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6.1 � INTRODUCTION

It is of great importance to understand electrostatic interac-
tions and their key role in soft and biological matter. These 
systems typically consist of aqueous environment in which 
charges tend to dissociate and affect a wide variety of func-
tional, structural, and dynamical properties. Among the 
numerous effects of electrostatic interactions, it is instruc-
tive to mention their effect on elasticity of flexible charged 
polymers (polyelectrolytes) and cell membranes, formation 
of self-assembled charged micelles, and stabilization of 
charged colloidal suspensions that results from the competi-
tion between repulsive electrostatic interactions and attrac-
tive van der Waals’ interactions (Verwey and Overbeek 1948, 
Andelman 1995, 2005, Holm, Kekicheff and Podgornik 
2000, Dean et al. 2014, Churaev, Derjaguin and Muller 2014).

In this chapter, we focus on charged membranes. 
Biological membranes are complex heterogeneous two-
dimensional interfaces separating the living cell from its 
extracellular surrounding. Membranes also surround inter-
cellular organelles such as the cell nucleus, Golgi appara-
tus, mitochondria, endoplasmic reticulum, and ribosomes. 
Electrostatic interactions control many of the membrane 
structural properties and functions, e.g., rigidity, struc-
tural stability, lateral phase transitions, and their dynam-
ics. Moreover, electric charges are a key player in processes 
involving more than one membrane such as membrane 
adhesion and cell–cell interaction, as well as the overall 
interactions of membranes with other intra- and extracel-
lular proteins, biopolymers, and DNA.

How do membranes interact with their surrounding ionic 
solution? Charged membranes attract a cloud of oppositely 
charged mobile ions that forms a diffuse electric double 
layer (Gouy 1910, 1917, Chapman 1913, Debye and Hückel 
1923, Verwey and Overbeek 1948, Israelachvili 2011). The 
system favours local electroneutrality, but while achieving 
it, entropy is lost. The competition between electrostatic 
interactions and entropy of ions in solution determines the 
exact distribution of mobile ions close to charged mem-
branes. This last point shows the significance of tempera-
ture in determining the equilibrium properties, because 
temperature controls the strength of entropic effects as 
compared to electrostatic interactions. For soft materials, 
the thermal energy Bk T  where Bk  is the Boltzmann constant 
and T is the temperature, is also comparable with other 
characteristic energy scales associated with elastic defor-
mations and structural degrees of freedom.

It is convenient to introduce a length scale for which the 
thermal energy is equal to the Coulombic energy between 
two unit charges. This is called the Bjerrum length, defined 
as follows:

	 B
w B4π

,
2

0



e

k Tε ε
= � (6.1)

where e is the elementary charge, ε [ ]= ⋅ −8.85 10 F / m0
12  is 

the vacuum permittivity,1 and the dimensionless dielectric 

constant of water is ε = 80w  (for a complete list of symbols, 
see Table 6.1). The Bjerrum length is equal to about 0.7 nm 
at room temperatures, = 300KT .

A related length is the Gouy–Chapman (GC) length 
defined as
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At this length scale, the thermal energy Bk T  is equal to 
the Coulombic energy between a unit charge and a pla-
nar surface with a constant surface-charge density, σ. The 
Gouy–Chapman length GC  is inversely proportional to σ. 
For strongly charged membranes, GC  is rather small, on the 
order of a tenth of nanometre.

In their pioneering work of almost a century ago, Debye 
and Hückel introduced the important concept of screen-
ing of the electrostatic interactions between two charges 
in presence of all other cations and anions of the solution 
(Debye and Hückel 1923). This effectively limits the range 
of electrostatic interactions as will be further discussed 
below. The characteristic length for which the electrostatic 
interactions are screened is called the Debye length, λD, 
defined for monovalent 1:1 electrolyte, as

	 8π
0.3 nm

M
,D D

1
B b

1/2

b

� �n
n

λ κ ( ) [ ]
[ ]

= =− − � (6.3)

with bn  being the salt concentration (in molar) and κ D 
being the inverse Debye length. The Debye screening 
length for 1:1 monovalent salts varies from about 0.3nm in 
strong ionic solutions of 1 M to about 1 μm in pure water, 
where the concentration of the dissociated OH−  and H+ 
ions is −10 7 M.

The aim of this chapter is to review some of the basic 
considerations underlying the behaviour of charged mem-
branes in aqueous solutions using the three important 
length scales introduced above. We will not account for the 
detailed structure of real biological membranes, which can 
add considerable complexity, but restrict ourselves to sim-
ple model systems, relying on several assumptions and sim-
plifications. The membrane is treated as a flat interface with 
a continuum surface charge distribution or constant surface 
potential. The mobile charge distributions are continuous, 
and we disregard the discreteness of surface charges that 
can lead to multipolar charge distributions.

This chapter is focussed only on static properties in ther-
modynamic equilibrium, excluding the interesting phenom-
ena of dynamical fluctuations and dynamical responses to 
external fields (such as in electrochemistry systems). We 
mainly treat the mean-field approximation of the electric 
double-layer problem and the solutions of the classical 
Poisson–Boltzmann (PB) equation. Nevertheless, some 
effects of fluctuations and correlations will be briefly dis-
cussed in Section 6.10. We will also discuss the ionic finite 
size in Section 6.4, where the ‘modified PB equation’ is 
introduced.
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The classical reference for the electric double layer is the 
book of Verwey and Overbeek (1948), which explains the 
DLVO (Derjaguin–Landau–Verwey–Overbeek) theory for 
stabilization of charged colloidal systems. More recent treat-
ments can be found in many textbooks and monographs on 
colloidal science and interfacial phenomena, such as Evans 
and Wennerström (1999), Israelachvili (2011), and in two 
reviews by one of the present authors, Andelman (1995, 2005).

6.2 � POISSON–BOLTZMANN THEORY

In Figure 6.1, a schematic view of a charged amphiphilic 
(phospholipid) membrane is presented. A membrane of 
thickness 4nmh  is composed of two monomolecular leaf-
lets packed in a back-to-back configuration. The constitut-
ing molecules are amphiphiles having a charged ‘head’ and 
a hydrocarbon hydrophobic ‘tail’. For phospholipids, the 

TABLE 6.1
Table of Symbols

Symbol Interpretation

a Microscopic molecular size

α = ln (a3Kd) Surface interaction parameter

αi Polarizability of the ith molecule

1 Bk Tβ = Inverse thermal energy

CPB Differential capacitance of the PB model

CmPB Differential capacitance of the mPB model

D Intermembrane separation

εw Water dimensionless dielectric constant

εL Lipid dimensionless dielectric constant

F Helmholtz free energy

 ( ) ( )F d F d= − → ∞ Excess Helmholtz free energy

b
3

ba nφ = Bulk volume fraction for monovalent electrolyte

s
2a eφ σ= Surface area fraction 

h Membrane thickness 

 Hamaker constant 

I z n
M1

2
i
2

i
(b)

i 1∑=
=

Ionic strength 

dK Kinetic constant 

4πB
2

0 w B e k Tε ε( )= Bjerrum length 

e e2π ; 2πGC B 1,2 B 1,2σ σ( )( )= =   
Gouy–Chapman length 

8πD D
1

B b
1/2

 nλ κ ( )= =− − Debye length 

μi Intrinsic chemical potential 

i
totµ Total chemical potential

ni(r) Concentration of the ith ionic species 

ni
(b) Bulk concentration of the ith ionic species 

nb Bulk concentration of monovalent electrolyte

n0 Reference density, taken at zero potential 

ni
(s); ns

Surface density

ni
(m); nm

Midplane density (two membranes) 

P Pressure

Π = Pin – Pout Osmotic pressure

ψ(r) Electrostatic potential

Ψ(r) = βe ψ(r) Dimensionless electrostatic potential

Ψs ; ψs Surface potential

Ψm; ψm Midplane potential

qi = zie Charge of the ith ionic species

ρ(r) Charge density of mobile ions

ρf (r) Charge density of fixed charges

ρtot(r) Total charge density

σ ;  1,2σ Surface charge density

V Volume

zi Valency of the ith ionic species
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amphiphiles have a double tail. We model the membrane 
as a medium of thickness h having a dielectric constant, 

Lε , coming essentially from the closely packed hydrocarbon 
(‘oily’) tails. The molecular heads contribute to the surface 
charges, and the entire membrane is immersed in an aque-
ous solution characterized by another dielectric constant, 
εw, assumed to be the water dielectric constant throughout 
the fluid. 

The membrane charge can have two origins: either 
a charge group (e.g., +H ) dissociates from the polar head 
group into the aqueous solution, leaving behind an oppo-
sitely charged group in the membrane; or, an ion from the 
solution (e.g., +Na ) binds to a neutral site on the membrane 
and charges it (Borkovec, Jönsson, and Koper 2001). These 
association/dissociation processes are highly sensitive to 
the ionic strength and pH of the aqueous solution.

When the ionic association/dissociation is slow as 
compared with experimental times, the charges on the 
membrane can be considered as fixed and time indepen-
dent, while for rapid association/dissociation, the surface 
charge can vary and is determined self-consistently from 
the thermodynamical equilibrium equations. We will fur-
ther discuss the two processes of association/dissociation 
in Section 6.8. In many situations, the finite thickness of 
the membrane can be safely taken to be zero, with the 
membrane modelled as a planar surface as displayed in 
Figure  6.2. We will see later under what conditions this 
simplifying limit is valid.

Let us consider such an ideal membrane represented by a 
sharp boundary (located at = 0z ) that limits the ionic solu-
tion to the positive half space. The ionic solution contains, 
in general, the two species of mobile ions (anions and cat-
ions), and is modelled as a continuum dielectric medium 
as explained above. Thus, the boundary at = 0z  marks the 
discontinuous jump of the dielectric constant between the 
ionic solution (εw) and the membrane (εL), which the ions 
cannot penetrate.

The PB equation can be obtained using two different 
approaches. The first is the one we present below combin-
ing the Poisson equation with the Boltzmann distribution, 
while the second one (presented later) is done through a 
minimization of the system free-energy functional. The 
PB equation is a mean-field (MF) equation, which can 
be derived from a field theoretical approach as the zeroth 
order in a systematic expansion of the grand-partition func-
tion (Podgornik and Žekš 1988, Borukhov, Andelman and 
Orland 1998, 2000, Netz and Orland 2000, Markovich, 
Andelman and Podgornik 2014, 2015, 2016, Markovich, 
Andelman and Orland 2016).

