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Hydrodynamic lift of a two-dimensional liquid domain with odd viscosity
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We discuss hydrodynamic forces acting on a two-dimensional liquid domain that moves laterally within a
supported fluid membrane in the presence of odd viscosity. Since active rotating proteins can accumulate inside
the domain, we focus on the difference in odd viscosity between the inside and outside of the domain. Taking
into account the momentum leakage from a two-dimensional incompressible fluid to the underlying substrate,
we analytically obtain the fluid flow induced by the lateral domain motion and calculate the drag and lift forces
acting on the moving liquid domain. In contrast to the passive case without odd viscosity, the lateral lift arises
in the active case only when the in and out odd viscosities are different. The in-out contrast in the odd viscosity
leads to nonreciprocal hydrodynamic responses of an active liquid domain.
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I. INTRODUCTION

Biological membranes play an important role in vari-
ous life-sustaining processes such as the transportation of
materials or the reaction between chemical species, which
are essential for cellular metabolism and homeostasis [1].
Biomembranes are composed of two layers of lipid molecules,
cholesterol, and various types of proteins that can move lat-
erally due to the membrane fluidity [2]. Since lipid bilayers
are extremely thin, as compared to their lateral size, they
have been modeled as two-dimensional (2D) fluids, and their
transport properties have been investigated both theoretically
and experimentally. For instance, the drag coefficient of a
disklike domain (protein) moving in a 2D fluid sheet has been
studied for various membrane geometries [3–6]. Using fluo-
rescence correlation spectroscopy, Ramadurai et al. measured
the lateral mobility of proteins in lipid bilayers and confirmed
a logarithmic dependence of the mobility on the protein size
in agreement with predictions [7].

In an actual biological environment, the presence of active
protein molecules plays an important role because they induce
nonequilibrium hydrodynamic effects to the surrounding
fluid [8–11]. For example, there are active rotating proteins
such as ion pumps that allow materials to pass through the
membrane [12,13]. Their inherent nonequilibrium nature due
to continuous energy consumption violates the time-reversal
symmetry and drives the membrane into out-of-equilibrium
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situations [14]. In addition, rotating proteins further break the
parity symmetry because of their unidirectional motion, so
the membrane with autonomous rotors can be viewed as an
active chiral system [15–18]. Moreover, active proteins are
often inhomogeneously distributed in the membrane to form
active protein-rich domains that are called lipid rafts [19–21].
Due to the presence of such condensed active rotor proteins,
biomembranes can be regarded as a heterogeneous active
chiral fluid rather than just a uniform and passive 2D fluid.

Active chiral fluids are generally characterized by a pe-
culiar rheological property called odd viscosity [22], which
accounts for the fluid flow perpendicular to the velocity gradi-
ent and does not contribute to energy dissipation. It is known
that odd viscosity gives rise to anomalous hydrodynamic
phenomena such as surface waves [23] or topological edge
modes [24–26] at fluid boundaries. Furthermore, it leads to
an instability of a viscous film [27,28] and asymmetric mobil-
ity [29]. In an incompressible fluid, however, the odd viscosity
can be absorbed into the hydrostatic pressure term [17,22] and
does not affect the flow profile [30,31]. To clearly see the odd
viscosity effect, one should include either the violation of the
incompressibility condition or the appropriate boundaries in
2D fluids [29,30].

To reveal the odd viscosity effect, the hydrodynamic forces
acting on various objects have been studied in the presence
of odd viscosity [29–32]. For a laterally moving rigid disk, it
was found that odd viscosity causes a hydrodynamic lift force
for a compressible 2D fluid [29]. Moreover, odd viscosity
is responsible for the torque acting on objects with time-
varying area such as an expanding bubble with a no-stress
boundary condition [30–32]. From the experimental point of
view, odd viscosity was measured for a fluid consisting of
self-spinning particles [33,34]. Although odd viscosity may
exist in biological systems [17,35], hydrodynamic responses
in heterogeneous active chiral fluids have not been discussed
and the role of odd viscosity in biomembranes remains largely
unexplored.

2470-0045/2021/104(6)/064613(10) 064613-1 Published by the American Physical Society

https://orcid.org/0000-0002-6202-4206
https://orcid.org/0000-0003-3422-5745
https://orcid.org/0000-0003-3185-8475
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.064613&domain=pdf&date_stamp=2021-12-23
https://doi.org/10.1103/PhysRevE.104.064613
https://creativecommons.org/licenses/by/4.0/


HOSAKA, KOMURA, AND ANDELMAN PHYSICAL REVIEW E 104, 064613 (2021)

In this paper we discuss the hydrodynamic forces acting
on a circular liquid domain that moves laterally in a supported
membrane in the presence of odd viscosity [22]. To investi-
gate active heterogeneous structures relevant to lipid rafts in
biomembranes, we consider a situation where the odd viscos-
ity is different between the inside and outside of the liquid
domain. Taking into account the momentum leakage from the
2D fluid to the underlying substrate [6,36–41], we analytically
obtain the velocity field induced by the domain motion and
discuss its dependence on the odd viscosity difference. We
then calculate the drag and lift forces acting on a moving
liquid domain. We show that a dissipationless lift force acting
on the domain emerges when only the odd viscosity difference
is present, while it vanishes when the odd viscosity is uniform
in space. We further obtain various limiting expressions of
the drag and lift coefficients for small and large domain sizes,
which deviate from those obtained for the passive case [6].

