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Design and Fabrication of Nano-Particles with Customized
Properties using Self-Assembly of Block-Copolymers

Changhang Huang, Kechun Bai, Yanyan Zhu, David Andelman, and Xingkun Man*

Functional nanoparticles (NPs) have gained significant attention as promising
applications in various fields, including sensor, smart coating, drug delivery,
and more. Here, a novel mechanism assisted by machine-learning workflow is
proposed to accurately predict phase diagram of NPs, which elegantly
achieves tunability of shapes and internal structures of NPs using
self-assembly of block-copolymers (BCP). Unlike most of previous studies,
onion-like and mesoporous NPs in neutral environment and hamburger-like
NPs in selective environment are obtained. Such novel phenomena are
obtained only by tailoring the topology of a miktoarm star BCP chain
architecture without the need for any further treatment. Moreover, it is
demonstrated that the BCP chain architecture can be used as a new strategy
for tuning the lamellar asymmetry of NPs. It is shown that the asymmetry
between A and B lamellae in striped ellipsoidal and onion-like particles
increases as the volume fraction of the A-block increases, beyond the level
reached by linear BCPs. In addition, an extended region of onion-like structure
is found in the phase diagram of A-selective environment, as well as the
emergence of an inverse onion-like structure in the B-selective one. The
findings provide a valuable insight into the design and fabrication of
nanoscale materials with customized properties, opening up new possibilities
for advanced applications in sensing, materials science, and beyond.

shapes and inner structures, such as lamel-
lae (striped ellipsoidal and onion-like),[1213]
cylinders,['#15]  perforated  lamellae,['¢!
and tulip-bulb-like,['!8] have been pro-
duced by utilizing the self-assembly
of block copolymers (BCPs). Recently,
a series of experiments successfully
fabricated striped ellipsoidal NPs with
asymmetric lamellae by employing block-
selective swelling and regioselective seeded
polymerization.l!®20] Most of current NP
fabrications are using linear BCPs and
require multi-step processes.l'2°! It is still
a challenge to achieve NPs with desired
structure and property in a robust fashion.

The topology of the BCP chains can be
used to provide a concise self-assembly
approach to address this challenge. Mod-
ern synthesis techniques enable the pre-
cise BCP synthesis with rich architec-
tures and compositions, having the advan-
tage of generating nanomaterials with tun-
able nanoscale-domain geometry, packing
symmetry, and chemical composition.[26-30]

1. Introduction

Nanoparticles (NPs) have gained significant scientific interest! ¢
in recent decades because of their highly promising emerging
applications, including sensors,!”) smart coating,®! drug delivery
systems, ! photonic crystals,'%!!] and more. NPs with abundant
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However, existing simulation tools, such as

self-consistent field theory (SCFT), Monte

Carlo (MC) and molecular dynamics (MD)
simulations, struggle to efficiently adapt appropriate BCP chain
architecture for desired NPs from a vast number of candidates.
This is because the calculations of NPs formed from the self-
assembly of BCPs in solvents are not unit-cell calculations,
making the numerical investigations time-consuming and skill-
intensive.[31341 As a result, it is highly desired to improve the ef-
ficiency of numerical calculations, especially for BCPs with com-
plex chain architecture.

In recent years, machine learning has been gradually devel-
oped to investigate self-assembly of BCPs.3*7] For example, we
note the autonomous construction of block-copolymer phase di-
agrams by theory-assisted active machine learning,*! and the
classification of metastable structures of various diblock and tri-
block copolymers using 3D convolutional neural networks.3’]
Although the current machine-learning methods can reveal the
general trend of the phase diagrams, the accurate determination
of phase boundaries is still hard to obtain and exploring unknown
phase regions still poses a big challenge.