Consider M  ionic species, each of them with charge 
qi, where =q ezi i and zi is the valency of the ith ionic spe-
cies. It is negative ( < 0zi ) for anions and positive ( > 0zi ) 
for cations. The mobile charge density (per unit volume) 

is defined as ∑ρ =
=

r r( ) ( )
1
q ni i

i

M

 with ni being the number 

density (per unit volume), and both ρ and ni are continuous 
functions of r.

In the MF approximation, each of the ions sees a local 
environment constituting of all other ions, which dictates a 
local electrostatic potential ψ(r). The potential ψ(r) is a con-
tinuous function that depends on the total charge density 
through the Poisson equation:

q ni i

i

M

r
r

r r
1

,2 tot

0 w 0 w
f

1

∑ψ ρ
ε ε ε ε

ρ∇ ( ) = − ( ) = − ( ) + ( )










=

� (6.4)

where ρ ρ ρ= +tot f  is the total charge density and r( )fρ  is a 
fixed external charge contribution. 

As stated above, the aqueous solution (water) is mod-
elled as a continuum featureless medium. This by itself rep-
resents an approximation because the ions themselves can 
change the local dielectric response of the medium (Ben-
Yaakov, Andelman and Podgornik 2011, Levy, Andelman 
and Orland 2012, Adar et al. 2018) by inducing strong 
localized electric field. However, we will not include such 
refined local effects in this chapter.

FIGURE 6.1  A bilayer membrane of thickness h composed of 
two monolayers (leaflets), each having a negative charge density, 
σ < 0. The core membrane region (hydrocarbon tails) is modelled 
as a continuum medium with a dielectric constant εL, while the 
embedding medium (top and bottom) is water and has a dielectric 
constant, εw.

FIGURE 6.2  Schematic illustration of a charged membrane, 
located at z = 0, with charge density σ. Without loss of generality, 
we take σ < 0. For the counterion-only case, the surface charge 
is neutralized by the positive counterions. When monovalent 
(1:1) electrolyte is added to the reservoir, its bulk ionic density 
is (b)

bn n=± .
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The ions dispersed in solution are mobile and are allowed 
to adjust their positions. As each ionic species is in ther-
modynamic equilibrium, its density obeys the Boltzmann 
distribution:

= β ψ−r r( ) e ,(b) ( )n ni i
qi � (6.5)

where 1/ Bβ = k T , and ( )bni  is the bulk density of thi  species
taken at zero reference potential, ψ = 0. 

We now substitute Eq. (6.5) into Eq. (6.4) to obtain the 
Poisson–Boltzmann equation:

∑ψ
ε ε

ρ∇ = − +












β ψ−

=

r rrq n
w

i i
q

i

M

i( )
1

e ( ) .2

0

(b) ( )
f

1

� (6.7)

For binary monovalent electrolytes (denoted as 1:1 electro-
lyte), = ±1zi , the PB equation reads

( )
1

2 sinh ( ) ( ) .2

0 w
b fen er r rψ

ε ε
β ψ ρ( )∇ = −  � (6.8)

Generally speaking, the PB theory is a very useful analytical 
approximation with many applications. It is a good approx-
imation at physiological conditions (electrolyte strength 
of about 0.1 M) and for other dilute monovalent electro-
lytes and moderate surface potentials and surface charge. 
Although the PB theory produces good results in these situ-
ations, it misses some important features associated with 
charge correlations and fluctuations of multivalent ions.  

Moreover, close to a charged membrane, the finite size of 
the surface ionic groups and that of the counterions lead to 
deviations from the PB results (see Sections 6.4 and 6.8 for 
further details).

As the PB equation is a nonlinear equation, it can be solved 
analytically only for a limited number of simple boundary 
conditions. On the other hand, by solving it numerically or 
within further approximations or limits, one can obtain ionic 
profiles and free energies of complex structures. For exam-
ple, the free energy change for a charged globular protein 
that binds onto an oppositely charged lipid membrane.

In an alternative approach, the PB equation can also 
be obtained by a minimization of the system free-energy 
functional. One can assume that the internal energy, elU , 
is purely electrostatic and that the Helmholtz free energy, 

= −elF U TS , is composed of an internal energy and an 
ideal mixing entropy, S , of a dilute solution of mobile ions.

The electrostatic energy, elU , is expressed in terms of the 
potential ψ r( ):

2
d ( )

1
2

d ( ) ( ) ( ) ( ) ,

0 w 3 2

3
f

1

r

r r r r

∫
∫ ∑

ε ε ψ

ψ ρ ψ
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while the mixing entropy of ions is written in the dilute 
solution limit as

    d ( ) ln ( ) ( ) .B
3 3

1

r r r∫∑ ( )= −   −
=
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Using Eqs. (6.9) and (6.10), the Helmholtz free energy can 
be written as

d
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where the sum of the first two terms is equal to elU  and 
the third one is −TS . The variation of this free energy with 
respect to ψ r( ), / 0δ δψ =F , gives the Poisson equation, 
Eq. (6.4), while from the variation with respect to r( )ni , 

/ totδ δ µ=F ni i , we obtain the electrochemical potential of
Eq. (6.6). As before, substituting the Boltzmann distribu-
tion obtained from Eq. (6.6), into the Poisson equation, 
Eq. (6.4), gives the PB equation, Eq. (6.7).

6.2.1 �D ebye–Hückel Approximation

A useful and quite tractable approximation to the non-
linear PB equation is its linearized version. For electro-
static potentials smaller than 25 mV at room temperature 

BOLTZMANN DISTRIBUTION VIA 
ELECTROCHEMICAL POTENTIAL

A simple derivation of the Boltzmann distribution is 
obtained through the requirement that the electro-
chemical potential (total chemical potential) µ tot

i , for 
each ionic species, is constant throughout the system:

      µ µ ψ= + =r r( ) ( ) const,tot qi i i � (6.6)

where μi(r) is the intrinsic chemical potential. For 
dilute ionic solutions, the ith ionic species entropy 
is taken as an ideal gas one, µ =  r r( ) ln ( )B

3k T n ai i . 

By substituting βµ( )=( ) exp3 b tota ni i  into Eq. (6.6), the

Boltzmann distribution of Eq. (6.5) follows. This 
relation between the bulk ionic density and chemi-
cal potential is obtained by setting ψ = 0 in the bulk 
and shows that one can consider the chemical poten-
tial, µ tot

i , as a Lagrange multiplier setting the bulk 
densities to be ( )bni . Note that we have introduced a
microscopic length scale, a, defining a reference close 
packing density, 1 / 3a . Equation (6.6) assumes that 
the ions are point-like and have no other interactions 
in addition to their electrostatic one.
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(or equivalently ψ < ,  300Ke k T TB ), this approximation 
can be justified and the well-known Debye–Hückel (DH) 
theory (Debye and Hückel 1923) is recovered. Linearization 
of Eq. (6.7) is obtained by expanding its right-hand side to 
the first order in ψ ,

r r rq ni i

i

M

( )
1

8π
1

,2

0 w

(b)
B

0 w
f

1

∑ψ
ε ε

ψ
ε ε

ρ∇ = − + −
=

I ( ) ( )

� (6.12)

where I z n
i

M

i i
1
2

1

2 b∑= ( )

=

 is the ionic strength of the solution. 

The first term on the right-hand side of Eq. (6.12) vanishes 
because of electroneutrality of the bulk reservoir

	 0,
1

bq n
i

M

i i∑ =( )

=

� (6.13)

recovering the DH equation:

	 r r r( ) ( )
1

( ),2
D
2

0 w
fψ κ ψ

ε ε
ρ∇ = − � (6.14)

with the inverse Debye length, κ D, defined as
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i i8π 4π .D
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D
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=
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For monovalent electrolytes, = ±1zi , n8πD
2

B bκ =   with 
=( )b

bn ni , and Eq. (6.3) is recovered. Note that the Debye 
length, nD D

1
b

1/2λ κ= ∼− − , is a decreasing function of the salt 
concentration.

The DH treatment gives a simple tractable description 
of the pair interactions between ions. It is related to the 
Green function associated with the electrostatic potential 
around a point-like ion that can be calculated by using 
Eq. (6.14) for a point-like charge, q, placed at the origin, 

q rr r0, ( ) ( ),fρ δ= =

	 κ ψ
ε ε

δ( )∇ − = −r r
q

( ) ( ),2
D
2

0 w

� (6.16)

where δ r( ) is the Dirac δ -function. The solution to the 
above equation can be written in spherical coordinates as

	 r
q

r
r

4π
e .

0 w

Dψ
ε ε

( ) = κ− � (6.17)

It manifests the exponential decay of the electrostatic 
potential with a characteristic length scale, λ κ= 1 /D D. In 
a crude approximation, this exponential decay is replaced 
by a Coulombic interaction, which is only slightly screened 
for λ≤ Dr  and, thus, varies as ∼ −1r , while for λ> Dr , ψ ( )r  
is strongly screened and can sometimes be completely 
neglected.

6.3 � ONE PLANAR MEMBRANE

We consider the PB equation for a single membrane, 
assumed to be planar and charged, and discuss separately 
two cases: (i) a charged membrane in contact with a solu-
tion containing only counterions, and (ii) a membrane in 
contact with a monovalent electrolyte reservoir.

As the membrane is taken to have an infinite extent in the 
lateral ( ), x y  directions, the PB equation is reduced to an 
effective one-dimensional equation, where all local quan-
tities, such as the electrostatic potential, ψ ψ=r( ) ( )z , and 
ionic densities, =r( ) ( )n n z , depend only on the z-coordinate 
perpendicular to the planar membrane.

For a binary monovalent electrolyte (1:1 electrolyte, 
1zi = ± ), the PB equation from Eq. (6.7), reduces in its 

effective one-dimensional form to an ordinary differential 
equation depending only on the z-coordinate:

	 ''( ) sinh ( ),D
2κΨ = Ψz z � (6.18)

where β ψΨ ≡ e  is the rescaled dimensionless potential and 
we have assumed that the external charge, fρ , is restricted 
to the system boundaries and will only affect the boundary 
conditions.

