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Abstract We discuss the lateral dynamics of two active force dipoles, which interact with each other via
hydrodynamic interactions in a thin fluid layer that is active and chiral. The fluid layer is modeled as
a two-dimensional (2D) compressible fluid with an odd viscosity, while the force dipole (representing an
active protein or enzyme) induces a dipolar flow. Taking into account the momentum decay in the 2D fluid,
we obtain analytically the mobility tensor that depends on the odd viscosity and includes nonreciprocal
hydrodynamic interactions. We find that the particle pair shows spiral behavior due to the transverse flow
induced by the odd viscosity. When the magnitude of the odd viscosity is large as compared with the
shear viscosity, two types of oscillatory behaviors are seen. One of them can be understood as arising from
closed orbits in dynamical systems, and its circular trajectories are determined by the ratio between the
magnitude of the odd viscosity and the force dipole. In addition, the phase diagrams of the particle dipolar
angles are obtained numerically. Our findings reveal that the nonreciprocal response leads to complex
dynamics of active particles embedded in an active fluid with odd viscosity.

1 Introduction

Enzymes are nanometer-size biomolecular complexes
that catalyze biochemical reactions and play a cru-
cial role in various life-sustaining processes. For exam-
ple, they facilitate molecular transport into the cell
and assist chemical reactions that are essential for
cellular metabolism and homeostasis [1]. In recent
years, nonequilibrium transport phenomena induced by
enzymes have attracted a considerable attention due to
novel applications such as drug delivery and the design
of synthetic nanomachines [2].
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In aqueous solutions of enzymes, enhanced diffusion
was experimentally reported for certain enzymes [3,4],
as well as for passive probe particles [5] in the presence
of substrate molecules. Here substrates are chemical
species that react with enzymes and are converted into
product molecules. When a spatial gradient in the sub-
strate molecule concentration exists, enzymes exhibit a
collective motion in the direction of higher or lower con-
centrations. This phenomenon is known as chemotaxis
[6–9] or antichemotaxis, respectively [10]. Although
a molecular diffusion enhancement was observed also
for organic chemical reactions at much smaller length
scales (subnanometer) [11,12], the observed diffusion
enhancement is still a matter of debate [13,14] and more
experiments are needed.

To better understand enzyme mobility, various theo-
retical studies using coarse-grained models have been
developed. In previous works, an enzyme was mod-
eled as built of two sub-units representing its overall
structure. The two units are connected by an elastic
spring reflecting inherent enzyme relaxation dynamics
[15]. By using equilibrium approaches, it was demon-
strated that the internal degrees of freedom leads to
enhanced diffusion of the enzyme in solution [16,17]. On
the other hand, in nonequilibrium situations, enzyme
conformational dynamics collectively induces hydrody-
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namic flows [18–20]. Furthermore, employing a force
dipole model for the enzyme, it was found that such
nonequilibrium effects lead to an increase in particle
diffusion in solutions as well as for biological mem-
branes [18–20]. More recently, hydrodynamic interac-
tions between force dipoles were taken into account, and
clustering mechanisms of force dipoles were investigated
both in flat [21] or curved [22] membrane geometries.

These enzymatic nonequilibrium effects were studied
only in passive fluids, whereas at physiological condi-
tions, other sources of nonequilibrium effects can turn
the surrounding fluids into active fluids. For example,
membrane proteins such as ATPase can autonomously
rotate in the presence of ATP (adenosine triphosphate)
or proton gradients, and their induced hydrodynamic
flows drive the surrounding membrane into an out-of-
equilibrium state [23–25]. More specifically, ATP con-
sumption and autonomous rotation of membrane pro-
teins can lead to breaking of time-reversal and parity
symmetries in membranes [26]. These ATP consump-
tion and autonomous rotation endow membranes with
active and chiral features, respectively. At length scales
larger than the mean distance between rotary proteins,
membranes with these proteins can be viewed as two-
dimensional (2D) active chiral fluids. In such active
chiral 2D systems, it is known that a dissipationless
transport coefficient called the odd viscosity emerges
[27,28]. To reveal the hydrodynamic effects of odd vis-
cosity, its consequence has been studied for the motion
of passive objects [29–33], many-body sedimentation
[34], and density waves [26,35]. One of the peculiar fea-
tures of active chiral fluids is their nonreciprocal inter-
action [31–34] that is prohibited for passive fluids. How-
ever, despite these intriguing findings, the dynamics of
active enzymes in an active chiral environment was not
studied, and the role of odd viscosity in biomembranes
remains unexplored.

In this paper, we discuss the lateral dynamics of an
enzyme pair that interacts via hydrodynamic interac-
tions as it is embedded in a thin layer of an active chi-
ral fluid. The enzymes are modeled as active particles
that induce force dipoles [20,21]. To investigate collec-
tive behavior of active particles in an active environ-
ment, we consider force dipoles in a chiral fluid layer
that is modeled as a 2D compressible fluid with odd
viscosity. Since such fluids have a nonreciprocal nature,
active particles are expected to exhibit chiral trajecto-
ries although the particles themselves are apolar and
do not have any preferred direction.

Extending our previous work [31], we derive the odd
viscosity-dependent mobility tensor that includes non-
reciprocal hydrodynamic interactions. As a minimum
model to explore hydrodynamic interactions between
active particles, we consider pairs of two active particles
and discuss the nonlinear two-body dynamics. In con-
trast to the passive fluid case without odd viscosity, we
find that active particle pairs show spiral trajectories
where one particle follows the other. When the mag-
nitude of the odd viscosity is large as compared with
the shear viscosity, particles show two types of periodic
oscillations, including one which is determined by the

Fig. 1 Schematic sketch of an active and chiral 2D fluid
layer. The infinitely large, flat, and thin 2D fluid layer (light
blue) is located at z = h and has 2D shear, dilatational, and
odd viscosities, ηs, ηd, and ηo, respectively. This fluid layer is
in contact with air (z > h) and a 3D fluid (dark blue) under-
neath (0 < z < h) characterized by a 3D shear viscosity η.
The 3D fluid is bounded from below by an impermeable flat
solid surface (brown) located at z = 0, and the 3D veloc-
ity is assumed to vanish at z = 0. The active particle that
represents an enzyme (orange disk) has radius a and can
move laterally within the 2D fluid layer. The dipolar flow
that is induced by particle “1” (“2”) is characterized by its

direction ̂d1 (̂d2) and the relative angle θ1 (θ2) as defined
in Eq. (13)

ratio between the magnitude of the odd viscosity and
force dipole. Our findings reveal that the nonreciprocal
response due to odd viscosity leads to complex dynam-
ics of active particles.