In the next section we introduce the hydrodynamic equa-
tions for a 2D active chiral fluid with momentum decay and
show a general solution in the presence of odd viscosity. In
Sec. III we obtain the velocity field and stress tensor needed
to investigate the flow profile induced by the domain motion.
In Sec. IV we calculate the hydrodynamic drag and lift forces
acting on the liquid domain and examine their limiting ex-
pressions, by changing either the domain size or odd viscosity
difference. A summary and some further discussion are given
in Sec. V.

II. TWO-DIMENSIONAL HYDRODYNAMIC
EQUATIONS WITH MOMENTUM DECAY

Biological membranes are formed as condensed lipid
molecules with very small area compressibility [42] and
they have been modeled as incompressible fluids [3–5]. For
an incompressible 2D fluid in which momentum is strictly
conserved, one cannot obtain a linear relation between the
velocity and viscous force acting on an embedded object.
This is the well-known Stokes’ paradox [43,44]. One way to
circumvent this problem is to introduce a momentum decay
mechanism in the 2D fluid [5,6]. Such a momentum leakage
occurs, for example, due to the friction between the supported
membrane and the underlying rigid substrate [45], as shown
in Fig. 1.

Let us denote any 2D vector by r = (x, y) and the 2D
velocity by v(r). The steady-state linearized hydrodynamic
equation for an active chiral fluid in the low-Reynolds-number
limit can be written as [6,36–41]

∇ · σ − λv = 0. (1)

Here ∇ = (∂x, ∂y) stands for the 2D gradient operator, σ is the
2D fluid stress tensor as given below in Eq. (3), and λ is the
friction parameter accounting for the momentum decay (see
also Sec. V for an estimate of λ). In addition, we assume that
the 2D fluid is incompressible, satisfying the condition

∇ · v = 0. (2)

The Stokes’ paradox can be eliminated in the presence of
the momentum decay mechanism and one can consistently
solve the above hydrodynamic equations under appropriate
boundary conditions.

FIG. 1. Schematic drawing of a fluid membrane (blue), which is
flat, thin, incompressible, and supported by a rigid substrate (brown).
The membrane has a 2D even (shear) viscosity η, odd viscosity
ηo, and friction parameter λ. A circular liquid domain (yellow) of
radius R has a 2D even (shear) viscosity η′, odd viscosity η′

o, and
friction parameter λ′. The odd viscosity reflects the presence of active
rotor proteins (green) within the membrane that accumulate inside
the liquid domain. Hence, in general, ηo can be different from η′

o.
The liquid domain that moves laterally with a velocity U = (−U, 0)
experiences a hydrodynamic force F = (Fx, Fy ), where Fx and Fy are
the drag and lateral lift forces, respectively.

For an incompressible 2D fluid with odd viscosity, the
stress tensor is given by [17,29,46]

σi j = −pδi j + η(∂ jvi + ∂iv j )

+ 1

2
ηo(∂ jv

∗
i + ∂iv

∗
j + ∂∗

j vi + ∂∗
i v j ), (3)

where p is the 2D hydrostatic pressure, δi j is the Kronecker
delta, η and ηo are the 2D even (shear) and odd viscosities,
respectively, and v∗

i = εi jv j and ∂∗
i = εi j∂ j , with εi j the 2D

Levi-Cività antisymmetric tensor (εxx = εyy = 0 and εxy =
−εyx = 1). Hence, the vector v∗ is obtained by rotating v by
π/2 in the clockwise direction.

In our work we do not specify the microscopic origin of
odd viscosity, but it can be attributed, for example, to self-
spinning objects representing active rotor proteins [17,35].
Their continuous energy consumption and autonomous rota-
tion break both time-reversal and parity symmetries, giving
rise to odd viscosity in a 2D fluid with active rotor proteins.
Although even viscosity η is always positive, odd viscosity ηo

can be either positive or negative, depending on the protein ro-
tational direction. Substituting Eq. (3) into Eq. (1), we obtain
the 2D hydrodynamic equation as

−∇p + η∇2v + ηo∇2v∗ − λv = 0, (4)

together with the incompressibility condition of Eq. (2).
Within an infinitely extended 2D fluid characterized by η,

ηo, and λ, we consider now a circular liquid domain of radius
R having a 2D even (shear) viscosity η′ and friction parameter
λ′ [6], as schematically presented in Fig. 1. Moreover, we
assume that the fluid inside the domain has an odd viscosity
η′

o that can be different from ηo. The difference in the odd
viscosities ηo �= η′

o reflects the fact that active rotor proteins
can accumulate and have a denser concentration in the liquid
domain [19]. In general, both ηo and η′

o can be either positive
or negative. Notice that the domain perimeter is assumed to be
impermeable, so the fluids inside and outside the domain do
not mix with each other [6]. In addition, we assume that the
deformation of the circular liquid domain can be neglected.
This is justified when the line tension at the domain boundary
is large enough compared to the viscous force [6,44].
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Throughout this work, we adopt the notation convention
that quantities with a prime refer to those inside the domain,
while quantities without a prime correspond to those outside
the domain. Any 2D fluid velocity can be expressed as the sum
of a gradient of a scalar potential φ and a curl of a vector po-
tential A = (0, 0, A), where the z-component A corresponds
to the stream function [6,43]. Then the 2D velocities outside
and inside the domain are expressed as

v = −∇φ + ∇ × A, v′ = −∇φ′ + ∇ × A′. (5)