We will consider two boundary conditions in this sec-
tion. A fixed surface potential (Dirichlet boundary condi-
tion), z 0 consts ( )Ψ ≡ Ψ = = , and constant surface charge 
(Neumann boundary condition), ' constsσ ∝ Ψ = . A third 
and more specialized boundary condition of charge regula-
tion will be treated in detail in Section 6.8. In the constant 
charge case, the membrane charge is modelled via a fixed 
surface charge density, zfρ σδ ( )=  in Eq. (6.8). A variation 
of the Helmholtz free energy, F  of Eq. (6.11) with respect 
to the surface potential, sΨ , F / 0sδ δ Ψ = , is equivalent to 
constant surface charge boundary:

	
z ez

d
d

4π
.

0

BσΨ = −
=



� (6.19)

Although we focus in the rest of the chapter on monova-
lent electrolytes, the extension to multivalent electrolytes is 
straightforward.

The boundary condition of Eq. (6.19) is valid if the 
electric field does not penetrate the ‘oily’ part of the mem-
brane. This assumption can be justified (Kiometzis and 
Kleinert 1989, Winterhalter and Helfrich 1992), as long as 

h/ 1/40 /L w Dε ε λ� � , where h is the membrane thickness 
(see Figure 6.1). All our results for one or two flat mem-
branes, Sections 6.3–6.4 and 6.5–6.7, respectively, rely on 
this decoupled limit where the two sides (monolayers) of the 
membrane are completely decoupled and the electric field 
inside the membrane is negligible.

6.3.1 �C ounterions Only

A single charged membrane in contact with a cloud of coun-
terions in solution is one of the simplest problems that has 
an analytical solution. It has been formulated and solved in 
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the beginning of the 20th century by Gouy (1910, 1917) and 
Chapman (1913). The aim is to find the profile of the coun-
terion cloud forming a diffusive electric double layer close 
to a planar membrane (placed at = 0z ) with fixed surface 
charge density (per unit area), σ , as in Figure 6.2.

Without loss of generality, the single-membrane prob-
lem is treated here for negative (anionic) surface charges 
(σ < 0) and positive monovalent counterions (cations) in 
the solution, q e=+  and ( ) ( )= +n z n z , such that the charge 
neutrality condition

	 e n z zd
0
∫σ ( )= −
∞

� (6.20)

is fulfilled.
The PB equation for monovalent counterions is written as

	 '' 4π e ,B 0( )Ψ = − ( )−Ψz n z � (6.21)

where 0n  is the reference density, taken at zero potential in 
the absence of a salt reservoir. The PB equation, Eq. (6.21), 
with the boundary condition for one charged membrane, 
Eq. (6.19), and vanishing electric field at infinity, can be 
integrated analytically twice, yielding

	 z z2 ln ,GC 0( )( )Ψ = + + Ψ � (6.22)

so that the density is

	
1

2π
1

( )
,

B GC
2

 

n z
z

( ) =
+

� (6.23)

where Ψ0 is a reference potential and GC  is the Gouy–
Chapman length defined in Eq. (6.2). For example, for a 

choice of ( )Ψ = −2 ln0 GC , the potential at = 0z  vanishes 
and Eq. (6.22) reads

	 2 ln 1 / .GC( )( )Ψ = +z z � (6.24)

Although the entire counterion profile is diffusive as it 
decays algebraically, half of the counterions ( /2σ  per unit 

area) accumulate in a layer of thickness GC  close to the 
membrane,

	 d
1
2

.
0

GC

∫ σ( ) =e n z z � (6.25)

As an example, we present in Figure 6.3 the potential ψ  
(in mV) and ionic profile n (in M) for a surface density 
of / (2nm )2σ = −e , leading to a Gouy–Chapman length, 

0.46nmGC� � . The figure clearly shows the build-up of 
the diffusive layer of counterions attracted by the nega-
tively charged membrane, reaching a limiting value of 

( )= 0 1.82 Mn ns . Note that the potential has a weak 
logarithmic divergence as → ∞z . This divergence is a 
consequence of the vanishing ionic reservoir (counterions 
only) with counterion density obeying the Boltzmann dis-
tribution. However, the physically measured electric field, 

ψ= −d / dE z, properly decays to zero as ∼ 1 / z, at → ∞z .

6.3.2 �A dded Electrolyte

Another case of experimental interest is that of a single 
charged membrane at = 0z  in contact with an electrolyte 
reservoir. For a symmetric electrolyte, = ≡( ) ( )

+ −
b b

bn n n , and 
the same boundary condition of constant surface charge σ , 
Eq. (6.19), holds at the = 0z  surface. The negatively charged 
membrane attracts the counterions and repels the co-ions. 
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FIGURE 6.3  The electric double layer for a single charged membrane in contact with an aqueous solution of neutralizing monova-
lent counterions. In (a), the electrostatic potential ψ(z) (in mV) is plotted as function of the distance from the membrane, z, Eq. (6.24). 
The charged membrane is placed at z = 0 with σ = −e/(2 nm2) < 0. The zero of the potential is chosen to be at the membrane, ψ(z = 0) = 0. 
In (b), the density profile of the counterions, n (in M), is plotted as function of the distance z. Its value at the membrane is n(z = 0) = 
ns ≃ 1.82 M and the Gouy–Chapman length, ℓGC ≃ 0.46 nm, is marked by an arrow.
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As will be shown below, the potential decays to zero from 
below at large z; hence, it is always negative. Since the 
potential is a monotonic function, this also implies that 

( )Ψ ' z  is always positive. At large z, where the potential 
decays to zero, the ionic profiles tend to their bulk (reser-
voir) densities, n nb=±

∞
.

The PB equation for monovalent electrolyte, Eq. (6.18), 
with the boundary conditions as explained above can be 
solved analytically. The first integration of the PB equation 
for 1:1 electrolyte yields

	
z

d
d

2 sinh /2 ,Dκ ( )Ψ = − Ψ � (6.26)

where we have used d /d 0z z( )Ψ → ∞ =  that is implied by 
the Gauss law and electroneutrality, and chose the bulk 
potential, ( )Ψ → ∞ = 0z , as the reference potential. A fur-
ther integration yields

    z
z

z4tanh e 2ln
1 e
1 e

,1 D
D

D
γ γ

γ( )Ψ = − = − +
−







κ
κ

κ
− −

−

− � (6.27)

where γ  is an integration constant, γ< <0 1. Its value is 
determined by the boundary condition at = 0z .

The two ionic profiles, ( )±n z , are calculated from the 
Boltzmann distribution, Eq. (6.5), and from Eq. (6.27), 
yielding:

	
1 e
1 e

.b

2
D

D


n z n
z

z

γ
γ

( ) = ±





κ

κ±

−

− � (6.28)

For constant surface charge, the parameter γ  is obtained by 
substituting the potential from Eq. (6.27) into the boundary 

condition at = 0z , Eq. (6.19). This yields a quadratic equa-
tion, γ κ γ+ − =2 1 02

D GC , with γ  as its positive root:

	 ( ) 1.D GC D GC
2

 γ κ κ= − + + � (6.29)

For constant surface potential, the parameter γ  can be 
obtained by setting = 0z  in Eq. (6.27),

	 e k T/ 4tanh .s s B
1ψ γΨ = = − − � (6.30)

We use the fact that the surface potential sΨ  is uniquely 
determined by the two lengths, σ∼ −

GC
1

  and Dλ , and write 
the electrostatic potential as

	 z
z

z2ln
1 tanh /4 e
1 tanh /4 e

,  s

s

D

D

( )
( )( )Ψ = − − Ψ

+ Ψ










κ

κ

−

− � (6.31)

where Ψ < 0s , in accord with our choice of σ < 0. In 
Figure 6.4, we show typical profiles for the electrostatic poten-
tial and ionic densities, for 5 /nm2σ = − e  ( 0.046nmGC� � ). 
Note that this surface charge density is ten times larger than 
σ  of Figure 6.3. For electrolyte bulk density of = 0.1bn M, 
the Debye screening length is λ 0.97nmD  .

The DH (linearized) limit of the PB equation, Eq. (6.14), 
is obtained for small surface charge and/or high electrolyte 
strength, κ 1D GC� � . This limit yields (2 )D GC

1� �γ κ − , and 
the potential can be approximated as

	
κ

Ψ Ψ −κ κ− −e
2

e .s
D GC

D D� �
�

z z � (6.32)

As expected for the DH limit, the solution is exponentially 
screened and falls off to zero for κ λ=−

D
1

Dz .
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FIGURE 6.4  The electric double layer for a single charged membrane in contact with a 1:1 monovalent electrolyte reservoir of con-
centration nb = 0.1 M, corresponding to λD ≃ 0.97 nm. The membrane located at z = 0 is negatively charged with σ = −5e/nm2, yielding 
ℓGC ≃ 0.046 nm. Note that the value of σ is ten times larger than the value used in Figure 6.3. In (a), we plot the electrostatic potential, 
ψ(z) as function of z, the distance from the membrane. The value of the surface potential is ψs ≃ −194 mV. In (b), the density profiles of 
counterions (solid line) and co-ions (dashed line), n± (in M), are plotted as function of the distance from the membrane, z. The positive 
counterion density at the membrane is n+(z = 0) ≃ 182 M (not shown in the figure).
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The counterion-only case, considered earlier in Section 
6.3.1, is obtained by formally taking the → 0bn  limit in Eqs. 
(6.27)–(6.29) or, equivalently, κ 1D GC� � . This means that 
γ κ−1 D GC� � , and from Eq. (6.27), we recover Eq. (6.23) 
for the counterion density, ( ) ( )= +n z n z , while the co-ion 
density, ( )−n z , vanishes.

For a system in contact with an electrolyte reservoir, the 
potential always has an exponentially screened form in the 
distal region (far from the membrane). This can be seen by 
taking → ∞z  while keeping κ D GC  finite in Eq. (6.27):

	 z z4 e .Dγ( )Ψ − κ−
 � (6.33)

Moreover, it is possible to extract from the distal form an 
effective surface charge density, σ eff , by comparing the 
coefficient γ4  of Eq. (6.33) with an effective coefficient 

κ2 / ( )D GC  from the DH form, Eq. (6.32),

	 σ γκ σ κ γ= =2
π

.eff D GC
D

B





e
� (6.34)

Note that γ γ κ= ( )D GC  is calculated for the nominal param-
eter values in Eq. (6.29). The same concept of an effective 
σ  is useful in several situations other than the simple planar 
geometry considered here.