The outline of the manuscript is as follows. In Sect. 2,
we introduce the hydrodynamic equations for a 2D
active chiral fluid and derive its mobility tensor [31].
In Sect. 3, we obtain the nonlinear equations for the
distance between the two active particles and their rel-
ative polar angles [21]. Using these nonlinear equations,
we analyze in Sect. 4 the dynamics of particle pairs for
various values of odd viscosity and classify their behav-
ior into several characteristic states. Section 5 includes
further discussions, and a summary and conclusions are
presented in Sect. 6.

2 Active chiral 2D layer
2.1 Hydrodynamic equations

We consider an active, chiral, and compressible 2D
layer, which is flat, very thin, and infinitely large, as
schematically depicted in Fig. 1. The layer is in con-
tact with a 3D incompressible fluid (e.g., water), which
is bound from below by a rigid substrate. This leads
to a momentum leakage from the 2D layer to the 3D
fluid. We assume that the 3D fluid thickness h is much
smaller than any in-plane characteristic length scales
so that the lubrication approximation will hold for the
3D fluid [36,37]. The 2D compressible fluid layer can be
realized experimentally, for example, by a dilute Gibbs
monolayer composed of soluble amphiphiles that can
dissolve into the underlying 3D fluid [36]. Such a 2D/3D
material transport makes the 2D fluid compressible. We
assume that the adsorption and desorption processes
of soluble amphiphiles are instantaneous, and can be
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regarded as a limiting case of a finite relaxation time
[33].

The active chiral nature of the 2D fluid is taken
into account by introducing the concept of odd viscos-
ity. Although the regular viscosity (such as shear and
dilatational viscosities) is always positive, odd viscos-
ity can be either positive or negative, depending on the
chirality direction. At microscopic scales, the 2D odd
viscosity sign is related to the rotational direction of the
active constituents such as rotary proteins in biological
membranes [26,35]. To see clearly the effect of odd vis-
cosity on the active particle dynamics, we consider a
compressible 2D fluid [31]. The reason being that the
odd viscosity does not play a role in the velocity field
of an incompressible fluid [29]. Note that in the incom-
pressible layer limit, the fluid flow becomes independent
of the odd viscosity, as will be shown below.

We denote the 2D velocity field by v(r) with r =
(x, y) being a positional vector in 2D, and p is the
hydrostatic pressure of the 3D fluid. At low Reynolds
numbers, the momentum balance equation for the 2D
fluid can be written as [31]

ηs∇2v + ηd∇(∇ · v) + ηo∇2v∗ − h

2
∇p + f3D + F = 0.

(1)

Here, ηs, ηd, and ηo are the 2D shear, dilatational, and
odd viscosities, respectively, ∇ = (∂x, ∂y) stands for the
2D gradient operator, f3D is the vectorial force den-
sity exerted on the 2D fluid layer by the underlying
3D fluid, F is any other force density acting on the 2D
fluid, v∗

i = εijvj is the velocity vector rotated clock-
wise by π/2, and εij is the 2D Levi-Civita tensor with
εxx = εyy = 0 and εxy = −εyx = 1. Notice that the force
density f3D is given by the projection of the 3D fluid
traction on the xy plane. Thus, f3D is a 2D vector par-
allel to the 2D layer. In general, f3D can be expressed
as f3D

i = −(ζ‖δij + ζ⊥εij)vj [38], where ζ‖ is the fric-
tion coefficient representing the momentum dissipation
parallel to v, while ζ⊥ acts perpendicular to v, and δij

is the Kronecker delta.
The divergence of the in-plane velocity is given by

[36,37]

∇ · v =
h2

6η
∇2p, (2)

where η is the shear viscosity of the underlying 3D fluid.
Equation (2) can be derived by taking the divergence of
the underlying 3D fluid velocity and integrating over its
thickness (0 ≤ z ≤ h) [36]. This derivation relies on the
lubrication approximation that is justified when the 3D
fluid is shallow enough so that the vertical component
of the 3D velocity can be neglected as compared to its
in-plane components. When the thickness h is finite,
however, the 2D and 3D Stokes equations are coupled
to each other [39] and a numerical treatment is required
[40]. For analytical tractability, we do not consider such
an intermediate situation in this work.

2.2 Mobility tensor of an active chiral layer

The force density F acting on the fluid layer at position
r′ is connected via a second-rank mobility tensor G(r)
with the induced fluid velocity at position r:

vi(r) =
∫

d2r′ Gij (r − r′) Fj (r′) . (3)

Solving the coupled hydrodynamic equations (1) and
(2) in Fourier space, we show in Appendix A that the
mobility tensor Gij [k] can be obtained as

Gij [k] =

ηs(k
2 + κ2)̂ki

̂kj + (ηs + ηd)(k
2 + λ2)kikj − ηo(k

2 + ν2)εij

ηs(ηs + ηd) (k2 + κ2) (k2 + λ2) + η2
o (k2 + ν2)2

,

(4)

where k = (kx, ky) is the 2D wavevector, k = |k|, k̂i =
ki/k, and ki = −εij k̂j . In the above, we have introduced
three hydrodynamic screening lengths

κ−1 =
√

ηs
ζ‖

, λ−1 =

√
h(ηs + ηd)
3η + hζ‖

, ν−1 =
√

ηo
ζ⊥

.

(5)

Due to the transverse momentum decay ζ⊥, the screen-
ing length ν−1 depends only on the odd viscosity ηo.
This screening length was not considered in our previ-
ous work [31].