Substituting Eq. (5) into Eq. (2), we obtain

∇2φ = 0, ∇2φ′ = 0, (6)

which are the 2D Laplace equations.
We can also show that Eq. (4) is satisfied if the outside and

inside pressures are given by

p = ηκ2φ − ηoκ
2A, p′ = η′κ ′2φ′ − η′

oκ
′2A′, (7)

while A and A′ obey the 2D Helmholtz equations

(∇2 − κ2)A = 0, (∇2 − κ ′2)A′ = 0. (8)

Here we have defined the inverse hydrodynamic screening
lengths for the outside and inside fluids as κ = (λ/η)1/2

and κ ′ = (λ′/η′)1/2. As seen in Eq. (7), the effect of odd
viscosity can be taken into account through the modified pres-
sure [17,22,30,32], reflecting the fact that the odd viscosity
does not contribute to the dissipation. In the next section,
we will derive the solutions to Eqs. (6) and (8) under the
appropriate boundary conditions for a laterally moving liquid
domain.

III. VELOCITY FIELD OF A MOVING LIQUID DOMAIN

A. Velocity and stress tensor

For convenience, we use the 2D polar coordinates (r, θ )
defined by x = r cos θ and y = r sin θ with the origin fixed
at the domain center. First, we consider the region outside
the domain (r > R). Under the condition that the velocity
and pressure vanish at large distances r → ∞, we write the
solutions to Eqs. (6) and (8) as follows:

φ = C1

r
cos θ + C3

r
sin θ, (9)

A = C2K1(κr) sin θ + C4K1(κr) cos θ. (10)

Here C1, . . . ,C4 are unknown coefficients that will be de-
termined from the boundary conditions and K1(z) is the
first-order modified Bessel function of the second kind [47].

From Eq. (5), the radial and tangential components of the
velocity for r > R are given by

vr =
[

C3

r2
− C4

r
K1(κr)

]
sin θ +

[
C1

r2
+ C2

r
K1(κr)

]
cos θ

(11)
and

vθ =
[

C1

r2
+ C2κK0(κr) + C2

r
K1(κr)

]
sin θ

+
[
−C3

r2
+ C4κK0(κr) + C4

r
K1(κr)

]
cos θ, (12)

respectively. Then, with the use of Eq. (3), the two compo-
nents of the stress tensor can be obtained as

σrr = −
[
η

(
4C3

r3
+ C3κ

2

r
− 2C4κ

r
K2(κr)

)

+ ηo

(
4C1

r3
+ 2C2κ

r
K2(κr)

)]
sin θ

−
[
η

(
4C1

r3
+ C1κ

2

r
+ 2C2κ

r
K2(κr)

)

+ ηo

(
−4C3

r3
+ 2C4κ

r
K2(κr)

)]
cos θ (13)

and

σrθ = −
[
η

(
4C1

r3
+ C2κ

2K1(κr) + 2C2κ

r
K2(κr)

)

+ ηo

(
−4C3

r3
+ 2C4κ

r
K2(κr)

)]
sin θ

−
[
η

(
−4C3

r3
+ 2C4κ

r
K2(κr) + C4κ

2K1(κr)

)

+ ηo

(
−4C1

r3
− 2C2κ

r
K2(κr)

)]
cos θ. (14)

Inside the domain (r < R), on the other hand, the solutions
to Eqs. (6) and (8) under the condition that they are finite at
the origin (r = 0) are given by

φ′ = C′
1r cos θ + C′

3r sin θ, (15)

A′ = C′
2I1(κ ′r) sin θ + C′

4I1(κ ′r) cos θ. (16)

Here C′
1, . . . ,C′

4 are the other unknown coefficients and I1(z)
is the first-order modified Bessel function of the first kind [47].
Although the general solutions to Eqs. (6) and (8) for φ, φ′,
A, and A′ can be expressed as a series expansion in terms
of r and θ , we have kept only the smallest number of terms
satisfying the boundary conditions that will be discussed in
the next subsection.

Then the corresponding radial and tangential components
of the velocity for r < R become

v′
r =

[
−C′

3 − C′
4

r
I1(κ ′r)

]
sin θ −

[
C′

1 − C′
2

r
I1(κ ′r)

]
cos θ

(17)

and

v′
θ =

[
C′

1 − C′
2κ

′I0(κ ′r) + C′
2

r
I1(κ ′r)

]
sin θ

+
[
−C′

3 − C′
4κ

′I0(κ ′r) + C′
4

r
I1(κ ′r)

]
cos θ, (18)

respectively, and the two components of the stress tensor are
given by

σ ′
rr = −

[
η′

(
C′

3κ
′2r+ 2C′

4κ
′

r
I2(κ ′r)

)
−η′

o
2C′

2κ
′

r
I2(κ ′r)

]
sin θ

−
[
η′

(
C′

1κ
′2r− 2C′

2κ
′

r
I2(κ ′r)

)
−η′

o
2C′

4κ
′

r
I2(κ ′r)

]
cos θ

(19)
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and

σ ′
rθ = −

[
η′C′

2

(
κ ′2I1(κ ′r) − 2κ ′

r
I0(κ ′r) + 4

r2
I1(κ ′r)

)

+ η′
oC

′
4

(
−2κ ′

r
I0(κ ′r) + 4

r2
I1(κ ′r)

)]
sin θ

−
[
η′C′

4

(
−2κ ′

r
I0(κ ′r) + κ ′2I1(κ ′r) + 4

r2
I1(κ ′r)

)

+ η′
oC

′
2

(
2κ ′

r
I0(κ ′r) − 4

r2
I1(κ ′r)

)]
cos θ. (20)

These velocities and stress tensor components for the inside
and outside of the domain should be connected through the
appropriate boundary conditions at the domain perimeter.