6.3.3 �T he Grahame Equation

In the planar geometry, for any amount of salt, the nonlin-
ear PB equation can be integrated analytically, resulting in 
a useful relation known as the Grahame equation (Grahame 
1947). This equation is a relation between the surface charge 
density, σ , and the limiting value of the ionic density pro-
file at the membrane, ( )≡ =( )

± ± 0sn n z . The first integration 
of the PB equation for a 1:1 electrolyte yields, Eq. (6.26), 

zd /d 2 sinh /2Dκ ( )Ψ = − Ψ . Using the boundary condition, 
Eq. (6.19), and simple hyperbolic function identities gives a 
relation between σ  and sΨ

	 cosh 1 ,  B

2

b

σ ( )( )π 



 = Ψ −

e
n s � (6.35)

and via the Boltzmann distribution of ±n , the Grahame 
equation is obtained:

	
2

2 .2
2

B

s s
b



σ ( )=
π

+ −( ) ( )
+ −

e
n n n � (6.36)

This equation implies a balance of stresses on the surface, 
with the Maxwell stress of the electric field compensating 
the van ’t Hoff ideal pressure of the ions.

For large and negative surface potential, 1s Ψ , the 
co-ion density, ( )∼ − Ψ( )

− exps
sn , can be neglected, and Eq. 

(6.36) becomes

	
2

2 .2
2

B

s
b



σ ( )=
π

−( )
+

e
n n � (6.37)

For example, for a surface charge density of e5 /nm2σ = −  
(as in Figure 6.4) and an ionic strength of = 0.1Mbn , the 
limiting value of the counterion density at the membrane is 

( )
+ 182s
n  M and that of the co-ions is n 5 10s 5×( )

−
−

  M. The 
very high and unphysical value of ( )

+
sn  should be understood 

as an artefact of the continuum PB theory. In physical situ-
ations, the ions accumulate in the membrane vicinity till 
their concentration saturates due to the finite ionic size and 
other ion–surface interactions. We will further explore this 
point in Sections 6.4 and 6.8.

The differential capacitance is another useful quantity to 
calculate, and it gives a physical measurable surface prop-
erty. By using Eq. (6.35), we obtain

d
d

d
d

cosh /2 .PB
s B s

0 w D s
σ
ψ

σ ε ε κ ( )= =
Ψ

= ΨC
e

k T
� (6.38)

As shown later in Figure 6.6, the PB differential capacitance 
has a minimum at the potential of zero charge, Ψ = 0s , and 
increases exponentially for 1s Ψ .

6.4 � MODIFIED POISSON–BOLTZMANN 
THEORY

Within the PB theory, the density of accumulated coun-
terions at the membrane might reach unphysical high val-
ues (see Figure 6.4). This unphysical situation is avoided 
on the MF level by accounting for the solvent entropy. 
Including this additional term yields a modified free-energy 
and PB equation (mPB). Taking this entropy into account 
yields a modified free energy, written here for monovalent 
electrolyte:
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� (6.39)

This is the free energy of a Coulomb lattice gas (Borukhov, 
Andelman and Orland 1997, 2000, Kilic, Bazant and Ajdari 
2007, Adar et al 2018). Taking the variation of the above 
free energy with respect to ±n , F n/δ δ µ=± ±, gives the ionic 
profiles

	 n z
n e

1 2 2 cosh
,  b

b bφ φ
( ) =

− + Ψ±

Ψ

� (6.40)

with φ = 3
b bn a  being the bulk volume fraction of the ions. 

For simplicity, a is taken to be the same molecular size of 
all ionic species and the solvent.

https://6.27)�(6.29
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In the above equation, we have also used the equilibrium 
relation

n a

n a
e

1 2 1 2
,b

3

b
3

b

b

φ
φ

=
−

=
−

β µ± (6.43)

valid in the bulk where Ψ = 0. Variation with respect to Ψ, 
/ 0Fδ δ Ψ = , yields the mPB equation for 1:1 electrolyte:

κ
φ φ

[ ]∇ Ψ = − − = Ψ
− + Ψ+ −r r rn n( ) 4π ( ) ( )

sinh
1 2 2 cosh

.2
B

D
2

b b

(6.44)

For small electrostatic potentials, Ψ 1 , the ionic 
distribution, Eq. (6.40), reduces to the usual Boltzmann 
distribution, but for large electrostatic potentials, Ψ 1 , 
this model gives very different results with respect to the 
PB theory. In particular, the ionic concentration is unbound 
in the standard PB theory, whereas it is bound for the mPB 
by the close packing density, 1 / 3a . This effect is impor-
tant close to strongly charged membranes immersed in an 
electrolyte solution, while the regular PB equation is recov-
ered in the dilute bulk limit, 1b

3
n a , for which the solvent 

entropy can be neglected.
For large electrostatic potentials, the contribution of 

the co-ions is negligible, and the counterion concentra-
tion follows a distribution reminiscent of the Fermi–Dirac 
distribution

βµ+ −Ψ −− r( )
1 1

1 exp ( )
,3n

a
� (6.45)

where electroneutrality dictates µ µ= ± . In Figure 6.5, we 
show for comparison the modified and regular PB profiles 

for a 1:1 electrolyte. To emphasize the saturation effect of 
the mPB theory, we chose in the figure a large ion size, 

= 0.8nma .
The mPB theory also implies a modified Grahame equa-

tion that relates the surface charge density to the ion surface 
density, ( )

±
sn . First, we find the relation between σ  and the

surface potential, Ψs,

e a

1
2π

ln 1 2 cosh 1 .
2

3
B

b s
σ φ ( )( )



 = + Ψ − 



� (6.46)

This equation represents a balance of stresses on the sur-
face, where the Maxwell stress of the electric field is equal 
to the lattice-gas pressure of the ions. The surface potential 
can also be calculated:

φ
φ

Ψ = − +



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ξ
−cosh

e 1 2
2

,s
1 b

b

� (6.47)

with the dimensionless parameter a / 2π3
B GC

2ξ ( )=   .
For large surface charge or large surface potential, the 

co-ions concentration at the membrane is negligible, ( )
− 1s
n ,

and the surface potential, Eq. (6.47) is approximated by

φ φ( ) ( )Ψ − + −ξln e 1 2 ln ,s b b � (6.48)

and from Eq. (6.46), we obtain the Grahame equation,
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Note that in the dilute limit φ 1b  , the Grahame equation 
reduces to the regular PB case (Eq. 6.36).

ENTROPY DERIVATION OF THE MPB

Let us start with a homogenous system containing an ionic solution inside a volume v, with N+ cations, N− anions 
and Nw water molecules, such that N+ −+ +N Nw = N . The number of different combinations of cations, anions, and 
water molecules is N!/ N N+ −( )! !Nw ! . Therefore, the entropy is
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where we have used Stirling’s formula for N N,   1w±  .
We now consider a system of volume V v. The entropy of such system can be written in the continuum limit as
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where n N v/=± ±  and n N v/w w=  are the densities of the cations, anions, and water molecules, respectively, and 
N v a/ 3=  is the total number of molecules in the volume v. In this last equation, we have used the lattice gas formula-
tion, in which the solution is modelled as a cubic lattice with unit cell of size × ×a a a. Each unit cell contains only 
one molecule, a n n n 13

w( )+ + =+ − .
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It is also straightforward but more cumbersome to 
calculate the differential capacitance, C d /d sσ ψ= , for the 
mPB theory. From Eq. (6.46), we obtain (Kornyshev 2007, 
Nakayama and Andleman 2015)

C
C

1 4 sinh /2

4 sinh /2

ln 1 4 sinh /2
.mPB

PB

b
2

s

b
2

s

b
2

sφ
φ

φ( )
( )

( )
=

+ Ψ
Ψ

+ Ψ 

(6.50)

Although it can be shown that for φ → 0b  the mPB dif-
ferential capacitance reduces to the standard PB result, 
the resulting mPBC  is quite different for any finite value 
of φb. The main difference is that instead of an exponen-
tial divergence of PBC  at large potentials, mPBC  decreases 
for high-bias 1s Ψ . For rather small bulk densities, 
φ < 1 / 6b , the mPBC  shows a behaviour called camel-
shape or double-hump. This behaviour is also observed 
in experiments at relatively low salt concentrations. As 
shown in Figure 6.6, the double-hump mPBC  has a mini-
mum at Ψ = 0s  and two maxima. The peak positions can 
roughly be estimated by substituting the close packing 
concentration, = 1 / 3n a , into the Boltzmann distribution 
(Eq. 6.5), yielding lns

max
b� ∓ φ( )Ψ . Using parameter val-

ues as in Figure 6.6, Ψs
max is estimated as ±4.6 as com-

pared with the exact values, Ψ = ±5.5s
max .

Furthermore, it can be shown that for high salt 
densities, φ > 1 / 6b , mPBC  exhibits (see also Figure 6.6) 
a unimodal maximum close to the potential of zero 
charge, rather than a minimum as for PBC . Such results 
that take  into account finite ion size for the differential 
capacitance are of importance in the theory of confined 
ionic liquids (Kornyshev 2007, Nakayama and Andelman 
2015).