In the special 2D incompressible limit ηd → ∞,
Eq. (4) reduces to the mobility tensor for an incom-
pressible supported 2D fluid [41,42]

G0
ij [k] =

δij − k̂ik̂j

ηs (k2 + κ2)
, (6)

where the relation kikj = δij − k̂ik̂j has been used.
Note that G0 in this limit does not depend on the odd
viscosity ηo [29–31,34].

For a 2D fluid layer supported by a rigid substrate,
the parallel friction coefficient is given by ζ‖ � η/h
[43] when h is small enough as compared to all the
three screening lengths in Eq. (5). In order to obtain the
real-space mobility tensor analytically, we assume that
the three hydrodynamic screening lengths in Eq. (5)
are all identical. By setting ηd = 3ηs and assuming
that the transverse friction ζ⊥ is proportional to the
ratio between the odd and shear viscosities, i.e., ζ⊥ =
(ηo/ηs)ζ‖, we obtain κ−1 = λ−1 = ν−1 = ηsh/η. Then,
Eq. (4) can be simplified as

Gij [k] =
4δij − 3k̂ik̂j − μεij

ηs(4 + μ2) (k2 + κ2)
, (7)

where μ = ηo/ηs. The dimensionless parameter μ is a
measure of how far the 2D active chiral fluid departs
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from its passive analog, due to the active constituents
that self-spin at microscopic scales.

The real-space representation of the mobility tensor
can be obtained by the inverse Fourier transform of
Eq. (7). The derivation is shown in Appendix B and
the final result is

Gij(r) = C1(r)δij + C2(r)r̂ir̂j + C3(r)εij , (8)

where r̂ = r/r is a unit vector (r = |r|) and the three
position-dependent coefficients are

C1(r) =
1

2πηs(4 + μ2)

[
− 3

(κr)2
+ 4K0(κr) +

3K1(κr)
κr

]
,

C2(r) =
3

2πηs(4 + μ2)

[
2

(κr)2
− K0(κr) − 2K1(κr)

κr

]
,

C3(r) = − μK0(κr)
2πηs(4 + μ2)

, (9)

and Kn(x) is the modified Bessel function of the second
kind [44]. Note that C3 exists only when μ �= 0 (nonzero
odd viscosity).

Expanding the mobility tensor, Eq. (8), for κr � 1,
we obtain

Gij(r) ≈ 1
8πηs(4 + μ2)

[(
−3 − 10γ + 10 ln

2
κr

)
δij

+ 6r̂ir̂j + 4μ

(
γ − ln

2
κr

)
εij

]
, (10)

where γ ≈ 0.5772 is Euler’s constant. In this limit, the
mobility tensor depends logarithmically on the distance
r. In the opposite limit of κr 
 1, we obtain

Gij(r) ≈ 1
2πηs(4 + μ2)

×
[

3
(κr)2

(−δij + 2r̂ir̂j) − μ

√
π

2κr
e−κrεij

]
.

(11)

The term due to the regular viscosities in G decays alge-
braically ∼(κr)−2, while the term due to odd viscosity
decreases exponentially ∼e−κr.

In the following, we concentrate on the regime κr � 1
in order to investigate the effect of odd viscosity on the
collective dynamics of active particles. The κr � 1 limit
is justified when the product of the 2D shear viscosity
ηs and the 3D fluid thickness h is much larger than
the 3D viscosity η, as occurring in physiological condi-
tions. Using typical values such as ηs ≈ 10−9 Pa s m,
h ≈ 10−8 m, and η ≈ 10−3 Pa s [45,46], we find
κ−1 ≈ 10−7 m. When active particles move across
length scales 1nm ≤ r ≤ 10 nm, we have 10−2 ≤ κr ≤
10−1 and the condition κr � 1 is satisfied.

3 Two-body hydrodynamic interactions

3.1 Hydrodynamic force dipole

In the 2D active chiral compressible fluid introduced
above, we consider two active particles of radius a that
interact hydrodynamically with each other, as depicted
in Fig. 1. A single active particle can represent an enzy-
matic molecule. Since enzymes generate dipolar flows
while changing their conformations [20], they can be
modeled as active particles that induce hydrodynamic
force dipole [19,21]. Without any hydrodynamic inter-
actions between other active particles, a single particle
with a force dipole does not show any motility because
the force-free condition is imposed on each particle.

When an active particle with a force dipole resides at
the origin and its dipole is directed along a given unit
vector d̂, it induces a velocity field given by [20]

vi(r) = −σd̂k∂kGij(r)d̂j . (12)

Fig. 2 Streamlines of the 2D velocity v(x, y) generated by

a force dipole. The force dipole along the x-axis [̂d = (1, 0)]
is centered at the origin (the black double arrow) for a μ = 0
(no odd viscosity, ηo = 0) and b μ = 1 [see Eq. (14)]. The
blue arrows indicate the flow direction
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Fig. 3 Plots of the rescaled distance between the two par-
ticles, r = |r12|, as a function of the rescaled time t for
ηo = 0. a “Convergence state” (CS, crosses in Fig. 9)
for (θ1, θ2) = (π/2, π/2). The black circle corresponds to

the collision time between the two particles. b “Mono-
tonic divergence state” (MDS, solid triangles in Fig. 9) for
(θ1, θ2) = (π/4, π/4). c “Nonmonotonic divergence state”
(NDS, open triangles in Fig. 9) for (θ1, θ2) = (π/2, π/4)

Here, σ = fa is the magnitude of the force dipole where
f is the force magnitude and a � r is the distance
between the two point forces (the particle size).