B. Boundary conditions at the liquid domain perimeter

As mentioned in the preceding section, we consider the
situation in which the liquid domain is laterally moving with
a constant velocity U = (−U, 0). At r = R, the radial com-
ponent of the fluid velocity should be equal to the domain
velocity, while the tangential components of the fluid veloc-
ity and the stress tensor should be continuous [6,44]. These
conditions are written as

vr = −U cos θ, (21)

v′
r = −U cos θ, (22)

vθ = v′
θ , (23)

σrθ = σ ′
rθ . (24)

Since we consider the circular liquid domain without de-
formation, there exists a finite line tension at the domain
boundary, which dominates over a viscous force. The line
tension gives rise to the 2D Laplace pressure at the domain
perimeter, so the normal stress condition inside and outside
the domain is automatically satisfied [6,44]. Hence, we do not
need the condition σrr = σ ′

rr in addition to Eqs. (21)–(24).
Using the above boundary conditions, we can determine
the eight coefficients C1, . . . ,C4,C′

1, . . . ,C′
4, whose explicit

expressions are provided in Appendix A. Since each of
Eqs. (21)–(24) includes both sin θ and cos θ that are orthog-
onal to each other, one boundary condition provides two
constraints. Therefore, the four boundary conditions lead to
eight constraints that are sufficient to determine the eight
unknown coefficients.

Notice that for the passive case without odd viscos-
ity (ηo = η′

o = 0), the coefficients C3, C4, C′
3, and C′

4 in
Eqs. (9), (10), (15), and (16) are not required to satisfy the
boundary conditions of Eqs. (21)–(24) [6]. This is because the
odd viscosity contributes to the fluid stress perpendicular to
the velocity gradient, as can be recognized in Eq. (3). More
details on the passive case will be summarized in Appendix B.

C. Flow profile

Having fixed all the coefficients in Eqs. (11), (12), (17),
and (18), we proceed by investigating the fluid flow induced
by the lateral translational motion of the liquid domain. For

the sake of simplicity, we assume η = η′ and λ = λ′ (or equiv-
alently κ = κ ′). In Fig. 2 the velocity field v − U is plotted
for ηo = η′

o = η (uniform odd viscosity) [Fig. 2(a)], ηo =
η and η′

o = 0 (vanishing odd viscosity inside the domain)
[Fig. 2(b)], and ηo = 0 and η′

o = η (vanishing odd viscosity
outside the domain) [Fig. 2(c)]. In Fig. 3 we also plot v − U
for ηo = −η′

o = η [Fig. 3(a)] and −ηo = η′
o = η [Fig. 3(b)].

In these plots, the domain size is fixed to κR = 0.1 (circular
black line).

When the odd viscosity is spatially uniform (ηo = η′
o), as

in Fig. 2(a), we see that the flow streamlines induced by the
domain motion are symmetric with respect to the direction of
motion. Such a symmetric profile is also seen for the passive
case in which odd viscosity does not exist [6]. When ηo �= η′

o,
as in Figs. 2(b) and 2(c), the flow inside the domain is rotated
with respect to the x-axis and the above symmetry breaks
down. When ηo/η

′
o < 0, as in Fig. 3, the flow inside the

domain is more rotated compared to Figs. 2(b) and 2(c). This
implies that the negative odd viscosity enhances the rotation
in the flow field. Figure 2(c) is relevant to a lipid domain en-
riched with active rotor proteins, while Fig. 3 represents active
proteins rotating oppositely inside and outside the domain. In
the next section we show that such a flow-field asymmetry
leads to a lateral lift force acting on the domain.

IV. HYDRODYNAMIC FORCES ACTING
ON A MOVING LIQUID DOMAIN

A. Drag and lift forces

For a liquid domain laterally moving with a velocity U =
(−U, 0), the forces acting in the x- and y-directions, F =
(Fx, Fy), are given by [6,44]

Fx = R
∫ 2π

0
dθ (σrr cos θ − σrθ sin θ )

= πη(κR)2

[
−C1

R2
+ C2K1(κR)

R

]
(25)

and

Fy = R
∫ 2π

0
dθ (σrr sin θ + σrθ cos θ )

= −πη(κR)2

[
C3

R2
+ C4K1(κR)

R

]
, (26)

respectively. In the above, the already determined coefficients
C1, . . . ,C4 are substituted as given in Appendix A. In ad-
dition, the full expressions of Fx and Fy are also given in
Appendix A.