6.5 � TWO-MEMBRANE SYSTEM: 
OSMOTIC PRESSURE

We now consider the PB theory of two charged membranes 
as shown in Figure 6.7. The two membranes can, in general, 
have different surface charge densities: σ1 at /2= −z d  and σ 2 
at /2=z d . The boundary conditions of the two-membrane 
system are written as ρ σ δ σ δ( ) ( )= + + −/2 /21 2z d z df ,
and using the variation of the free energy, δ δ Ψ =/ 0sF :
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FIGURE 6.5  Comparison of the modified PB (mPB) profiles (black solid lines) with those of the regular PB one (dashed blue lines). 
In (a), we show the counterion profile, and in (b), the co-ion profile. The parameters used are ion size a = 0.8 nm, surface charge density 
σ = −5e/nm2, and 1:1 electrolyte with ionic strength nb = 0.5 M. Note that while the PB value at the membrane is + 182 Ms n , the mPB

density saturates at + 3.2 Ms n .
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FIGURE 6.6  Comparison of the differential capacitance, C, 
calculated from the regular PB theory (dashed red line), Eq. (6.38), 
with nb ≃ 0.4 mM (chosen so that it corresponds to ϕb = 0.01 and 
a = 0.3 nm), and from the mPB theory, Eq. (6.50). The mPB differ-
ential capacitance is calculated for a = 0.3 nm. For low ϕb = 0.01, it 
shows a camel shape (black solid line), while for high ϕb = 0.2, it 
shows a unimodal (dash-dotted blue line). 
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It is of interest to calculate the force (or the osmotic 
pressure) between two membranes interacting across 
the ionic solution. The osmotic pressure is defined as 
Π = −in outP P , where Pin is the inner pressure and Pout is the
pressure exerted by the reservoir that is in contact with the 
two-membrane system. Sometimes the osmotic pressure is 
referred to as the disjoining pressure, introduced first by 
Derjaguin (Churaev, Derjaguin and Muller 2014).

Let us start by calculating the inner and outer pressures 
from the Helmholtz free energy. The pressure ( inP  or outP ) is 
the variation of the free energy with the volume:

1
,

δ
δ

δ
δ

= − = −P
F

V A

F

d
(6.52)

with =V Ad  being the system volume, A the lateral membrane 
area, and d  the intermembrane distance. As the interaction 
between the two membranes can be either attractive 0( )Π <  
or repulsive ( )Π > 0 , we will analyse the criterion for the
crossover ( )Π = 0  between these two regimes as function of
the surface charge asymmetry and intermembrane distance.

FIGURE 6.7  Schematic drawing of two asymmetric mem-
branes. The planar membrane located at z = −d/2 carries a charge 
density σ1, while the membrane at z = d/2 has a charge density of 
σ2. The antisymmetric membrane set-up is a special case with 
σ1 = − σ2, while in the symmetric case, σ1 = σ2.

GENERAL DERIVATION OF THE PRESSURE

The Helmholtz free-energy obtained from Eq. (6.11) can be written in a general form as ∫ [ ]( ) ( )= Ψ Ψ, ' dF A f z z z,

where we use the Poisson equation to obtain the relation, ( )= Ψ± ±n n . As the integrand f  depends only implic-

itly on the z coordinate through ( )Ψ z , one can obtain from the Euler–Lagrange equations the following relation
(Ben-Yaakov et al. 2009a):

f n
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i
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i i
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i i i
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∑

∑ ∑

µ

( )

− − ∂
∂Ψ

Ψ =

= Ψ + Ψ + − 
= =

(6.53)

where the sum is over = 1,...,i M  ionic species and the total chemical potential defined as before, 
δ δ µ= ∂ ∂ =/ / totF n f ni i i . Let us understand the meaning of the constant on the right-hand side of the above
equation. For uncharged solutions, the Helmholtz free energy per unit volume contains only the entropy term, 

∑ ( )= − lnB
3f k T n n a n

i

i i i , and from Eq. (6.53), we obtain f n
i

i i consttot∑ µ− = . A known thermodynamic rela-

tion is P n f
i

i i
tot∑ µ= − , implying that the right-hand side constant is −P. However, even for charged liquid mix-

tures, the electrostatic potential vanishes in the bulk, away from the boundaries, and reduces to the same value as for 
uncharged solutions. Therefore, we conclude that the right-hand side constant is −P, yielding

P
k T

k T n
i

M

i
8π

( ') .B

B

2
B

1

∑= − Ψ +
=



� (6.54)

If the electric field and ionic densities are calculated right at the surface, we obtain the contact theorem that gives the 
osmotic pressure acting on the surface. Another and more straightforward way to calculate the pressure is to calcu-

late the incremental difference in free energy, F , for an intermembrane separation d , i.e., δ δ( ) ( )+ −  /F d d F d d .

The calculation of δ( )+F d d  can be done by including an additional slab of width δ d in the space between the two
membranes at an arbitrary position. We remark that the validity of the contact theorem itself is not limited to the PB 
theory but is an exact theorem of statistical mechanics (Henderson and Blum 1981, Evans and Wennerström 1999, 
Dean and Horgan 2003).
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We are interested in the osmotic pressure, Π. For 
an ionic reservoir in the dilute limit, Eq. (6.54) gives 

P k T n
i

iout B
b∑= ( ), where ( )bni  is the thi  ionic species bulk 

density. Thus, the osmotic pressure can be written as

	
8π
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B
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2
B
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k T n z n
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M

i i


∑( )
( )[ ]
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( )
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= Ψ −

( )

=
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(6.55)

and for monovalent 1:1 ions:

8π
( ') 2 cosh 1 const.B

B

2
B b

k T
k Tn z



( )[ ]( )Π = − Ψ + Ψ − =

� (6.56)

At any position z between the membranes, the osmotic 
pressure has two contributions. The first is a negative 
Maxwell electrostatic pressure proportional to Ψ( ')2. The 
second is due to the entropy of mobile ions and measures 
the local entropy change (at an arbitrary position, z) with 
respect to the ion entropy in the reservoir.

6.6 � TWO SYMMETRIC MEMBRANES, σ1 = σ2

For two symmetrically charged membranes, σ σ σ= ≡1 2  
at = ± / 2z d , the electrostatic potential is symmetric about 
the midplane yielding a zero electric field, = 0E  at = 0z . It 
is then sufficient to consider the interval [ ]0, / 2d  with the 
boundary conditions,

    ' ' 4π / , ' ' 0./2 s B 0 m σΨ = Ψ = Ψ = Ψ == =ez d z � (6.57)

As Π is constant (independent of z) between the mem-
branes, one can calculate the disjoining pressure, Π, from 
Eq. (6.55), at any position z, between the membranes. A 
simple choice will be to evaluate it at = 0z  (the midplane), 
where the electric field vanishes for the symmetric σ σ=1 2 
case,

k T n n k T n
i
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i i

i

M

i
zie 1 0,B

1

m b
B

1

b m∑ ∑( ) ( )Π = − = − >( ) ( )( )

= =

− Ψ

� (6.58)

and for monovalent ions, = ±1zi , we get

	 4 sinh /2 0,B b
2

m( )Π = Ψ >k Tn � (6.59)

where ( )= =( ) 0mn n zi i  is the midplane concentration of the 
thi  species. It can be shown that the electroneutrality condi-

tion implies that the osmotic pressure is always repulsive for 
any shape of boundaries (Sader and Chan 1999, Neu 1999) 
as long as we have two symmetric membranes 1 2σ σ( )= .

Note that the Grahame equation can be derived also 
for the two-membrane case with added electrolyte. One 
way of doing it is by comparing the pressure of Eq. (6.55) 

evaluated at one of the membranes, = ± / 2z d , and at the 
midplane, = 0z . The pressure is constant between the two 
membranes; thus, by equating these two pressure expres-
sions, the Grahame equation emerges

	 ∑σ ( )



 = −( ) ( )

=

1
2π

.
2

B 1

s m

e
n n

i

M

i i � (6.60)

By taking the limit of infinite separation between the two 
membranes and → ( )( )m bn ni i , the Grahame equation for a 
single membrane (Eq. 6.36) is recovered.

6.6.1 �C ounterions Only

In the absence of an external salt reservoir, the only ions 
in the solution for a symmetric two-membrane system are 
positive monovalent ( )= +1z  counterions with density ( )n z  
that neutralizes the negative surface charge,

	 ∫σ ( )= −
−

2 d .
/2

/2

e n z z
d

d

� (6.61)

The PB equation has an analytical solution for this case. 
Integrating twice the PB equation (Eq. 6.18) with the appro-
priate boundary conditions (Eq. 6.57) yields an analytical 
expression for the electrostatic potential:

	 ( )( )Ψ = ln cos ,2z Kz � (6.62)

and consequently the counterion density is

	 ( ) ( )
= =( )−Ψe

cos
.m

m
2n z n
n

Kz
z � (6.63)

In the above, we have defined ( )= = 0mn n z  and chose 
arbitrarily Ψ = 0m . We also introduced a new length scale, 

−1K , related to mn  by

	 2 .2
B m= πK n � (6.64)

Notice that K  plays a role similar to the inverse Debye 
length 8D B bκ = π n , with the midplane density replacing 
the bulk density, →b mn n . Using the boundary condition at 

/2=z d , we get a transcendental relation for K

	 Kd Kd
d

tan /2 .
GC

( ) =


� (6.65)

In Figure 6.8, we show a typical counterion profile with its 
corresponding electrostatic potential for /(7nm )2σ = −e  
and = 4nmd .

The osmotic pressure (Eq. 6.55), calculated for the 
counterion-only case, is

	 Π =
2π

.B

B

2



k T
K � (6.66)

David
Text Box
3. See last page: 
typo in the 2nd line
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For weak surface charge, d / 1GC� � , one can approximate 
Kd d( ) 2 / 12

GC� � � , and the pressure is given by

	
k T

e d

k T

d d

2 1
π

1 1
.B B

B GC

�
� �

σΠ − = ∼ � (6.67)

The Π ∼ 1 / d behaviour is similar to an ideal-gas equation 
of state, = /BP Nk T V  with V Ad=  and N  the total number 
of counterions. The density (per unit volume) of the coun-
terions is almost constant between the two membranes and 
is equal to σ ( )2 / ed . This density neutralizes the surface 
charge density, σ , on the two membranes. The main contri-
bution to the pressure comes from an ideal-gas like pressure 
of the counterion cloud. This regime can be reached experi-
mentally for small intermembrane separation, < GCd . For 
example, for σ/e  in the range of −1 100 nm2, σ∼ 1 /GC  
varies between 0.2nm and 20nm.