Returning to the particle pair, the vector connecting
particle “1” to particle “2” is denoted as r12, and the
two relative angles θ1, θ2 are defined as

cos θ1 =
d̂1 · r12
|r12| , cos θ2 =

d̂2 · r21
|r21| , (13)

where d̂1 (d̂2) is the dipolar direction of particle 1 (2).
Substituting Eq. (10) into Eq. (12), we obtain the trans-
lational velocities of particle 2 relative to particle 1

v21(r) =
σ1

4πηs(4 + μ2)r

×
[
3 cos(2θ1)r̂12 + 2 cos θ1d̂1 − 2μ cos θ1d̂∗

1

]
,

(14)

with d̂∗
i = εij d̂j . The derivation of Eq. (14) is shown in

Appendix C.
The velocity field that is induced by a force dipole

is plotted in Fig. 2a, b for μ = 0 (ηo = 0) and
μ = 1, respectively. Here, the force dipole is located
at the origin and is directed along the x-direction with
d̂1 = (1, 0). When μ = 0 (as in Fig. 2a), the flow is
symmetric with respect to both the x- and y- axes, and
the azimuthal component d̂1 causes surrounding fluids
to flow away from the origin. This leads to an outward
flow around the force dipole. On the other hand, when
μ = 1 (as in Fig. 2b), one sees that the emerging flow
lines are tilted along the diagonal line x = y. This sym-
metry breaking in the x- and y- axes is due to the per-
pendicular contribution d̂∗

1 in Eq. (14) when μ �= 0.

3.2 Pair dynamics of active particles

We proceed by examining the hydrodynamic interac-
tions between a pair of active particles, as depicted in
Fig. 1. Each particle moves laterally and rotates in the
2D fluid as a result of the fluid velocity induced by the
other particle. The separation between the two particles
evolves as ṙ = dr/dt = (v21−v12)·r̂ [21], where v21 and
v12 are the translational velocities of particle 2 relative
to 1 [see Eq. (14)] and vice versa, and r = r12. When
σ1 = σ2 = σ, the distance between the two particles
evolves as

ṙ =
σ

4πηs(4 + μ2)r

×
[

2 + 4 cos(2θ1) + 4 cos(2θ2) − μ [sin(2θ1) + sin(2θ2)]

]

.

(15)

Each particle rotates at a rate equal to half the vor-
ticity of the flow velocity induced by the other particle:
Ω1 = (∇ × v12)z/2 and Ω2 = (∇ × v21)z/2 [21], where
Ω1 and Ω2 are the z-components of vortices for the
2D rotation. An additional effect of rotating r emerges
when the induced velocity has an azimuthal component
[21]. In total, the two angles evolve as

θ̇1 = − σ

4πηs(4 + μ2)r2
[4 sin(2θ2) + μ cos(2θ2)] + φ̇,

θ̇2 = − σ

4πηs(4 + μ2)r2
[4 sin(2θ1) + μ cos(2θ1)] + φ̇,

(16)

where φ̇ is an angular rotation due to the azimuthal
components d̂ and d̂∗ of the velocity in Eq. (14):

φ̇ = − σ

4πηs(4 + μ2)r2

×
[
sin(2θ1) + sin(2θ2) + μ [2 + cos(2θ1) + cos(2θ2)]

]
.

(17)
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Fig. 4 Pair dynamics of two active particles (denoted as
red and green) initially located at (x, y) = (0, 0) and (4a, 0).
The arrows indicate the trajectory direction. a Trajecto-
ries of a particle pair whose initial orientation is (θ1, θ2) =
(3π/4, π/2) for μ = 3 [“spiral state 1” (SP1, orange

diamonds in Fig. 9)]. b Trajectories of a particle pair whose
initial orientation is (θ1, θ2) = (π/2, π/16) for μ = 3
[“spiral state 2” (SP2, blue inverted triangles in Fig. 9)].
c Trajectories of a particle pair whose initial orientation is
(θ1, θ2) = (3π/4, π/2) for μ = 10

Fig. 5 Pair dynamics of active particles in the limit of
μ � 1. a The particles are initially located at (x, y) =
(0, 0) and (4a, 0) with dipolar orientations θ1 = 0.64π and
θ2 = 0.35π, respectively. Snapshots of the particle dynam-

ics at b t/(|ηo|a2/σ) = 103 and c t/(|ηo|a2/σ) = 2 × 103.
The pair dynamics corresponds to the “circular oscillation
state” (COS, green circles) in the phase space in Fig. 9c

More details about the derivation of Eq. (16) are given
in Appendix C. From Eqs. (16) and (17), one can see
that the angular evolution is determined not only by
the angle of the other particle, but also by its own angle
because there is a coupling between θ1 and θ2, Eq. (17).
The asymptotic expressions of Eqs. (15) and (16) for
the two limits of μ � 1 and μ 
 1 are also given in
Appendix C.

4 Numerical results

We investigate the dynamics of two active particles by
solving the nonlinear equation (14) for the absolute
positions of the both dipoles and Eqs. (15)–(17) for r,
θ1, and θ2. First, we analyze the active particle trajec-

tories for the three cases (ηo = 0, ηo �= 0, and ηo → ∞),
and classify their behaviors into several characteristic
states. Then, we perform numerical calculations with
different initial relative angles, and plot the phase dia-
gram for the two angles while keeping the initial inter-
particle distance r constant. To understand the mech-
anism of the particle collective behavior, we plot the
phase space for θ1 and θ2 using Eq. (16), and perform
a linear stability analysis to obtain the characteristic
time scale for the pair dynamics.

4.1 Collective behavior of the active particle pair

When ηo = 0 (or equivalently, μ = 0), we examine the
typical temporal evolution of the pair inter-particle dis-
tance r for various values of the initial angles, θ1 and
θ2, while keeping the initial distance fixed at r = 4a.
When (θ1, θ2) = (π/2, π/2), Fig. 3a shows that the two
particles approach each other and collide at r = a. For
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Fig. 6 Inter-particle distance r/a of a particle pair (black
line) and the two dipolar orientations θ1, θ2 (red dashed and
green dotted lines), respectively as a function of the dimen-
sionless time t/(|ηo|a2/σ). The initial values are r/a = 4,
θ1 = 0.64π, and θ2 = 0.35π in the limit of μ � 1

other values of (θ1, θ2), they move away monotonically
and nonmonotonically as shown in Fig. 3b [(θ1, θ2) =
(π/4, π/4)] and Fig. 3c [(θ1, θ2) = (π/2, π/4)]. We clas-
sify these three behaviors as the “convergence state”
(CS), “monotonic divergence state” (MDS), and “non-
monotonic divergence state” (NDS), shown respectively
in Fig. 3a–c.