For the sake of simplicity, we consider as before the
case η = η′ and λ = λ′ (or equivalently κ = κ ′) in Eqs. (25)
and (26). We introduce a dimensionless domain radius ε ≡
κR and the arguments of the modified Bessel functions are
omitted as in Kn = Kn(ε) and In = In(ε) to keep the notation
more compact. Then the expressions for the drag coefficient
�‖ = Fx/U and the lateral lift coefficient �⊥ = Fy/U become

�‖
4πη

= ε2

4
+ εK1

K0

[
1 − ε2(K0I1 + K1I2)K1I2

ε2(K0I1 + K1I2)2 + 4(δK0I2)2

]

(27)
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FIG. 2. Streamlines (black arrows) of the fluid velocity v − U as a function of κx and κy when (a) ηo = η′
o = η (uniform odd viscosity),

(b) ηo = η and η′
o = 0 (vanishing odd viscosity inside the domain), and (c) ηo = 0 and η′

o = η (vanishing odd viscosity outside the domain)
[see Eqs. (11), (12), (17), and (18)]. The green (light gray) region represents fluids with nonvanishing odd viscosity, while the white region
represents vanishing odd viscosity. We also have chosen η = η′, λ = λ′, and ε = κR = 0.1. The domain moves laterally in the negative
x-direction with a velocity U = (−U, 0). The circular black line represents the domain perimeter.

and

�⊥
4πη

= 2δ(εK1I2)2

ε2(K0I1 + K1I2)2 + 4(δK0I2)2
. (28)

In the above, we have introduced the dimensionless difference
in odd viscosity, δ, between the inside and outside of the
domain

δ = ηo − η′
o

η
. (29)

Equations (27) and (28) are the main results of our work.
Both the drag �‖ and lift �⊥ coefficients depend on the odd

viscosity difference δ and are even and odd functions of δ,
respectively. As the domain moves in the negative x-direction,
it exhibits a lateral lift motion in the y > 0 direction when
δ > 0 and also in the y < 0 direction for δ < 0. Notice that the
passive case without odd viscosity (ηo = η′

o = 0) is recovered
by setting δ = 0 [6] [see Eq. (B2) in Appendix B for the
specific expression]. For the uniform case with ηo = η′

o �= 0
or δ = 0, the drag coefficient �‖ reduces to that of the passive
case [6], whereas the lift coefficient �⊥ vanishes. Since the
lift force does not exist for the passive case [3–6], the finite
lift force reflects not only the existence of odd viscosity, but
also its difference (δ �= 0) between the inside and outside of
the domain.

FIG. 3. Streamlines (black arrows) of the fluid velocity v − U as
a function of κx and κy when (a) ηo = −η′

o = η and (b) −ηo = η′
o = η

[see the caption of Fig. 2 for the other conditions]. The green (light
gray) region represents fluids with positive odd viscosity, while the
blue (gray) region represents negative odd viscosity.

B. Dependence on the domain size ε

To discuss the dependence of the drag coefficient �‖ and
the lateral lift coefficient �⊥ on the domain size ε for arbi-
trary δ, it is useful to obtain their asymptotic expressions in
the small- and large-ε limits. The dependence on δ will be
separately discussed in the next subsection. For ε � 1, they
become

�‖
4πη

≈ 4[ln(2/ε) − γ + 1/4] + δ2[ln(2/ε) − γ ]

4[ln(2/ε) − γ + 1/4]2 + δ2[ln(2/ε) − γ ]2
(30)

and
�⊥

4πη
≈ δ

8[ln(2/ε) − γ + 1/4]2 + 2δ2[ln(2/ε) − γ ]2
, (31)

where γ ≈ 0.5772 is Euler’s constant. Hence, both �‖ and
�⊥ depend only logarithmically on the rescaled domain size
ε. In the opposite limit of ε  1, the asymptotic expressions
become

�‖
4πη

≈ ε2

4
(32)

and
�⊥

4πη
≈ δ

2
. (33)

Here �‖ is proportional to ε2 and is independent of δ, while
�⊥ is independent of ε and is determined solely by δ.

In Fig. 4 we plot �‖ and �⊥ of Eqs. (27) and (28), re-
spectively, as a function of the rescaled domain size ε = κR
for various values of δ. These plots are consistent with the
above asymptotic behaviors of �‖ and �⊥. We also see that the
crossover between the two limiting cases is reasonably given
for ε ≈ 1. In Fig. 4(a) �‖ is slightly larger when δ is increased,
whereas it hardly depends on δ for larger ε. In Fig. 4(b) we see
that the lift coefficient �⊥ increases logarithmically for ε � 1,
while it becomes independent of the domain size for ε  1.

Let us discuss the physical interpretation of the above
limiting behaviors of �‖ and �⊥ [41,48]. The momentum
in the 2D fluid is conserved over distances smaller than the
hydrodynamic screening length, r � κ−1, and the stress de-
cays as 1/r due to the momentum conservation. Since the
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FIG. 4. Plots of (a) the rescaled drag coefficient �‖ and (b) the
rescaled lift coefficient �⊥ as a function of the rescaled domain
radius ε = κR for various values of the odd viscosity difference
δ = (ηo − η′

o)/η. (a) Differences δ = 0.1 and 10 presented by the
black solid and blue dotted lines, respectively. (b) Differences δ =
0.1, 1, and 10 presented by the black solid, red dashed, and blue
dotted lines, respectively.

stress scales as σ ∼ ηv/r, we have v ∼ 1/η [48]. This ex-
plains the weak (logarithmic) size dependence of �‖ and �⊥
in Eqs. (30) and (31), respectively. For larger length scales
r  κ−1 the momentum is not conserved and the only contri-
bution to the velocity is from mass conservation. In a 2D fluid,
a mass monopole (source) will create a velocity that decays as
1/r [48]. Hence, the velocity due to a mass dipole (source
and sink) decays as 1/r2, explaining the scaling �‖ ∼ ε2 in
Eq. (32). Such a strong size dependence is not observed for
�⊥ in Eq. (33) as the friction parameter λ does not cause any
momentum leakage along the rotated velocity v∗.