For the opposite case of strong surface charge, d / 1GC� � , 
one gets πKd  from Eq. (6.65). This is the Gouy–Chapman 
regime. It is very different from the weak surface charge, as 
the density profile between the two membranes varies sub-
stantially leading to s mn n , and to a pressure

	
k T

d d

π
2

1
.B

B
2 2�

�
Π ∼ � (6.68)

It is interesting to note that the above pressure expres-
sion does not depend explicitly on the surface charge den-
sity. This can be rationalized as follows. Counterions are 
accumulated close to the surface, at an average separation 

1 /GC σ∼ . Therefore, creating a surface dipole density of 
GCσ . The interaction energy per unit area is proportional 

to the electrostatic energy between two such planar dipo-
lar layers, which scales as 1 / d  for the free energy density 
and 2d −  for the pressure. The surface charge density depen-
dence itself vanishes because the effective dipolar–moment 

surface density, GCσ , is charge independent. In  the 
Gouy–Chapman regime, the electrostatic interactions are 
most dominant as they are long-ranged and unscreened. Of 
course, even in pure water, the effective Debye screening 
length is about 1 μm, and the electrostatic interactions will 
be screened for larger distances.

6.6.2 �A dded Electrolyte

When two charged membranes are placed in contact with an 
electrolyte reservoir, the co-ions and counterions between 
the membranes have a nonhomogenous density profile. The 
PB equation does not have a closed-form analytical solu-
tion for two (or more) ionic species, even when we restrict 
ourselves to a 1:1 symmetric and monovalent electrolyte. 
Instead, the solution can be expressed in terms of elliptic 
functions.

The PB equation for a monovalent 1:1 electrolyte 
(Eq. 6.18) is '' sinhD

2κ( )Ψ = Ψz , while the same boundary 
conditions as in Eq. (6.57) are satisfied. The first integration 
from the midplane 0z( )=  to an arbitrary point between the 
membranes, /2, /2∈ − z d d , gives

	
d
d

2cosh 2cosh .D m
z

zκ ( )Ψ = − Ψ − Ψ � (6.69)

As explained in the beginning of Section 6.6, ' 0mΨ =  for 
two symmetric membranes and the second integration leads 
to an elliptic integral (see box below)

	 z
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2 cosh 2 cosh
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∫λ η

η
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− ΨΨ

Ψ

� (6.70)

Inverting the relation z z( )= Ψ  leads to the expression for 
the profile, z( )Ψ .
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FIGURE 6.8  The counterion-only case for two identically charged membranes located at z = ±d/2 with d = 4 nm and σ = −e/(7 nm2) 
on each membrane ( GC  ≃ 1.6 nm). In (a), we plot the electrostatic potential, ψ, and in (b), the counterion density profile, n. The plots 
are obtained from Eqs. (6.62)–(6.65).
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Using one of the boundary conditions (Eq. 6.57) with the 
first integration (Eq. 6.69) yields 

	 cosh cosh 2 .s m
D

GC
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λ( ) ( )Ψ = Ψ + 



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� (6.78)

The above equation also gives a relation between σ  and the 
midplane potential, mΨ , in terms of Jacobi elliptic functions 
(see box above),
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with / 4s Du d mλ( )≡  and exp mm ( )= Ψ  as defined after 
Eq. (6.72). For fixed surface charge, this relation gives the 
midplane potential, mΨ , and the osmotic pressure can then 
be calculated from Eq. (6.58). The other boundary condi-
tion can also be expressed as an elliptic integral
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where sin exp / 2 .s
1

s mϕ ( )[ ]= Ψ − Ψ 
−

The three equations, Eqs. (6.70), (6.78), and (6.80), com-
pletely determine the potential z( )Ψ , the two species den-
sity profiles, expb n z n ( )( ) = Ψ± , and their midplane values 

expm
b mn n ( )= Ψ( )

± , as function of the three parameters: 
the intermembrane spacing d , the surface charge density σ  
(or equivalently GC ), and the electrolyte bulk ionic strength 

bn  (or equivalently Dλ ). 
The exact form of the profiles and pressure can be 

obtained either from the numerical solution of Eqs. (6.70), 
(6.78) and (6.80) or by the usage of the elliptic functions. 
For example, we calculate numerically the counterion, 

THE ELECTROSTATIC POTENTIAL VIA JACOBI ELLIPTIC FUNCTIONS

It is possible to write Eq. (6.70) in terms of an incomplete elliptic integral of the first kind
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After change of variables and some algebra, we write Eq. (6.70) with the help of Eq. (6.71) as
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with exp mm ( )= Ψ  and sin exp / 21
mϕ ( )[ ]= Ψ − Ψ 

− .
The electrostatic potential, which is the inverse relation of Eq. (6.72), can then be written in terms of the Jacobi 

elliptic function, cd( | )2u a ,
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In writing this equation, we have used the definition of the Jacobi elliptic functions:

	 sn | sin ,2u a α( ) = � (6.74)
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with | 2u F aα( )≡ .
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co-ion, and potential profiles as shown in Figure 6.9, where 
the three relevant lengths are 4nmd = , 0.4GC� � d, and 

0.25D  dλ .

6.6.3 � Debye–Hückel Regime

Broadly speaking (see Section 6.2.1), the PB equation can 
be linearized when the surface potential is small, 1s Ψ . 
In this case, the potential is small everywhere because it is 
a monotonous function that vanishes in the bulk. The DH 
solution for monovalent electrolytes has the general form

	 z A z B zcosh sinh ,D Dκ κ( ) ( )( )Ψ = + � (6.81)

and the boundary conditions of Eq. (6.57) dictate the 
specific solution

	 z
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� (6.82)

In the DH regime, the potential is small, and the disjoining 
pressure (Eq. 6.58) can be expanded to second order in mΨ . 
As the first order vanishes from electroneutrality, we obtain
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The DH regime can be further divided into two subcases: 
DH1 and DH2. For large separations, Dd λ , the above 
expression reduces to
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π
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2

D�
� �
k T dΠ κ− � (6.84)

This DH1 subregime is valid for Dd λ  and GC D� � λ .
In the other limit of small separations, the pressure is 

approximated by
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dκ( )
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The limits of validity for this DH2 subregime are Dd λ  
and d/GC D

2λ� �  (see Table 6.2).

6.6.4 �I ntermediate Regime

When d  is the largest length scale in the system, Dd λ  
and GC� �d , the interaction between the membranes is 
weak, and one can use the superposition principle. This 
defines the distal region, where the midplane potential is 
obtained by adding the contributions from two identical 
charged single surfaces, located at /2= ±z d .

In the distal region, the midplane potential is obtained 
from Eq. (6.33) by the above-mentioned superposition:

	 8 e .m
/2DdγΨ = − κ− � (6.86)

Since mΨ  is small, the pressure expression (Eq. 6.58) can be 
expanded to second order in mΨ , as was done in Eq. (6.83), 
giving

	 64 e .B b m
2

B
2

b
D

 k Tn k T n dγΠ Ψ = κ− � (6.87)

This osmotic pressure expression is valid for large 
distances, Dd λ  and GC� �d , and partially holds for the 
DH1 regime.

The intermediate regime is obtained by further assum-
ing strongly charged surfaces, D GC� �λ . In this limit, 

tanh / 4 1s γ ( )= −Ψ , and the osmotic pressure is written as
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FIGURE 6.9  Monovalent 1:1 electrolyte with nb = 0.1 M (λD ≃ 0.97 nm) between two identically charged membranes with  
σ = −e/(7 nm2) each ( GC  ≃ 1.6 nm) located at z = ±d/2 with d = 4 nm. In (a), we plot the electrostatic potential, ψ, and in (b), we show the 
co-ion (dashed line) and counterion (solid line) density profiles, n±. The plots are obtained from Eqs. (6.70), (6.78), and (6.80).
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The intermediate regime is valid for D GC� � �d λ  (see 
Table 6.2).

6.6.5 �O ther Pressure Regimes

The pressure expression can be derived analytically in two 
other limits, which represent the two regimes obtained for the 
counterions-only case: the Ideal-Gas (IG) regime (Eq. 6.67),

	
π

1
,B

B GC

�
� �
k T

d
Π � (6.89)

valid for /D
2

GC�� �λ d d, and the Gouy–Chapman (GC) 
regime, (Eq. 6.68),
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�
k T

d
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whose range of validity is D GC� � �dλ .
The five pressure regimes complete the discussion of the 

various limits as function of the two ratios: /GC D λ  and / Dλd . 
They are summarized in Table 6.2 and plotted in Figure 6.10.

6.7 � TWO ASYMMETRIC MEMBRANES, σ1 ≠ σ2

For asymmetrically charged membranes, 1 2σ σ≠ , the 
interacting membranes impose different boundary con-
ditions. Such a system can model, for example, two sur-
faces that are coated with two different polyelectrolytes 
or two lipid membranes with different charge/neutral lipid 
compositions.

It is possible to have an overall attractive interaction 
between two asymmetric membranes, unlike the symmet-
ric 1 2σ σ=  case. When 1σ  and 2σ  have the same sign, the 
boundary condition of Eq. (6.51) implies that ' /2( )Ψ d  has 
the opposite sign of ' /2( )Ψ −d . Since 'Ψ  is monotonous, it 
means that there is a point between the plates for which 

' 0Ψ = . The osmotic pressure, Π of Eq. (6.55), calculated at 
this special point, has only an entropic contribution and is 

positive for any intermembrane separation, d , just as in the 
1 2σ σ=  case. 

However, when 1σ  and 2σ  have opposite signs, 'Ψ  is 
always negative between the two membranes, and the sign 
of the pressure can be either positive (repulsive) or negative 
(attractive). A crossover between repulsive and attractive 
pressure occurs when 0Π =  and depends on four system 
parameters: 1,2σ , Dλ , and d  (see Figure 6.11).

Although the general expression for d( )Π  cannot be 
cast in an analytical form, a closed-form criterion exists 
for the crossover pressure, 0Π = , for any amount of salt 
(Ben-Yaakov et al. 2007). The crossover criterion has two 
rather simple limits: for the linearized DH (high salt) limit, 
the general criterion reduces to the well-known result of 
Parsegian and Gingell (1972), while in the counterion-only 

TABLE 6.2
The Five Pressure Regimes of the Symmetric Two-Membrane System

Pressure Regime Pressure (Π) Range of Validity

Ideal-Gas
π

1B

B GC 

k T

d
λ λ λD GC D D� � �d d

Gouy–Chapman π
2
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B
2


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λ λ1 D GC D� � �d

Intermediate k T d D8
π

eB

B D
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λ−



λ λ1D GC D� � �d

Debye–Hückel (DH1) k T d2
π
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B GC
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 

d 1; 1D GC Dλ λ� � �

Debye–Hückel (DH2) λ2
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 

k T

d
λ λ1 D D GC� � �d
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FIGURE 6.10  Schematic representation of the various regimes 
of the PB equation for two flat and equally charged membranes 
at separation d. We plot the four different pressure regimes: 
Ideal-Gas (IG), Gouy–Chapman (GC), intermediate, and Debye–
Hückel (DH). The two independent variables are the dimension-
less ratios d/λD and ℓGC/λD. The four regimes are detailed in Table 
6.2. The DH regime is further divided into two subregimes: DH1 
for large d/λD and DH2 for small d/λD. 
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limit, another analytical expression has been derived more 
recently by Lau and Pincus (1999).