Finite values of the odd viscosity (μ �= 0) result
in a perpendicular (nonreciprocal) component d̂∗

1 in
the induced velocity, as in Eq. (14). Consequently, it
leads to the “spiral state 1” (SP1) when (θ1, θ2) =
(3π/4, π/2), as shown in Fig. 4a. For the angles
(θ1, θ2) = (π/2, π/16) (Fig. 4b), the active particles
show orbiting behavior following attractive or repulsive
trajectories before the spiral behavior, which we call the

“spiral state 2” (SP2). As the odd viscosity increases,
spiral patterns become more evident as shown in Fig. 4c
for μ = 10.

In the limit of μ 
 1, two types of oscillatory
behaviors are seen and they depend on the angles.
Their trajectories and relative dynamics are presented
in Figs. 5, 6, 7, and 8. For the dipolar angles (θ1, θ2) =
(0.64π, 0.35π), Fig. 5 shows that one particle follows the
other, and they make a circular orbit around a com-
mon point located at (x, y) ≈ (2a, 4a). Figure 6 shows
that the distance and the angles periodically oscillate in
time. This means that the active particles do not remain
too close or too far away from each other along the cir-
cular trajectory. For (θ1, θ2) = (3π/4, π/4), as shown in
Fig. 7, the particles manifest a reciprocal rotation that
leads to radial trajectories. Figure 8 exhibits an oscilla-
tion period in r, θ1, and θ2, which is smaller than the
period for the circular oscillation shown in Fig. 6. We
coin the oscillatory behaviors in Figs. 5 and 7 as the
“circular oscillation state” (COS) and “radial oscilla-
tion state” (ROS), respectively.

4.2 State diagram in the (θ1, θ2) plane

To examine the dependence of the active particle
dynamics on the polar angles, we numerically integrate
Eqs. (14) and (16) with 13 different initial values of
θ1 for each θ2. Figure 9a–c shows the state diagrams
in the (θ1, θ2) plane for μ = 0, 3, and μ 
 1, respec-
tively. State diagrams are constructed by varying ini-
tial angles and categorizing corresponding states of the
active particle pair, as shown in Sect. 4.1. When μ = 0,
Fig. 9a shows that the particle pair exhibits an MDS
behavior (solid triangles) along the diagonal (θ1 = θ2),
except for (θ1, θ2) = (π/2, π/2). However, the parti-
cle pair along the other diagonal (θ1 = −θ2) exhibits
a CS behavior (crosses). Note that around the points
of (θ1, θ2) = (π/2, 0), (0, π/2), (π/2, π), and (π, π/2),
the particles show an MDS behavior, whereas an NDS

Fig. 7 Pair dynamics of active particles in the limit of
μ � 1. a The particles are initially located at (x, y) =
(0, 0) and (4a, 0) with dipolar orientations θ1 = 3π/4 and
θ2 = π/4, respectively. Snapshots of the particle dynamics

at b t/(|ηo|a2/σ) = 103 and c t/(|ηo|a2/σ) = 4 × 103. The
pair dynamics corresponds to the “radial oscillation state”
(ROS, red stars) in the phase space in Fig. 9c
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Fig. 8 Inter-particle distance r/a of a particle pair (black
line), and the two dipolar orientations θ1, θ2 (red dashed and
green dotted lines) as a function of the dimensionless time
t/(|ηo|a2/σ). The initial values are r/a = 4, θ1 = 3π/4, and
θ2 = π/4 in the limit of μ �1

behavior (open triangles) is observed for most of the
other points in the (θ1, θ2) plane.

When the odd viscosity is finite, as shown in Fig. 9b,
SP1 (orange diamonds) and SP2 (blue inverted tri-
angles) behaviors emerge, and the active particle pair
shows the two types of spiral behavior, as in Fig. 4a,
b. In the limit of μ 
 1, as shown in Fig. 9c, the
spiral states disappear altogether and the character-
istic circular and radial oscillation states appear in
turn. One can see that around the symmetrical point,
(θ1, θ2) = (π/2, π/2), the COS (green circles) domi-
nates, while the particles show an ROS behavior (red
stars) in other points of the (θ1, θ2) plane.

4.3 Phase space in dynamical systems

By connecting the state diagrams with the dynamics
of the particle angles, we can analyze more quantita-
tively the behavior of the active particle pair in the
(θ1, θ2) plane. The phase space of θ1 and θ2 are plotted
in Fig. 9d–f for μ = 0, 3, and μ 
 1, respectively. The
shaded regions in those figure parts indicate that the
active particles approach each other (ṙ < 0). The phase
plane for μ = 0 is shown in Fig. 9d, where the vector
field (θ̇1, θ̇2) is calculated from Eqs. (C9) and (C10)
in Appendix C, while keeping r const. One can see
that there are closed orbits whose centers are located at
(θ1, θ2) = (π/2, 0), (0, π/2), (π/2, π), and (π, π/2) [47].
The point (π/2, π/2) is unstable along the diagonal line
(θ1 = θ2), leading to trajectories that move away from
that point. On the other hand, the trajectory start-
ing on the opposite diagonal line (θ1 = −θ2) moves
towards the (π/2, π/2) point [47]. This point is called
a hyperbolic saddle-point [21,47]. Any perturbation of
these diagonal points kicks a system into a closed orbit

around one of four centers at (π/2, 0), (0, π/2), (π/2, π),
or (π, π/2) (fixed points) [21,47].

Using linear stability analysis, we can calculate the
time scale of the nonlinear oscillations. We assume that
the angles θ1 and θ2 evolve exponentially as eαt when
the active particles at a separation d are perturbed
from one of the fixed points. The obtained eigenval-
ues α = ±√

6σi/(4πηsd
2) are purely imaginary, leading

to an oscillation period T0 = 2π/|α| = 8π2ηsd
2/(

√
6σ).