C. Dependence on the odd viscosity difference δ

Next we show how �‖ and �⊥ depend on the odd viscosity
difference δ for arbitrary ε. The asymptotic expressions of
Eqs. (27) and (28) for |δ| � 1 are

�‖
4πη

≈ ε2

4
+ εK1I1

K0I1 + K1I2
(34)

and

�⊥
4πη

≈ 2δ

(
K1I2

K0I1 + K1I2

)2

, (35)

showing that �‖ is independent of δ and �⊥ is proportional
to only δ. As mentioned before, Eq. (34) coincides with the
passive drag coefficient of a liquid domain [6] [see Eq. (B2)].

FIG. 5. Plots of (a) the rescaled drag coefficient �‖ and (b) the
rescaled lift coefficient �⊥ as a function of the odd viscosity dif-
ference δ = (ηo − η′

o)/η for various values of the rescaled domain
radius ε = κR. In both plots, ε = 0.1, 1, and 10 are presented by the
black solid, red dashed, and blue dotted lines, respectively.

When |δ|  1, on the other hand, we obtain

�‖
4πη

≈ ε2

4
+ εK1

K0
(36)

and

�⊥
4πη

≈ 1

2δ

(
εK1

K0

)2

. (37)

Here �‖ is also independent of δ, while �⊥ decays as 1/δ.
Interestingly, Eq. (36) coincides with the result by Evans and
Sackmann for the drag coefficient of a rigid disk in a passive
supported membrane [5].

In Fig. 5 we plot �‖ and �⊥ in Eqs. (27) and (28), re-
spectively, as a function of the odd viscosity difference δ for
various values of ε. As can be seen in Fig. 5(a), �‖ is almost
independent of δ. However, Fig. 5(b) shows that �⊥ changes
nonmonotonically, in accordance with Eqs. (35) and (37). The
maximum of �⊥ shifts to higher values of δ as ε is increased.

V. SUMMARY AND DISCUSSION

In this paper we have investigated the hydrodynamic
forces acting on a 2D liquid domain that moves laterally
in a supported membrane characterized by an odd viscos-
ity. We combined the momentum decay mechanism of a 2D
fluid [6,36–41] with the concept of odd viscosity [22]. Since
active rotor proteins can accumulate inside the lipid domain,
we have focused on the difference in odd viscosity between
the inside and outside of the domain. Taking into account
the momentum decay mechanism of the incompressible 2D
fluid, we have analytically obtained the fluid flow induced
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by a lateral domain motion. In the presence of odd viscosity
difference, the flow field due to the domain motion is rotated
with respect to its direction, as shown in Fig. 2.

Using the obtained flow field, we have calculated the
hydrodynamic forces acting on the moving domain. The
resulting drag and lift coefficients are given in Eqs. (27)
and (28). In contrast to the passive case that does not have
an odd viscosity [3–6], the existence of a lateral lift force is
predicted when the odd viscosity difference is present. We
have discussed in detail the dependence of the drag coefficient
�‖ and lift coefficient �⊥ on the domain size ε and the odd
viscosity difference δ. The appearance of a finite lift force
indicates not only the existence of the odd viscosity, but also
its asymmetry between the inside and outside of the domain.

In addition to the asymmetry condition ηo �= η′
o discussed

in this work, we briefly summarize other conditions for finite
lift force in incompressible 2D fluids with odd viscosity. For
a laterally moving rigid disk with a nonslip boundary, no
lift was observed [30], while it was reported to exist within
the Oseen approximation [49]. For a bubble with a no-stress
boundary condition, lift and torque forces emerge for a mov-
ing and an expanding bubble, respectively [30–32]. The forces
of rigid disks and bubbles are discussed in more detail below.

Since the governing hydrodynamic equations (2) and (4)
are linear in v, the force F acting on a circular domain can be
generally written as

F = −� · U, (38)

where � is the domain friction tensor and U is the domain ve-
locity in an arbitrary direction. Following a similar calculation
as before, we find that � can be expressed as

�i j = �‖δi j − �⊥εi j, (39)

where the coefficients �‖ and �⊥ are given, respectively, by
Eqs. (27) and (28) for the simple case (η = η′ and λ = λ′) or
Eqs. (A4) and (A5) for the general case (η �= η′ and λ �= λ′).
When δ = 0, the lift coefficient �⊥ vanishes and the friction
tensor satisfies the reciprocal relation �i j = � ji. According
to the Lorentz reciprocal theorem [50–52], such a reciprocal
property is guaranteed for an arbitrarily shaped object in a pas-
sive fluid. When δ �= 0, the hydrodynamic response becomes
nonreciprocal, i.e., �i j �= � ji, leading to a dissipationless lift
force. This is one of the distinctive features of an active chiral
fluid characterized by odd viscosity [29].