6.7.1 �T he Debye–Hückel Regime

The crossover criterion between attraction and repulsion 
has an analytical limit for high salinity, (Parsegian and 
Gingell 1972). We repeat here the well-known argument 
(Ben-Yaakov and Andelman 2010) where the starting point 
is the linear DH limit (Eq. 6.14) of the full PB equation.

The DH equation for monovalent electrolyte in planar 
geometries has a solution (Eq. 6.81), for which the bound-
ary conditions of Eq. (6.51) yield
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In the DH regime, the pressure expression (Eq. 6.55) can be 
expanded in powers of the electrostatic potential, Ψ. Keeping 
only terms of order 2Ψ , the pressure can be written as
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where / 2π1, 2 B 1,2  σ( )= e  are the two Gouy–Chapman 
lengths corresponding to the two membranes with 1σ  and 

2σ , respectively. The ± sign of the last term corresponds to 
the two situations: 01 2σ σ⋅ >  and 01 2σ σ⋅ < , respectively.

This Π expression can be simplified in two limits. For 
small separation, Dd λ , the expansion of the hyperbolic 
functions yields a power law divergence 2d∼ −  for 0d → ,
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Clearly, it is positive definite (hence repulsive) for both ± 
signs. However, when 1 2σ σ= −  (the antisymmetric case 
with 01 2σ σ⋅ < ), the pressure goes to a negative constant 
(independent of d ), / 2π 1 2  k TB B( )Π = − .

For the opposite limit of large separation Dd λ , the 
pressure decays exponentially, while its sign depends on 
the sign of 1 2σ σ⋅ ,

	 e ,B

B 1 2

D�
� � �

Π ±
π

κ−k T d � (6.94)

and thus, it is attractive for 01 2σ σ⋅ < .
The attraction/repulsion crossover is calculated from 

the zero-pressure condition of Eq. (6.92), while keeping in 
mind that attraction is possible only for oppositely charged 
membranes, 01 2σ σ⋅ <  (see the beginning of this section):

	 d de e .1

2

D D
σ
σ

< <κ κ− � (6.95)

This is exactly the result obtained by Parsegian and 
Gingell (1972). Interestingly, in the linear DH case, the 
crossover depends only on the ratio of the two surface 
charges /1 2σ σ  and not on their separate values, as can be 
seen in Figure 6.11. For comparison, we plot (with dashed 
and dash-dotted lines on the same figure) two examples of 
low-salt crossovers, as calculated from the general crite-
rion presented below for the full PB theory (Section 6.7.4). 
The low-salt line has a smaller repulsive region. Increasing 
the salt concentration increases the repulsion region due to 
screening of electrostatic interactions. The repulsive region 
increases till it reaches the Parsegian–Gingell result for the 
DH limit (solid line in Figure 6.11).

6.7.2 �T he Debye–Hückel Regime with 
Constant Surface Potential

So far we have solved the PB equation using the constant 
charge boundary conditions. However, constant potential 
boundary conditions are appropriate when the surfaces are 
metal electrodes, and it is important to understand this case 
as well.

Let us examine the effect of constant surface potential 
on the pressure. For simplicity, we will focus on the linear-
ized PB equation (DH) in the asymmetric membrane case 
for monovalent electrolyte. We still refer to the set-up as in 
Figure 6.7. The two membranes at /2=z d  are held at dif-
ferent values of constant surface potential, 1,2Ψ :

	
Ψ = Ψ

Ψ = Ψ

=−

=

z d

z d

,

.

/2 1

/2 2

� (6.96)
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FIGURE 6.11  Crossover from attraction to repulsion, Π(d) = 0, 
for two oppositely charged membrane, σ σ⋅ < 01 2 , in the  
( | |1 2σ σ , λDd ) plane. The solid lines show the crossover in the 
high-salt DH limit, Eq. (6.95). For lower salinity, derived from  
the full PB theory, Eq. (6.107), the attractive region is increased as 
is seen in the examples we choose: λ = 0.22 D  (red dash-dotted 
line) and 0.72 Dλ =  (blue dashed line). 
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Applying the DH solution of Eq. (6.81) with the bound-
ary conditions of Eq. (6.96) leads to
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and expanding the pressure Π from Eq. (6.56) to the second 
order in powers of 1,2Ψ  yields
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This expression is similar to the one obtained for constant 
surface charge (Eq. 6.92). Indeed, for large separations, 

Dd λ , the relative sign of 2Ψ  and 1Ψ  determines the sign 
of the pressure

	 2 e ,B b 2 1
D

 k Tn dΠ Ψ Ψ κ− � (6.99)

as for the large-separation behaviour of the constant-charge 
case.

However, for small separations, Dd λ , the pressure is 
different than for the constant surface-charge case,
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It yields a pure attractive (negative) pressure that diverges 
as 1 / 2d∼ , and does not depend on bn . For the special sym-
metric case 2 1Ψ = Ψ , at those small d , the pressure does not 
diverge and reaches a positive constant, 0Π > , proportional 
to bn . Unlike the constant-charge case, here the counterion 
concentration remains constant near each of the membranes, 
because it depends only on the surface potential through 
the Boltzmann factor (Ben-Yaakov and Andelman 2010). 
However, the induced surface charge ( 'sσ ∝ Ψ , Eq. (6.97)) 
diverges when the membranes are brought closer together, 
resulting in a diverging electrostatic attraction.

Note that the crossover from repulsive to attractive 
pressure is obtained for zero pressure in Eq. (6.98) and is 
possible only for potentials of the same sign, 02 1Ψ ⋅ Ψ >  
including 1 2Ψ = Ψ . The condition for attraction reads

	 e e .2

1

D Dd d< Ψ
Ψ

<κ κ− � (6.101)

For potentials of opposite sign, 02 1Ψ ⋅ Ψ < , the pressure is 
purely attractive.

6.7.3 �C ounterions Only

In the absence of an external salt reservoir, the only mobile 
ions in the solution are monovalent counterions with den-
sity n z( ), such that the system is charge neutral,

	 ∫σ σ ( )+ = −
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� (6.102)

For the assumed overall negative charge on the two mem-
branes, 01 2σ σ+ < , the counterions are positive, 1z =+ .

The PB equation for the two-membrane system is 
the same as for the single membrane (Eq. 6.18), with the 
boundary condition as in Eq. (6.51). The osmotic pressure 
(Eq. 6.55) reduces here to
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' e ,B
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

( )Π = − Ψ + ( )−Ψk T
k Tn z � (6.103)

where 0n  is defined as the reference density for which 0Ψ = . 
This equation is a first-order ordinary differential equation 
and can be integrated. Nevertheless, its solution depends on 
the sign of the osmotic pressure. We will not present here 
the solution of the PB equation but rather discuss the cross-
over between attractive and repulsive pressures. This cross-
over is obtained by solving Eq. (6.103) with 0Π = . As the 
total surface charge is chosen to be negative, 01 2σ σ+ ≤ , 
and attraction occurs only for 01 2σ σ⋅ < , we choose 1σ  to 
be negative and 2σ  to be positive.

Integrating this equation and using the boundary 
condition at /2= −z d , we obtain the same electrostatic 
potential profile as in the single membrane case (Eq. 6.22), 
with a shifted z-axis origin: /2→ +z z d  and GC 1 →  (with 

1  defined as before):

	 2 ln /2 .0 1( )Ψ = Ψ + + +z d � (6.104)

The second boundary condition at /2=z d  gives a relation 
between d  and 1,2σ . The condition for attraction can be 
expressed in terms of the surface densities (Kanduč et al. 2008):
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σ σ σ σ
σ

− < � (6.105)

where / 2πd Bσ ( )≡ e d .
The crossover between attraction and repulsion is plot-

ted in Figure 6.12. Two crossover lines separate the central 
attraction region from two repulsion ones. The upper one lies 
above the diagonal, 1 2σ σ> , and corresponds directly to the 
condition of Eq. (6.105). A second crossover line lies in the 
lower wedge below the diagonal, 1 2σ σ< . It corresponds to 
the crossover of the complementary problem of an overall 
positive surface charge, 01 2σ σ+ > , and negative counter-
ions. Note that the figure is symmetric about the principal 
diagonal, 1 2σ σ↔ , as expected. The condition of attrac-
tion, irrespectively of the sign of 1σ  + 2σ , can be written as

	 ,1 2
1 2

d

σ σ σ σ
σ

− < � (6.106)

as was obtained by Lau and Pincus (1999).
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6.7.4 �A ttraction/Repulsion Crossover

We now calculate the general criterion of the attractive-to-
repulsive crossover. The 0Π =  pressure between two mem-
branes located at /2= ±z d  can be mapped exactly into the 
problem of a single membrane at 0z =  in contact with the 
same electrolyte reservoir. The only difference is that beside 
the boundary at 0z = , there is another boundary at z d= . 
The mapping to the single-membrane case is possible as the 
osmotic pressure of a single membrane is zero. This equiva-
lence can be checked by substituting 0Π =  in Eq. (6.55) to 
recover the first integration of the PB equation for the single 
membrane system with added 1:1 electrolyte (Eq. 6.26).

The potential can be written as in Eq. (6.27) with 
1 ( )1 D 1

2
D 1 γ γ κ κ→ = + − . This solution already sat-

isfies the boundary condition, ' 0 4π /B 1 σ( )Ψ = − e, but 
another boundary condition at z d=  needs to be satisfied as 
well, ' 4π /B 2 σ( )Ψ =d e.

