which
this changeover occurs scales roughly with n. In other words, there
is a critical frequency, ωD = 1/tD ∼ n, below which the conductivity
behaves as the static conductivity.

In Fig. 5, the imaginary part of the normalized conductivity
is plotted for the three interaction potentials. For pure Coulomb
potential, the imaginary part accounting for the response phase-
shift starts to decay at frequency ω tD ≈ 10, while for the truncated
and soft-truncated potentials, the decay begins at ω tD ≈ 2. This
leads to the conclusion that including the steric interactions in the
interaction potential reduces the dephasing effect.

At high frequencies, compared to the ion or solvent inertial
time tI defined earlier, the conductivity behavior changes signifi-
cantly at the level of the Nernst–Einstein term. Such a behavior
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FIG. 6. Real part of the normalized conductivity as a function of the ion concentra-
tion for three driving frequencies, ω = 10 MHz (black line), 1 GHz (blue line), and
0.1 THz (purple line), using the truncated potential. The blue curve for the inter-
mediate frequency of 1 GHz crosses over between the static conductivity behavior
at low frequencies (black line, ω = 10 MHz) and the high-frequency conductivity
behavior (purple line, ω = 0.1 THz). The crossover is due to the dependence of
the Debye time tD on the concentration. Other parameter values are the same as
for Fig. 3. The inset shows the rescaled electrostatic correction, κel [Eq. (38)], up
to 1M for the same three frequencies as the main panel (κhyd is not shown as it
does not depend on the frequency ω).

can be seen directly by examining an underdamped non-interacting
electrolyte toy model, mionv̇ion + μ−1vion = zαeE0g(t), where vion is
the ion velocity. These dynamics lead to a frequency dependence of
the conductivity of inertial origin κ0(ω) ∼ κ0/(1 + iωtI). Our model,
based on overdamped dynamics, cannot exhibit the latter.

Frequency dependence of the conductivity due to inertia is
included in previous works.17,21 It can be analytically verified that
for low frequencies (compared to tI) and at low concentrations
(the DH approximation), the prediction in Ref. 21 recovers that of
Debye–Falkenhagen. However, the two theories strongly disagree at
high frequencies due to inertia and memory effects.

It is worth mentioning that the theory in Ref. 21 does not
produce closed-form expressions beyond the two limiting cases
discussed earlier (low and high frequencies). In the intermediate
regime, one has to solve the governing equations to evaluate the
conductivity iteratively. Incorporating underdamped dynamics to
account for the high-frequency effect into an SDFT model is left for
future work.

Figure 6 presents the real part of the normalized conductivity as
a function of the ion concentration at different driving frequencies,
ω = 10 kHz, 1 GHz, and 0.1 THz (using only the truncated poten-
tial). One can see a crossover between the static and high-frequency
conductivity in the blue curve corresponding to the intermediate
frequency, ω = 1 GHz. The crossover is due to the dependence of
the Debye time tD ∼ 1/n on the concentration, leading to a change
between static and high-frequency conductivity.

Our model is based on simple considerations that restrict
it from describing all the rich phenomenology of electrolyte sys-
tems self-consistently; in particular, it assumes a constant dielectric
susceptibility and viscosity. However, these quantities depend on
the ionic concentration and the external field. Incorporating such
refinements has been performed in Refs. 42 and 43.

Relation to experiments: The frequency-dependent conduc-
tivity was measured in some experiments.35,44–47 Unfortunately,
there are specific difficulties in comparing our predictions with

experimental results. First, the dielectric susceptibility of water
strongly decreases as a function of the dissolved salt concentration.
This is the celebrated “dielectric decrement” phenomenon observed
experimentally and discussed in Refs. 43 and 48–50.

In addition, the dielectric susceptibility decreases at high fre-
quencies of the order of GHz.35,36,47 This effect alters the electrostatic
interaction between the ions. Moreover, the increase in conductiv-
ity with the external field frequency happens at frequencies similar
to the resonance frequency of water molecules. This leads to sev-
eral complications with the measurements, including heating the
aqueous solution.

Finally, in high-frequency experimental setups, boundary
effects around the electrodes extend well into the electrolyte solu-
tion, making the measurement of bulk conductivity at high fre-
quencies quite challenging.44,51 To our knowledge, the frequencies
at which the conductivity was measured so far are lower than a
few MHz. Up to these frequencies, the behavior is quasi-static; the
conductivity does not depend on ω and is equal to its DC values.
These observations make it hard to validate our predictions with rel-
evant experimental data, although these predictions have the correct
qualitative behavior as a function of salt concentration and driving
frequency.

We also would like to comment on molecular-dynamic (MD)
simulations that have been performed for similar frequency-
dependent conductivity.17,36,52 To observe the Debye–Falkenhagen
(DF) effect in an MD simulation, it is necessary to eliminate the
dipolar effects of the solvent, as the change in the dielectric con-
stant would mask the DF effect. A similar setting was investigated
in Ref. 52. It was shown that the confinement (finite-size effect) sig-
nificantly impacts the electrolyte dynamics. This renders the bulk
behavior challenging to observe.

V. CONCLUSIONS
We calculated the frequency-dependent conductivity for binary

monovalent electrolytes within the stochastic density functional the-
ory (SDFT) framework. We examined several modified ion–ion
interaction potentials to account for the short-range effect missing
in the Debye–Falkenhagen (DF) theory that does not include the ion
steric effect. By employing two modified Coulomb potentials that
suppress unphysical, short-range electrostatic attraction, we demon-
strate that the correction is relatively robust in terms of the details of
the modified potential.

The DF effect is relatively small and, for various monovalent
salts, falls in the same frequency range as water’s resonance fre-
quency. This leads to a masking of the DF effect by the significant
change in the relative dielectric constant. To adequately compare our
findings to experiments, one would need to measure the conductiv-
ity of a 1:1 electrolyte in a solvent that does not present a strong
frequency dependence of the dielectric constant in the GHz range.
Alternatively, simulations that assume an implicit solvent may be
used to avoid effects from the water molecules’ polarization.

The theory presented here can be generalized to multi-
component electrolytes and multivalent ions. However, the latter is
expected to limit the theory’s validity to lower concentrations due
to strong electrostatic correlations and fluctuations,26 which are not
fully considered within our work.

J. Chem. Phys. 161, 244501 (2024); doi: 10.1063/5.0236073 161, 244501-8

© Author(s) 2024

 23 D
ecem

ber 2024 20:20:17

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

SUPPLEMENTARY MATERIAL

In the supplementary material 1, a video animation of the
density–density correlation function c+−(x/λD, y/λD, t) over time is
presented, where the lengths are measured in units of λD. The corre-
lation c+− is computed by taking numerically the Fourier transform
of the solution in Eq. (32) for g(t) = cos(ω0t). A pure Coulomb
interaction potential is used. The three panels show a colormap of
c+− for different values of ω0. In order to enhance the deforma-
tion visibility, we set E = 3. The arrows indicate the direction of the
electric field. See Fig. 2 for further details.
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