In Ref. [30] it was shown that a lift force does not exist
for an object in an incompressible 2D fluid with odd viscosity
when nonslip boundary conditions are imposed. This is the
case when the boundary conditions include only the continuity
of velocity as we have used in Eqs. (21)–(23). However, in the
case of a liquid domain, we also have employed the boundary
condition for the stress continuity as in Eq. (24). Then the
obtained lift force depends on the odd viscosity difference δ.

Some numerical estimates of the physical quantities in the
model can be given [6]. For a fluid membrane supported
by a rigid substrate, the friction parameter in Eq. (1) can
be identified as λ = ηw/h, where ηw is the 3D viscosity of
the surrounding water and h is the thickness of a thin layer
of lubricating water between the membrane and the sub-
strate [5]. Then the hydrodynamic screening length is given
by κ−1 = (ηh/ηw)1/2. For typical values such as h ≈ 10−8 m,

ηw ≈ 10−3 Pa s, and η ≈ 10−9 Pa s m, we find κ−1 ≈
10−7 m. Since the size of a lipid domain (raft) is roughly
10–100 nm [19,53], the dimensionless domain size ε = κR is
estimated to be 0.1 � ε � 1. Hence, the limiting expressions
derived in Eqs. (30) and (31) for ε � 1 are the appropriate
ones for the drag and lift coefficients.

Next we discuss the value of the domain odd viscosity η′
o

for typical physiological conditions. Consider the situation
where disklike active rotor proteins concentrate only inside
the domain, i.e., ηo = 0 and η′

o �= 0, while η = η′ as was
assumed above. In microscopic approaches [17,35], it was
shown that odd viscosity is related to the angular momentum
density of rotor proteins through the relation η′

o � IT/ζ . Here
I and T are the moment-of-inertia and torque densities, re-
spectively, and ζ is the rotational friction coefficient of a rotor.

For an active rotor protein of radius a and mass m driven
by the torque τ , one can estimate [5,34] I = mρ/π , T =
ρτ/(πa2), and ζ = η′ρ/π , which lead to η′

o � mρτ/(πη′a2).
Here ρ = Nπa2/(πR2) is the area fraction of N rotors inside
the domain. Using typical values such as m ≈ 10−21 kg, ρ ≈
0.3, τ ≈ 10−19 N m, and a ≈ 10−8 m [1,11,15,18] and assum-
ing that the domain is filled with water (η′ ≈ 10−12 Pa s m),
we obtain η′

o ≈ 10−13 Pa s m. Then the odd viscosity ratio is
given by δ = −η′

o/η ≈ −0.1 and the limiting expressions of
Eqs. (34) and (35) for |δ| � 1 can be used here for the drag
and lift coefficients.

As a special case of a liquid domain, we discuss the hy-
drodynamic forces acting on a circular bubble of radius R
that moves laterally in an incompressible 2D fluid with odd
viscosity. In Appendix C we obtain the drag and lift coeffi-
cients by requiring that η′ = 0 and η′

o = 0, while η and ηo

for the outside of the domain are kept finite. For a moving
bubble, �‖ and �⊥ depend on the viscosity ratio μ = ηo/η.
The asymptotic behaviors of the drag and lift coefficients are
similar to those of a liquid domain. In the previous studies, it
was reported that the effect of odd viscosity can be seen as
a torque acting on an expanding bubble [30–32]. Our results
show that the forces due to odd viscosity exist even for an
undeformable object.

In the opposite limit η′ → ∞, the general drag and lift
forces in Eqs. (A4) and (A5) reduce to those acting on a rigid
disk. In this case, the drag coefficient becomes identical to that
for a passive supported membrane [5] as in Eq. (36), while
the lift coefficient vanishes. This is reasonable because the
boundary conditions at the disk perimeter can be constructed
without the stress continuity of Eq. (24) [6] and the odd
viscosity does not enter in the forces on the disk [30,31].

When the odd viscosity is spatially uniform (δ = 0), it
does not affect either the velocity field or the forces acting
on the domain. This implies that the effect of odd viscosity
can be seen in biomembranes when active rotor proteins con-
centrate locally inside specific domains and the odd viscosity
becomes nonuniform. It would be interesting to investigate
experimentally the diffusion of such active domains by using
microrheology techniques [54]. When a membrane is in ther-
mal equilibrium, the drag coefficient can be connected to the
diffusion coefficient of the liquid domain through Einstein’s
relation. In active fluids, however, such a relation no longer
holds and one needs to generalize the fluctuation-dissipation
theorem in the presence of active protein molecules
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[11,55–60]. Through molecular-dynamics simulations of a
particle diffusing in an active chiral fluid, the applicability
of Einstein’s relation was evaluated [59]. For the Langevin
equation with odd viscosity, the asymmetric diffusion tensor
was obtained and was characterized by the ratio of the drag
to lift coefficients [60]. A more detailed discussion of such
diffusion phenomena in the active chiral fluid will be given
elsewhere [60].
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APPENDIX A: DERIVATION OF THE GENERAL DRAG AND LIFT FORCES