In this paper, we developed a machine-learning method asso-
ciated with SCFT to investigate the role played by chain architec-
ture in self-assembly of NPs from A, (A, B),, miktoarm star BCPs.
This kind of chain architecture can be utilized to form anomalous

© 2024 Wiley-VCH GmbH
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Figure 1. a) Challenges in determining phase boundaries by conventional methods. Due to the constraint of discretization and chain architecture, the
value of parameter 7 =fa,/f cannot be varied at will. For N = 21, the minimal step of z is Az = 0.333, leaving a wide uncertainty region (denoted as
bluish grey band) between two different phases. b) Schematic ofthe machine-learning workflow. Steps 1to 5 constitute SCFT-assisted active-machine
learning, which samples data near the phase boundaries. Subsequently, step 6 employs the k-nearest-neighbor algorithm to select points that cross these
boundaries (interpolation fitting). Finally, step 7 performs a Gaussian process to obtain the nonlinear regression curve as the definite phase boundary.

micro-structures or stabilize unstable phases of BCP melts.!3]

We construct the corresponding phase diagram in both neu-
tral and selective solvent environments. Unlike most of previ-
ous studies, we obtain onion-like and mesoporous NPs in neu-
tral environment and hamburger-like NPs in selective environ-
ment. We emphasize that such novel phenomena are obtained
only by tailoring the topology of the miktoarm star BCPs with-
out the need for any further treatment. We demonstrate that the
SCFT-assisted maching-learning method has a major advantage
in exploring alternative and more complex architectures within
3D soft confinement. It elegantly achieves tunability of shapes
and internal structures of NPs.

2. Results and Discussion

2.1. Machine-Learning Workflow

Our system consists of a mixture of an A, (A,B); miktoarm BCP
and a homopolymer (C), where the latter acts as a poor solvent
for the BCP. We model the chain architecture of the A, (A,B),
miktoarm by using two parameters: the volume fraction of the A
component, f, and the ratio between the A, block and the entire
A component, 7 = f, /f.

To figure out the effect of chain architecture on the BCP par-
ticle morphology, we first construct a phase diagram in terms of
fand 7 in a neutral environment where the C homopolymer has
no preference toward either A or B component. Note that due
to the discretization procedure, the contour steps of A, and B-
blocks have to be a multiple of three, as the three A,B arms have
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the same length. As a result, traditional numerical methods, such
as SCFT, could only be carried out at discrete values of (z, f] with
large discrete steps, /A7 and /\f. This implies large unexplored
regions in the (z, f) phase diagram. For example, for the degree
of polymerization N = 21 and volume fraction f= 0.429, the min-
imal discrete step of 7 is rather large, /A7 = 0.333, as shown in
Figure 1a. This leads to two difficulties in the construction of the
phase-diagram. The first is that the gap between two neighbor-
ing points belonging to two different phases is large, making
it difficult to determine accurately the boundary between those
phases. The second is that phases residing in small regions in
the phase diagram may not be detected. Although the numerical
accuracy of the phase boundary can be increased by increasing N,
it causes a considerable increase in computational cost because
non-unit cell calculations are required in determining the equi-
librium structure of NPs, making it hard to accurately obtain the
phase boundaries.

To address this problem, we present a novel machine-learning
workflow, which combines SCFT-assisted active-learning
loops,1l k-nearest-neighbor algorithm,[*] Gaussian process
regression!*!] and free-energy changes calculated near the
phase boundaries. Our machine-learning workflow is shown in
Figure 1b. First, we employ SCFT-assisted active-machine learn-
ing to sample data points near the phase boundaries (steps 1-5
in Figure 1b). Subsequently, the k-nearest-neighbor algorithm
is adopted to select points that cross the phase boundaries (step
6). Finally, we utilize a Gaussian process to obtain the nonlinear
regression curve as our best estimate for the phase boundary
(steps 7 and 8). Our method is an improved version of the
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Figure 2. a) The predicted phase diagram of miktoarm BCP nanoparticles with respect to the chain architecture parameters = and f. b) The 3D patterns
of the three phases: Striped Ellipsoidal (SE), Mesoporous (MP), and Onion-like (OL). Other parameters are L, = L, = L, = 15, N, = N, = N, = 64, N;

=200, fr =0.3, ¢y = 0.2, NE =300, Nypg = 35, Nyac = Nygc = 14.