Note that most of the initial conditions θ1, θ2 in Fig. 9a
show the divergence state (MDS or NDS) for which d is
not constant in time. Hence, the particles do not show
closed orbits characterized by T0.

When μ is finite, the eigenvalue α has a negative
real part, Re(α) < 0, leading to exponentially decay-
ing behavior. As seen in Fig. 9e, the fixed points
at (π/2, π) and (π, π/2) in Fig. 9d change to stable
spirals that are located approximately at (π/2, 3π/4)
and (3π/4, π/2). Note that the hyperbolic saddle point
remains at (π/2, π/2). Due to the emerging spirals,
most initial values converge to one of the fixed points,
leading to constant angles θ1, θ2 in the long-time limit.
Since the spiral centers are not inside the shaded region,
particles show the divergence spiral state rather than
the convergence spiral state. Apart from the spirals,
some of the initial values do not directly converge to
the spiral centers located approximately at (3π/4, π/2)
and (π/2, 3π/4). Thus, the particles show reciprocating
trajectories at an early stage, while they converge to
the spirals in the long-time limit with trajectories as in
Fig. 4b.

When the magnitude of the odd viscosity is large as
compared with the shear viscosity (μ → ∞), Re(α) →
0, and the fixed points with closed orbits again emerge
at (θ1, θ2) ≈ (0.37π, 0.64π) and (0.64π, 0.37π), as can
be seen in Fig. 9f. Active particles show an MDS behav-
ior along the diagonal line θ1 = θ2, and any perturba-
tion from this line kicks the particles away into either
the COS (green circles) or ROS (red stars) regions.
The centers are characterized by the period T∞ =
4
√

3π2|ηo|d2/(
√

5σ) ∼ |ηo| and the oscillations are gov-
erned by the magnitude of odd viscosity. This oscilla-
tion period is now determined by the ratio between the
odd-viscous resistance |ηo|d and the characteristic force
due to hydrodynamic interactions σ/d.

5 Discussion

When the odd viscosity is zero, the active particle pair
mostly shows MDS (Fig. 3b) and NDS (Fig. 3c) behav-
iors. Generally speaking, one can see that the azimuthal
component d̂ in Eq. (14) due to the induced flow causes
the particle pair to unbind and run away from each
other. This leads to the above diverging states. When
the odd viscosity is finite, the particle pair displays spi-
ral states (Fig. 4) that are due to both the azimuthal
d̂1 and nonreciprocal components d̂∗

1. However, when
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Fig. 9 State diagram in the (θ1, θ2) plane for a μ = 0, b
μ = 3, and c μ � 1. Different symbols represent different
pair dynamics: “monotonic divergence state” (MDS, solid
triangles), “nonmonotonic divergence state” (NDS, open tri-
angles), “convergence state” (CS, crosses), “spiral state 1”
(SP1, orange diamonds), “spiral state 2” (SP2, blue inverted

triangles), “circular oscillation state” (COS, green circles),
and “radial oscillation state” (ROS, red stars). The phase
behavior of (θ1, θ2) for a fixed value of r for d μ = 0 [see
Eqs. (C9) and (C10)], e μ = 3 [see Eq. (16)], and f μ � 1
[see Eqs. (C12) and (C13)]. Shaded regions indicate that the
particle pair approaches each other, i.e., when ṙ < 0

the odd viscosity dominates, the d̂-term vanishes and
the nonreciprocal term d̂∗ causes the pair to exhibit
an oscillatory behavior (Figs. 5 and 7). These results
demonstrate that the nonreciprocal interaction due to
odd viscosity gives rise not only to chiral spiral behav-
ior, but also to oscillatory pair dynamics at sufficiently
large values of the odd viscosity.

To see the effect of odd viscosity on the dynamics of
a pair of active particles, we compare our results with
those for a passive incompressible fluid without odd vis-
cosity [21]. At length scales smaller than the hydrody-
namic screening length, Manikantan showed [21] that
pairs of particles display oscillatory dynamics in a 1D
coordinate system where one particle follows the other
one. In contrast, our results revealed that the particles
show an oscillatory behavior in 2D (as in Figs. 5 and 7)
due to the nonreciprocal interaction term εij in Eq. (8).
On the other hand, at length scales larger than the
hydrodynamic screening length, the odd-viscosity term

becomes exponentially smaller than the regular viscos-
ity terms, as seen in Eq. (11). This leads to vanishing
chiral and oscillatory dynamics. Furthermore, cluster-
ing behavior due to momentum leakage can emerge, as
was observed before [21].

The inter-particle distance r shown in Fig. 6 repre-
sents the oscillatory behavior whose period is deter-
mined from the eigenvalue, T∞/(|ηo|a2/σ) ≈ 490, where
d = 4a is used. Note that the ROS region (shown in
Fig. 7) is not determined by T∞ because the oscilla-
tory behavior is not due to the closed orbits around
the centers located approximately at (0.37π, 0.64π) or
(0.64π, 0.37π). This can be understood by the fact that
the area with green circles in Fig. 9c almost overlaps
with the area around these centers in Fig. 9f. Note that
such an oscillatory behavior is not observed in passive
systems, where the oscillations are governed solely by
closed orbits around fixed points in dynamical systems
[21].
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It is useful to give some numerical estimates of the
physical quantities in our model. Considering enzy-
matic molecules, we use typical molecular size a ≈
10−9m and estimate the exerted force f ≈ 10−11N
to obtain σ ≈ 10−20N m. Experimental and theoreti-
cal findings showed that fluids with spinning particles
exhibit an odd viscosity that is slightly smaller than
the shear viscosity, i.e., |μ| � 1 [38,48]. In such an odd-
viscous fluid, one might observe spiral trajectories (see
Fig. 4).

For living systems, however, odd viscosity has not yet
been measured, and the possible μ magnitude can vary
significantly depending on the degree of activity. In the
limit of μ 
 1, the active particles show circular tra-
jectories (see Fig. 5) with the period T∞ ≈ 3 × 10−5s,
where we have assumed d = a and ηo ≈ 10−8 Pa s m
[38]. Since this time scale is comparable to the period
of biomolecular chemical reactions catalyzed by fast
enzymes such as catalase or urease [18], odd viscosity
would affect the chemical reactions through the enzy-
matic collective behavior.