The coefficients C1, . . . ,C4,C′
1, . . . ,C′

4 are determined by the boundary conditions in Eqs. (21)–(24) and given by

C1 = −RU (κ ′RI0 − 2I1)[ηκ2R2K1 + 2(η − η′)(κRK0 + 2K1)]D1/(κD) − η′κ ′2R3U (κRK0 + 2K1)I1D1/(κD) − R2UK2D2/D,

C2 = 2U [2(η − η′)(κ ′RI0 − 2I1) + η′κ ′2R2I1]D1/(κD) + 2UD2/(κD), C3 = −4η(ηo − η′
o)κ ′2R4UK2

1 I2
2 /D,

C4 = −4η(ηo − η′
o)κ ′2R3UK1I2

2 /D (A1)

and

C′
1 = U

[
K0D2 + η2κ2κ ′2R4K2

1 I0I2 + 2ηκRK0K1(κ ′RI0 − I1){2(η − η′)(κ ′RI0 − 2I1) + η′κ ′2R2I1}
+ {2(η − η′)(κ ′RI0 − 2I1) + η′κ ′2R2I1}2K2

0

]
/D,

C′
2 = 2ηκR2UK1D1/D, C′

3 = −4η(ηo − η′
o)κκ ′R2UK0K1I1I2/D, C′

4 = 4η(ηo − η′
o)κκ ′R3UK0K1I2/D, (A2)

where

D = D2
1 + K0D2, D1 = 2(η − η′)(κ ′RI0 − 2I1)K0 + κ ′R2(η′κ ′K0I1 + ηκK1I2), D2 = 4(ηo − η′

o)2κ ′2R2K0I2
2 . (A3)

In the above, we have used the denotations Kn = Kn(κR) = Kn(ε) and In = In(κ ′R) = In(ε′). In the main text, we considered the
case of η = η′ and λ = λ′ (or equivalently κ = κ ′), and the function In(κR) = In(ε) is written as In.

Substituting C1 and C2 into Eq. (25) and C3 and C4 into Eq. (26), we obtain the general drag and lift forces as

Fx

4πη
= Uε(δε′I2)2(εK0 + 4K1)K0/M + Uε

4

[
2(ν − 1)K0(2I1 − ε′I0) + ε′(εK1I2 + νε′K0I1)

]

× [{νε′2I1 + 2(ν − 1)(2I1 − ε′I0)}(εK0 + 4K1) − ε2K1(2I1 − ε′I0)
]
/M (A4)

and

Fy

4πη
= 2Uδ(εε′K1I2)2/M, (A5)

where ν = η′/η, δ = (ηo − η′
o)/η, and

M = [2(ν − 1)K0(2I1 − ε′I0) + ε′(εK1I2 + νε′K0I1)]2 + 4(δε′K0I2)2. (A6)

When η = η′ and λ = λ′ (or equivalently ν = 1 and ε = ε′), we obtain Eqs. (27) and (28).

APPENDIX B: DRAG COEFFICIENT FOR A 2D LIQUID DOMAIN WHEN ηo = η′
o = 0

We summarize the passive case without odd viscosity, which was studied in Ref. [6]. When ηo = η′
o = 0 (while ν �= 1 or

η �= η′), the coefficients C3, C4, C′
3, and C′

4 become zero, as can be seen in Eqs. (A1)–(A3). Then the scalar and vector potentials
in Eqs. (9), (10), (15), and (16) reduce to

φ = C1

r
cos θ, A = C2K1(κr) sin θ, φ′ = C′

1r cos θ, A′ = C′
2I1(κ ′r) sin θ, (B1)
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respectively. Calculating the corresponding velocity fields and stress tensors and applying the boundary conditions of
Eqs. (21)–(24), we can obtain the drag and lift coefficients as

�‖
4πη

= ε2

4
+ εK1

[
ν(4 + ε′2)I1 − 2νε′I0 + 2(ε′I0 − 2I1)

]
νK0[(4 + ε′2)I1 − 2ε′I0] + (2K0 + εK1)(ε′I0 − 2I1)

(B2)

and �⊥ = 0, respectively. When ν = 1 or η = η′, Eq. (B2) coincides with the drag coefficient derived in Eq. (34) for |δ| � 1.

APPENDIX C: DRAG AND LIFT COEFFICIENTS FOR A 2D BUBBLE

We derive the hydrodynamic forces acting on a moving bubble of radius R. By setting η′ = 0 and η′
o = 0 in Eqs. (A4)

and (A5), we obtain the drag and lift coefficients as

�‖
4πη

= ε2

4
+ 2εK1

2K0 + εK1

[
1 + 2μ2εK0K1

(2K0 + εK1)2 + 4(μK0)2

]
,

�⊥
4πη

= 2μ(εK1)2

(2K0 + εK1)2 + 4(μK0)2
, (C1)

with μ = ηo/η. In the limits of ε � 1 and ε  1, respectively, we obtain, for arbitrary μ,

�‖
4πη

≈ ln(2/ε) − γ + 1/2 + μ2[ln(2/ε) − γ ]

[ln(2/ε) − γ + 1/2]2 + μ2[ln(2/ε) − γ ]2
,

�⊥
4πη

≈ μ

2[ln(2/ε) − γ + 1/2]2 + 2μ2[ln(2/ε) − γ ]2
(C2)

and

�‖
4πη

≈ ε2

4
,

�⊥
4πη

≈ 2μ. (C3)
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