SCFT-assisted active machine-learning cycle method. As the
previous method only uses steps 1 to 5,13 its drawback is that
it cannot obtain precise phase boundaries. Our method uses
in addition the KNN method to select data pairs across phase
boundaries after the 5,, step. Then, we perform a linear inter-
polation for each data pair in order to find a point located more
precisely on the boundary. After locating as many boundary
points as possible, we conduct the Gaussian process regression
to obtain smooth and more accurate phase boundaries. The
performance of this machine-learning procedure has been
tested by reproducing the well-studied phase diagram of di-BCP
melts, acting as a preliminary test of our method. The accuracy
of the calculated phase diagram determined by the F-score
increases from F = 0.963 to 0.993, where the F-score is defined
as the arithmetic mean of the precision and recall.*?l More
details about the accuracy improvement in constructing such
phase diagrams can be found in the Supporting Information
(Figure S1, Supporting Information).

2.2. Self-Assembly of A, (A,B); NPs in Neutral Environment

We empoly our machine-learning technique to construct the
phase diagram of BCP particles formed by an A,(A,B); mik-
toarm in neutral environment, as shown in Figure 2. We find that
mesoporous (MP) and onion-like (OL) particles can be formed
in neutral environment by tunning the chain architecture. For
linear BCPs studied previously, the formation of particles with
mesoporous or onion-like structure usually require specific con-
ditions: the former requires a selective environment,['>1%] while
the latter requires extreme asymmetric A/B volume fraction.[>*3]
However, for A, (A,B); miktoarm NPs, these two structures can
be formed in neutral environment by adjusting the chain archi-
tecture. The neutral environment is obtained by equating the
Flory-Huggins parameter between the A and B components of
the BCP and the homopolymer (C), Ny ,c = Nypc. For MP struc-
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tures, the ‘A’ domains form doughnuts and cores, while the ‘B’
domains coalesce through the holes. For the range of 0.510 < f<
0.685, most of the phase diagram is occupied by the MP phase,
while the OL phase exists only in the range 0.595 < f< 0.640 and
small values of z. However, for larger f, the OL phase is always
the most stable. With large values of z and 0.510 < f'< 0.700,
A, (A,B); miktoarm tend to form conventional striped ellipsoidal
(SE) particles, similar to linear di-BCP systems in neutral envi-
ronment. Our machine-learning method predicts that the bound-
ary between the SE and MP phases decreases from 7 = 0.951 to
0.811, and then increasing back to 0.910. The boundary between
MP and OL increases from = = 0.550 to a plateau at = = 0.660,
and then continues to increase to ¢ = 1. These results are clearly
seen in Figure 2.

The lamellae exhibit high asymmetry of A/B domain thickness
for the SE and OL NPs. We find that the lamellar asymmetry
increases with increasing f. Figure 3 shows the dependence of
lamellar asymmetry in SE (z ~ 0.89) and OL (r = 0.850) nanopar-
ticles on the chain architecture parameter f. The lamellar asym-
metry is characterized by the thickness ratio of A and B domains,
y = hy/hy. This also can be seen in Figure 3a, where a series of
SE particles with 7 ~ 0.890 are shown. As fincreases, f= 0.565,
0.610, 0.655, and 0.685, the resulting y also increases, y = 1.333,
1.600, 2.000, and 2.500. We also illustrate a series of OL patterns
for 7 ~ 0.850, and increasing f=0.685, 0.715, and 0.745, as shown
in Figure 3b. It results in the corresponding values of y to in-
crease as well y = 1.200, 1.750, and 2.333. With increasing f, the
length of the B-block decreases while the length of A; and A,
blocks increases. The lamellae inside the particles exhibit a grad-
ually increasing asymmetry with increasing £, and finally the NPs
are composed of quite high asymmetric lamellae. Note that the
A, (A,B); miktoarm NPs can form lamellae even at y = 2.500 and
f=0.685. This value of flargely exceeds any value where con-
ventional di-BCPs can form lamellar structure.?**l Hence, our
strategy provides a novel way to tailor inner NP structure by de-
signing BCP chain architecture.