Experimentally, circular pair dynamics predicted in
the limit of μ 
 1 can be investigated by observing
the response of the surrounding passive inclusions [49].
Using optical tweezers, Svetlizky et al. examined the
response of a 2D colloidal suspension to a localized cir-
cular motion. Their result suggests that the circular
motion of a pair particle in the presence of odd viscos-
ity can be evaluated by the symmetry breaking in the
correlation function of the surrounding passive particles
[49].

6 Conclusion and outlook

In this paper, we have presented a theory of the dynam-
ics of a pair of active force dipoles in a 2D active chi-
ral fluid characterized by an odd viscosity ηo. The 2D
active chiral fluid is described by a mobility tensor in
Eq. (8) with an asymmetric (nonreciprocal) part that is
a direct consequence of a finite odd viscosity (ηo �= 0).
Without the odd viscosity, the particle pair shows both
convergence and divergence states, as shown in Fig. 3.
However, with finite values of the odd viscosity, the
particles start to exhibit various chiral pair dynamics,
such as spiral (Fig. 4), circular (Fig. 5), and radial tra-
jectories (Fig. 7), and this chiral dynamics is due to the
antisymmetric (nonreciprocal) component of the mobil-
ity tensor. The circular trajectory can be understood as
arising from closed orbits at sufficiently large odd vis-
cosity. Furthermore, our results demonstrate that the
nonreciprocal interaction due to the odd viscosity leads
to a wealth of pair dynamics of active particles.

In this work, we have considered a transverse fric-
tion coefficient ζ⊥ between a 2D fluid in contact with
an underlying 3D fluid. In other studies, such trans-
verse momentum leakage from the 2D layer to the 3D
fluid beneath it was attributed to an anisotropic sub-
strate [38] or a Coriolis force in geophysical systems
[50,51]. Here, we show that transverse friction can orig-

inate from the odd viscosity of the 3D fluid. When such
an odd viscosity is present in the underlying 3D fluid,
an additional term η3D

o ∂z∇3D ×u will appear in the 3D
Stokes equation [34,35], where ∇3D is the 3D gradient
operator and u is the 3D fluid velocity. By employing
the lubrication approximation for the 3D fluid, we can
obtain the force arising from the 3D odd viscosity on
the 2D fluid as η3D

o v∗/h. This means that the 3D odd
viscosity gives rise to a transverse friction coefficient,
ζ⊥ = η3D

o /h. A more detailed discussion of such trans-
verse flows due to odd viscosity will be given elsewhere.

The 2D odd viscosity can vary in the 2D plane,
although such an effect was not considered in the
present work. In actual biomembranes, active proteins
are often inhomogeneously distributed in the membrane
and form active protein-rich domains that are called
lipid rafts. The odd viscosity can then be different
inside and outside the raft domain [32], and the spatial
variation of the odd viscosity needs to be considered.
Some micro-organisms are known to exhibit directional
motions along viscosity gradients that are called visco-
taxis [52]. Hence, it will be of value to explore how the
nonreciprocal flow field due to odd viscosity gradients
couples with the viscotaxis convection. This interesting
question is left for future investigations.
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Appendix A: Derivation of the mobility ten-
sor Gij [k] in Eq. (4)

We derive the mobility tensor in Fourier space G[k] as given
by Eq. (4), following a similar derivation in Ref. [31]. The
2D Fourier transform of v(r) is defined by

v[k] =

∫

d2r v(r)e−ik·r, (A1)
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with k = (kx, ky), and the inverse Fourier transform is

v(r) =

∫

d2k

(2π)2
v[k]eik·r. (A2)

Similarly, the 2D Fourier transform of the pressure p(r) and
force density F(r) is p[k] and F[k], respectively. In Fourier
space, Eq. (1) becomes

− ηsk
2v[k] − ηdk2

̂k̂k · v[k] − ηok
2(̂kk · v[k] − k̂k · v[k])

− ih

2
kp[k]̂k − (

ζ‖v[k] + ζ⊥ε · v[k]
)

+ F[k] = 0, (A3)

or equivalently

− ηsk
2v[k] − ηdk2v‖[k]̂k − ηok

2(v⊥[k]̂k − v‖[k]k)

− ih

2
kp[k]̂k − (

ζ‖v[k] + ζ⊥ε · v[k]
)

+ F[k] = 0,

(A4)

where the two velocity components are v‖[k] = ̂k · v[k] and

v⊥[k] = k · v[k]. The compressibility condition, Eq. (2),
becomes

ik̂k · v[k] = ikv‖[k] = −h2

6η
k2p[k]. (A5)

Substituting Eq. (A5) into Eq. (A3) to eliminate p[k], we
obtain

− ηsk
2v[k] − ηdk2v‖[k]̂k − ηok

2(v⊥[k]̂k − v‖[k]k)

− 3η

h
v‖[k]̂k − (

ζ‖v[k] + ζ⊥ε · v[k]
)

+ F[k] = 0.

(A6)

Hence, the force density in Fourier space, F[k], is written as

(

F‖[k]
F⊥[k]

)

=

(

(ηs + ηd)k
2 + 3η/h + ζ‖ ηok

2 + ζ⊥
−(ηok

2 + ζ⊥) ηsk
2 + ζ‖

) (

v‖[k]
v⊥[k]

)

.

(A7)

Since the mobility tensor G[k] in Fourier space satisfies the
relation v[k] = G[k] · F[k], we obtain G[k] as in Eq. (4):

Gij [k]

=
ηs(k2 + κ2)̂ki

̂kj + (ηs + ηd)(k2 + λ2)kikj − ηo(k2 + ν2)εij

ηs(ηs + ηd) (k2 + κ2) (k2 + λ2) + η2
o (k2 + ν2)2

.

(A8)

Appendix B: Derivation of the mobility ten-
sor Gij(r) in Eq. (8)

We obtain G(r) by performing the inverse Fourier transform
of G[k], Eq. (7). By calculating Gii, Gij r̂ir̂j , and Gijεij [31],
we obtain

2C1 + C2 =
5

ηs(4 + μ2)

∫

d2k

(2π)2
1

k2 + κ2
eikr cos ϕ

=
5

2πηs(4 + μ2)

∫ ∞

0

dk
kJ0(kr)

k2 + κ2

=
5K0(κr)

2πηs(4 + μ2)
, (B1)

where cos ϕ = ̂k · r̂ in the integrand, ϕ is the angle between
the vectors k and r, μ = ηo/ηs, and Jn(x) and Kn(x) are
the Bessel function of the first kind and the modified Bessel
function of the second kind, respectively [44]. In addition,

C1 + C2 =
1

ηs(4 + μ2)

∫

d2k

(2π)2
4 − 3 cos2 ϕ

k2 + κ2
eikr cos ϕ

=
1

2πηs(4 + μ2)

∫ ∞

0

dk
krJ0(kr) + 3J1(kr)

r(k2 + κ2)

=
1

2πηs(4 + μ2)

[

3

(κr)2
+ K0(κr) − 3

κr

]

,

(B2)

and

C3 = − μ

ηs(4 + μ2)

∫

d2k

(2π)2
1

k2 + κ2
eikr cos ϕ

= − μK0(κr)

2πηs(4 + μ2)
. (B3)

From Eqs. (B1) and (B2), we obtain Eq. (9) for the three
coefficients, C1, C2, and C3.

Appendix C: Derivation of Eqs. (14) and
(16) and their asymptotic expressions

We derive the dynamics of the inter-particle distance r
in Eq. (14) and the particle polar angles θ1 and θ2 in
Eq. (16). Substituting Eq. (10) into Eq. (12), we obtain the
i-component of the in-plane velocity v21 of active particle 2
relative to 1 as

v21,i(r12) = − σ1 ̂d1,k
̂d1,j

4πηs(4 + μ2)r

×
[

3(δik r̂12,j + δkj r̂12,i) − 6r̂12,ir̂12,j r̂12,k

− (5δij − 2μεij)r̂12,k

]

, (C1)

where σ1 is the force dipole magnitude for particle 1, ̂d1 is
the dipolar direction of particle 1, δij is the Kronecker delta,
and εij is the 2D Levi-Civita tensor. Through Eq. (13), we
obtain v21 in Eq. (14)

v21(r) =
σ1

4πηs(4 + μ2)r

×
[

3 cos(2θ1)r̂12 + 2 cos θ1̂d1 − 2μ cos θ1̂d∗
1

]

,

(C2)

and similarly for v12.
The two vorticity parameters (Ω1, Ω2) due to the other

particle can be written as

2Ω1 = (∇ × v12)z = − σ

2πηs(4 + μ2)r2

[
4 sin(2θ2) + μ cos(2θ2)

]
,

2Ω2 = (∇ × v21)z = − σ

2πηs(4 + μ2)r2

[
4 sin(2θ1) + μ cos(2θ1)

]
,

(C3)
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where Ω1 and Ω2 are scalar for 2D rotation. The angular
rotation ω due to the azimuthal component of the velocity
of Eq. (14) can be expressed as

ω =
1

r

[

r̂ ×
(

(v21 − v12) · ̂t̂t
)]

z
, (C4)

where ̂ti = −εij r̂j is a unit vector perpendicular to r̂, and
̂t̂t is a second-rank tensor. Notice that the angular rotation
ω is the z-component of the right-hand-side of Eq. (C4) as
the rotation occurs in 2D. Since the azimuthal component
of the velocity is given by

(v21 − v12) · t̂ =
σ

4πηs(4 + μ2)r

×
[
sin(2θ1) + sin(2θ2) + 2μ(cos2 θ1 + cos2 θ2)

]
,

(C5)

the rotation of the inter-particle distance r becomes

ω =
σ

4πηs(4 + μ2)r2

×
[

sin(2θ1) + sin(2θ2) + 2μ(cos2 θ1 + cos2 θ2)
]

.

(C6)

We note that the angular rotation due to the azimuthal
velocity can be expressed as φ̇ = dφ/dt = −ω. Here, the
opposite sign of ω is due to the fact that the angles θ1 and
θ2 decrease when the inter-particle line rotates in counter-
clockwise (clockwise) direction for ω > 0 (ω < 0). Through

the relation θ̇1 = Ω1+φ̇ and θ̇2 = Ω2+φ̇, we obtain Eq. (16):

θ̇1 = − σ

4πηs(4 + μ2)r2
[4 sin(2θ2) + μ cos(2θ2)] + φ̇,

θ̇2 = − σ

4πηs(4 + μ2)r2
[4 sin(2θ1) + μ cos(2θ1)] + φ̇.

(C7)

In the limit of μ � 1, the relative dynamics of Eqs. (15)
and (16) reduces to

ṙ ≈ σ

8πηsr

[

1 + 2 cos(2θ1) + 2 cos(2θ2)

− μ

2
[sin(2θ1) + sin(2θ2)]

]

, (C8)

θ̇1 ≈ − σ

16πηsr2

[

sin(2θ1) + 5 sin(2θ2)

+
μ

4
[2 + cos(2θ1) + 2 cos(2θ2)]

]

, (C9)

θ̇2 ≈ − σ

16πηsr2

[

5 sin(2θ1) + sin(2θ2)

+
μ

4
[2 + 2 cos(2θ1) + cos(2θ2)]

]

. (C10)

On the other hand, in the opposite limit of μ � 1, Eqs. (15)
and (16) can be written as

ṙ ≈ − σ

4πηor

[

sin(2θ1) + sin(2θ2)
]

, (C11)

θ̇1 ≈ − σ

4πηor2

[

2 + cos(2θ1) + 2 cos(2θ2)
]

, (C12)

θ̇2 ≈ − σ

4πηor2

[

2 + 2 cos(2θ1) + cos(2θ2)
]

, (C13)

and are governed solely by the odd viscosity ηo.
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