© 2024 Wiley-VCH GmbH
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Figure 3. a) The lamellar asymmetry in striped ellipsoidal nanoparticles for 7 ~ 0.890 and for an increasing series of f= 0.565, 0.610, 0.655, 0.685. The
values of the corresponding asymmetry parameter y = h,/hg are listed above the particles. b) The asymmetry in onion-like nanoparticles for = ~ 0.850
and f=0.685, 0.715, 0.745 (with corresponding y values). Other parameters are L, = L, = L, =15, N, = N, = N, = 64, N, = 200, fc = 0.3, ¢y = 0.2, N¢
=300, Nyag =35, Nyac = Nypc =14

Except for accommodating lamellar asymmetry, our calcula-  2.3. BCP Nanoparticles in Selective Environment
tions indicate that the ellipticity of SE NPs and the number of
layers in OL NPs can be tunned by chain architecture. With in-  In past experiments, the selectivity of the environment, i.e.,
creasing 7, the ellipticity increases for SE NPs, while for OLNPs,  the preference of the aqueous phase toward one of the
the number of layers decreases. The detailed results and mech-  two (A/B) components was often utilized to tailor the NP
anisms are discussed in the Supporting Information (Figure S2,  structure.['21521:23.24] In Figure 4 we show the phase diagram with
Supporting Information). respect to the chain architecture parameters, 7 and f, in A- and in
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Figure 4. The phase diagram of miktoarm BCP particles in selective environment plotted in the parameter space of the chain architecture parameters,
7 and f. a) The A component is preferred by the environment, N yac = 14 < N ygc = 29. b) The B component is preferred by the environment, N ypc =
29> Nygc = 14. Other parameters are L, = L, = L, = 15, N, = N, = N, = 64, N; = 200, fc = 0.3, ¢g = 0.2, N§ =300, N y pg = 35. ) The 3D patterns of
the four phases considered in (a) and (b) are indicated as Hamburger-like (HL), Mesoporous (MP), Onion-like (OL), and Inverse Onion-like (10L).

Adv. Funct. Mater. 2024, 2408311 2408311 (4 of 7) © 2024 Wiley-VCH GmbH

850807 SUOWIWOD 8A1Ie81D 3|dedldde aus Aq peueAob are Saolle YO ‘8SN JO S3INJ Joj Ak 8UlUO AB|IA UO (SUORIPUOD-PUR-SWBH W00 A8 | 1M AeIq | Ul UO//:SdNY) SUOIPUOD pue swie | 8 88S *[202/20/9T] uo AriqiTauliuo A8|1m ‘(eeng) Aisienun Bueyeg Aq TTE80KZ0Z WPR/Z00T 0T/I0pAW0D A8 |ImAreIq Ul |uo//:Sdny Wwo.j pepeojumod ‘0 ‘820€9T9T


http://www.advancedsciencenews.com
http://www.afm-journal.de

ADVANCED
SCIENCE NEWS

FUNCTIONAL

www.advancedsciencenews.com

B-selective environments. The corresponding 3D patterns are in-
dicated as well. Herein, the preference is achieved by setting dif-
ferent values of Flory-Huggins parameter between the two BCP
components (A and B) and homopolymer (C), yc # Ypc-

Figure 4a shows the phase diagram of an A-selective environ-
ment (Ny,c = 14 < Nypc = 29). The hamburger-like (HL) struc-
ture, which was observed in previous experiments only for ABC
triblock copolymers,|*3#¢] emerges in our studies. When the 7 val-
ues approach unity, the MP phase is the most stable phase for
0.510 < < 0.535, while the HL phase is the most stable one for
0.580 < f< 0.640. This leads to a phase transition from MP to OL,
followed by a HL phase for further increased f. Compared with
the neutral environment in Figure 2, the phase diagram of the
A-selective environment shows that most of the phase diagram
is occupied by OL structure, which has a lower surface energy.
However, although the region occupied by the MP phase is very
small, it is found by our machine-learning method.

Figure 4b shows the phase diagram of a B-selective environ-
ment, with Ny,c =29 > Ny = 14. Unlike Figure 4a, here an
inverse onion-like (IOL) structure emerges, where the outermost
layer is composed of the B domain. For 0.510 < f< 0.595, MP
phase is the most stable for moderate values of r, while larger or
smaller 7 value lead to a phase transition from a MP phase to an
OL one. Compared with neutral and A-selective environments,
MP structure still occupied a relatively large area in the phase di-
agram. However, the SE or HL structures completely disappear
in the B-selective environment. The asymmetry characteristic to
the two phase diagrams of Figure 4 for A/B selective environment
is attributed to the asymmetric arrangement of A/B components
in the chain architecture of A (A,B); miktoarms.

2.4. Mechanisms of Chain-Architecture-Induced Structural
Transition

We find that A, (A,B); miktoarms can form OL NPs in neutral
environment by solely modifying the chain architecture. Gener-
ally, OL NPs are only observed in selective environments, while
SE NPs with flat A/B interface are obtained in a neutral envi-
ronment. Such counter-intuitive result is attributed to the spon-
taneous curvature of A/B interface associated with an inherent
molecular architecture of the miktoarm. This can be understood
in the following way. In the limit = — 1.0, the A, (A, B); miktoarm
reduces to an AB, star BCP that has no spontaneous curvature.
However, the emergence of A, block in the three arms for 7 <
1 can generate spontaneous curvature of the A/B interface.[")
Moreover, the spontaneous curvature becomes larger for smaller
values of = because the length of A, increases as 7 decreases, lead-
ing to a phase transition from the preferred SE (flat A/B interface)
to MP, and ultimately to OL NP (curved A/B interface). The ef-
fect of fon NP is the same as that of 7. As the value of f devi-
ates away from 0.5, the spontaneous curvature of A/B interface
increases,[*’] leading to a phase transition from SE to OL NP as
shown in Figure 2. Our findings indicate that the phase diagram
reflects the competition between the spontaneous curvature and
the neutral environment conditions. The former prefers OL par-
ticle, while the latter prefers SE particle.

The emergence of asymmetric lamellae in SE NPs is attributed
to an effectvie length of the A component, I 4. To reveal the chain
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arrangement inside the NPs with asymmetric lamellae, we cal-
culate the density distribution of the A, blocks for SE particles
in two cases (f= 0.505, = 0.970, and f = 0.640, = = 0.970), as
shown in Figure 5a. The A, blocks (light blue) concentrate in the
A-domain edge, while the domain center is mainly occupied by
the A, blocks (blue). This means that three A,B miktoarm arms
are arranged along the same direction, as shown schematically
in the figure. Hence, we can define an effectvie length of A com-
ponent, s = N,; + Ny, /3. When fincreases, the symmetry of A
and B components is broken. However, as the four A segments
share the increase of the A component length, the increase of the
A-component effectvie length is not significant. As a result, the
particle maintains its lamellar structure, but the asymmetry of
the characteristic length of A and B domains increases.

For OL nanoparticles, the asymmetric lamellae is attributed
to the effect of a bridge length I,. The density distribution of
A, blocks for f= 0.610, 7 = 0.508 and for f = 0.640, = = 0.508
show that A, blocks distribute uniformly in the A domains, as
presented in Figure 5b. This means that the B-block in the three
arms of one miktoarm BCP is arranged into two neighboring B
domains. We then assert that the A, segments act as a bridge con-
necting the B domains, and the width of the A domains (i.e., the
distance between two neighboring B domains) depends mainly
on the bridge length, I, = 2N,,. With increasing f, the bridge
length I, increases, resulting in the increase of characteristic
length of A domain that facilitates the formation of asymmetric
lamellae in OL particles.

3. Conclusion

We investigate the effect of chain architecture on the self-
assembly and morphology of nanoparticles using A, (A,B); mik-
toarm star copolymers, and propose a novel machine-learning
workflow. A phase diagram is constructed for neutral, as well as
selective environments with respect to the two A/B copolymer
components. The neutral environment phase-diagram reveals
three distinct structures: striped ellipsoidal (SE), mesoporous
(MP), and onion-like (OL) particles. Interestingly, unlike previ-
ous findings on linear BCP chains, our calculations demonstrate
that by modifying the BCPs’ chain architecture, MP and OL struc-
tures can be stabilized in a neutral environment with moderate
volume fractions. By decreasing r and increasing f, the morphol-
ogy of BCP particles changes from SE to MP and finally to OL par-
ticles.

Furthermore, employing SCFT, we demonstrate that it is pos-
sible to tune the asymmetry of lamellae in SE and OL particles
by modifying the chain architecture of the A,(A,B); miktoarm
star copolymer. i) For SE particles and 0.811 < 7 < 1, the lamel-
lar asymmetry can be enhanced by increasing f, where the in-
sufficient increase of the A component effectvie length (defined
above) maintains the lamellar structure. ii) For OL particles and
0.521 £ 7 < 1, the lamellar asymmetry can be enhanced by in-
creasing f, where the bridge length (above introduced) broaden
the A domain width. Moreover, the ellipticity of SE particles and
the number of layer of OL structures can be tuned by 7. SE par-
ticles become more prolate with increasing z, while for OL parti-
cles, the number of layer decreases with increasing .

We also construct phase diagrams for A-selective and B-
selective environments in order to take into account the
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Figure 5. a) The density distribution in the SE phase of A,-blocks for f=0.505, 7 = 0.970 (left); and f= 0.640, 7 = 0.970 (right), with the corresponding
schematic arrangement of BCP chain inside the particles. b) The density distribution in the OL phase of A, blocks for f=0.610, 7 = 0.508 (left); and f=
0.640, 7 = 0.508 (right). The corresponding arrangement of BCP chains inside the particles is shown schematically. Other parameters are L, = L, = L,
=15, N, =N, =N, =64, N, =200, fz = 0.3, g = 0.2, N = 300, Nyp5 = 35, Nypc = Nygc = 14.

environment selectivity. In the A-selective environment, the OL
phase region is significantly expanded and a hamburger-like (HL)
phase emerges. In the B-selective environment, in contrast, we
observe the formation of inverse onion-like (IOL) structures and
the disappearance of the SE structures.

We show that changing chain architecture and solvent selec-
tivity to BCP blocks results in NPs with different shapes and
inner structures. Experiments showed that the shape and in-
ner structure of NPs are key factors in determining their prop-
erties. For example, droplets having different NP shapes re-
sult in different deposition patterns after drying up. By tun-
ing the ellipticity of ladened particles, the deposition pattern
changes from coffee ring to uniform thin film.*84] Moreover,
BCP particles with different inner structures and domain sym-
metry can selectively adsorb small molecules, including surfac-
tants and dyes, and exhibit different optical properties. By incor-
porating photoactive molecules, it was shown that onion-like and
striped ellipsoidal particles,!?!] or striped ellipsoidal particles with
different domain symmetry,® emit light with different colors.
Therefore, we propose an effective way of designing and fabri-
cating NPs with customized properties, utilizing self-assembly
of BCPs.

Our study brings two major advantages: i) a novel machine-
learning workflow to accurately predict phase diagram in poly-
mer science; ii) highlighting the importance of chain architec-
ture in controlling morphologies and inner structures of block
copolymer particles, and shedding light on the principles behind
self-assembly of complex nanoscale materials.

4. Experimental Section

The calculations were based on self-consistent field theory (SCFT)[34] and
machine-learning tools. For the SCFT calculations, the following parame-
ters were fixed: the size of simulation box L, x L, X L, = 15X 15X 15 (in
units of Ry), discretized into N, X N, X N, = 64 X 64 X 64 lattice sites; the
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average BCP volume fraction ¢y = 0.2; the ratio of chain length between
the homopolymer and BCP f- = 0.3; the number of contour steps along
the chain N, = 200; the Helfand coefficient, N& = 300; the Flory-Huggins
parameter between A and B, N y,g = 35 ensuring strong segregation of
the A/B domains inside the BCP particle.

The machine-learning workflow consisted of SCFT assisted active-
learning loops,[3®] k-nearest neighbor algorithm,[*?l and Gaussian process
regressionl'l on the basis of the free-energy difference near the phase
boundaries. The sampling points were selected on a 10 x 15 grid after
active-learning cycles, and the final phase diagram was predicted on a 801
X 801 grid. The number of neighbors selected by the k-nearest neighbor
algorithm is k = 3.

SCFT-checks were performed on some randomly selected phase points
determined by the machine learning procedure. It was found that the equi-
librium phases predicted by machine learning are consistent with SCFT
validations. More detail in SCFT and machine-learning procedures can be
found in Supporting Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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