Attraction will occur only for charged membranes of 
different sign, 01 2σ σ⋅ < . Using the boundary condition at 
z d=  for the two cases, 01σ <  and 01σ > , determines the 
region of attraction, 0Π < , by the inequalities (Ben-Yaakov 
et al. 2007)
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with 1 ( )2 D 2
2

D 2 γ κ κ= + − . It can be shown that the 
above general expression (Eq. 6.107) reduces to the 

expression of Eq. (6.106), in the limit of counterion only 
and to that of Eq. (6.95) in the high-salt (DH) limit.

A similar general crossover criterion can also be 
obtained for constant potential boundary conditions. As we 
explained above, the crossover condition maps to the single 
membrane problem, yielding the generalized relation of Eq. 
(6.30), tanh /41,2 1,2γ ( )= ± Ψ . The ± sign is chosen such that 

1,2γ  is positive. For opposite surface potentials, 01 2Ψ ⋅ Ψ < , 
there is a point between the membranes in which the poten-
tial vanishes. The osmotic pressure of Eq. (6.55), calculated 
at this point, has only the negative Maxwell stress contri-
bution, and therefore, it is always attractive. On the other 
hand, for 01 2Ψ ⋅ Ψ > , the following condition on 1Ψ  and 2Ψ  
results in an attraction:

	 d de
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In Figure 6.13, we show the osmotic pressure, Π, in units 
of k T / 4πB B D

2λ( ) , as a function of the (dimensionless) 
intermembrane separation, / Dλd . The pressure is calculated 
for several values of constant charge and constant potential 
boundary conditions. Three types of pressure profiles are 
seen in the figure: attractive, repulsive, and the crossover 
between attraction and repulsion.

6.8 � CHARGE REGULATION

As discussed in Section 6.7.2, the difference between con-
stant surface potential, sΨ , and constant surface charge 
density, σ , is large when the distance between the two 
membranes is of order of the Debye screening length, 

Dλ , or smaller. Ninham and Parsegian (1971) considered an 
interesting intermediate case of great practical importance. 
Membranes with ionizable groups that can release ions into 
the aqueous solution or trap them – a situation intermedi-
ate between a constant σ , describing inert ionic groups on 
the membrane, and constant sΨ , relevant for a surface (an 
electrode or a membrane) held at a constant potential by an 
external potential source.

Let us consider a system where the membrane is com-
posed of ionizable groups (lipids), and each of them can 
release a counterion into the solution. This surface dissocia-
tion/association (see Figure 6.14) is described by the reaction:

	 A B AB,++ − � (6.109)

where A denotes a surface site that can be either ionized 
(A )+  or neutral (AB). The process of membrane association/ 
dissociation is characterized by a kinetic constant dK  
through the law of mass action:

	 K
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FIGURE 6.12  Regions of attraction (Π < 0) and repulsion (Π > 0) 
for the counterion-only case, plotted in terms of the two rescaled 

charge densities, σ σ1 d  and σ σ2 d , where σ = 2πd Be d . The 

figure is plotted for oppositely charged membranes, σ1⋅ σ1 < 0, and 

is symmetric about the diagonal σ σ=1 2 . The two solid lines 
delimit the boundary between repulsion and attraction in the no-
salt limit, nb → 0, Eq. (6.106). For comparison, we also plot the 
crossover between attraction and repulsion for finite nb from Eq. 
(6.107) for d/λD = 2.2 (blue dashed line). For the case of σ σ⋅ > 01 2 , 
Π is always repulsive and there is no crossover.
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where [A ]+ , [B ]s
−  and [AB] denote the three corresponding 

surface concentrations (per unit volume). We define sφ  to be 
the area fraction of the A+  ions, related to 0σ > , the mem-
brane charge density by / [A ]s

2φ σ= ∼ +a e  and 1 ABsφ [ ]− ∼ , 
where 2a  is the surface area per charge. The equilibrium 
condition of Eq. (6.110) is then written as

	 K
1

[B ].d
s

s
s

φ
φ

=
−

− � (6.111)

As the counterions are released into the ionic solution, 
the relation between surface and bulk B−  concentrations, 
[B ]s

−  and [B ]−
∞, is obtained via the Boltzmann distribution, 

[B ] [B ] exps s( )= Ψ− −
∞  where [B ] bn=−

∞  is the bulk salt con-
centration. We note that in this section we choose 0σ >  and 
it implies 0sΨ > , and the reference potential in the bulk is 
set to be 0Ψ = . The concentration of dissociated B−  ions at 
the surface is [B ]s

−  and it is equal to 0sn n z( )= →−
− . Note 

that this is not the charge concentration of the membrane 
itself (which comprises the bound ionic groups and is pro-
portional to sφ ) but is the concentration of mobile ions eval-
uated at the submembrane position (just as in Section 6.3.3), 
where the standard PB equation holds. One can then write 
the area fraction of the membrane ionized sites as
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It is useful to introduce a surface interaction param-
eter ln 3

da Kα ( )=  instead of using the kinetic constant 
(see Figure 6.14). This gives the adsorption isotherm for sφ  
(the fraction of A+  groups on the membrane):
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s

φ
φ

=
+ α− +Ψ � (6.113)

where b
3

ba nφ =  as before. The typical shape of sφ  as func-
tion of sΨ  is a sigmoid and is shown in Figure 6.15a for 

0.3nma = , 0.1Mbn = , and 6α = −  (pK 0.82 ). The fraction 
of charge groups, sφ , varies between 1sφ =  (fully charged) 
and 0sφ =  (neutral) as sΨ  varies from negative values to 
positive ones. For the half-filled surface charge, 0.5sφ = , 
the surface potential is lns

*
bα φΨ = − . At this special point, 

the slope of s sφ ( )Ψ  is exactly 0.25− . The differential capac-
itance as discussed in Section 6.4 can be cast into a simple 
form for the charge regulation case
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It follows that for the sigmoid shape of s sφ ( )Ψ , the differ-
ential capacitance has a unimodal shape with a universal 
maximum whose value is e k Ta/ 42

B
2( ).

Similarly, for the fraction of neutral AB groups on the 
membrane, 1 sφ− , we write
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FIGURE 6.13  Osmotic pressure, Π, in units of λ( )4πB B D
2

k T , as function of the dimensionless intermembrane separation, d/λD. We 
present the solution of the nonlinear (solid black lines) PB equation and the linear (blue dashed lines) DH equation for two boundary 
conditions: (a) constant surface charge, and (b) constant surface potential. In each of the figure parts we show three profiles: repulsive, 
crossover, and attractive. In (a), the boundary conditions for the repulsive, crossover, and attractive profiles are σ1 = σ2 = 3; σ1 = 3 and 
σ2 = −2; and σ1 = 3 and σ2 = −3, respectively, where σ is given in units of λ( )4π B De . In (b), the boundary conditions for the repulsive, 
crossover, and attractive profiles are Ψ1 = Ψ2 = 3; Ψ1 = 3 and Ψ2 = 2; and Ψ1 = 3 and Ψ2 = −3, respectively. Note that the nonlinear PB solu-
tion of Π for the symmetric (repulsive) osmotic pressure for constant potential reaches a constant value as d → 0, like in the DH case, 
but with a different value, Π(d → 0) ≃ 9.07 in units of λ( )4πB B D

2
k T  (not shown in the figure). 

FIGURE 6.14  Illustration of the charge regulation boundary 
condition for cation association/dissociation energy α.
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Equation (6.115) is the Langmuir–Davies isotherm (Davies 
1958) and is an extension of the Langmuir adsorption isotherm 
(see, e.g., Adamson and Gast 1997) for charged adsorbing 
particles. This can be understood because 1 sφ−  is the frac-
tion of the membrane AB neutral groups. Hence, it effectively 
describes the adsorption of B− ions onto a charged membrane.

The Langmuir–Davies isotherm (Eq. 6.115) relates the 
self-adjusting surface charge fraction sφ  and surface poten-
tial sΨ  with dK  (or α ) and the bulk density, bn . In order to 
find sΨ  and sφ  separately as function of dK  and bn , one needs 
to find the electrostatic relation between them. This relation 
can be obtained from the Grahame equation (6.36), intro-
duced in Section 6.3.3:

	 sinh /2 ;
2π

,s s
B D
2

φ λ( )= Ψ ≡w w
a � (6.118)

where we expressed the Grahame equation as s s sφ φ ( )= Ψ  
in terms of the Bjerrum and Debye lengths via a dimension-
less parameter, w. By inverting the relation, s s sφ( )Ψ = Ψ , 
we get

	 e 1 ( ) ./2
s s

2s w wφ φ= + +Ψ � (6.119)

Recall that this Grahame equation (6.36) is obtained from the 
PB equation for one planar membrane and gives a relationship 
between the density σ  at the membrane and sn± at the subsur-
face layer. The Grahame equation depends only on the elec-
trostatics properties and applies for any boundary condition: 
constant σ , constant sΨ , or the present case of charge regula-
tion due to association/dissociation of the ionizable groups on 
the membrane. These two equations (Eqs. 6.115 and 6.118) 
determine completely the surface potential, ,s s d bK n( )Ψ = Ψ , 
and the surface charge fraction, ,s s d bK nφ φ ( )= .

It is instructive to take the two limits of large and small 
sφ . When the ionizable surface sites are almost fully disso-

ciated, 1s φ , Kd is large enough so that K n expd b s( )Ψ . 
In this limit, Eqs. (6.112) and (6.119) reduce to
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FIGURE 6.15  In (a), the area fraction of charge groups on the membrane, ϕs, is plotted as a function of the dimensionless electrostatic 
potential, Ψs, using Eq. (6.113). The parameters used are a = 0.3 nm, nb = 0.1 M, and α = −6 (pK ≃ 0.82). The symmetric point of ϕs = 0.5 
occurs at Ψ∗ 0.425s  , and the slope there is exactly −0.25. In (b), we present the area fraction of charge groups on the membrane, ϕs, 
as a function of pH for surface binding A− + H+ ⇌ AH (see “Surface pH and PK” box below). The parameters used are: a = 0.5 nm and 
α = −12 (pK ≃ 4.1).

SURFACE pH AND pK

When an acidic reservoir exchanges H+ ions with 
the membrane, the membrane chemical reaction is 
A H AH+− + , and the same local equilibrium 
of Eq. (6.110) can be expressed in terms of three 
logarithms: pK log log e10 d 10

3K a( )≡ − = − α−  where 
the close packing density 3a−  is measured in molar, 

pH log [H ]s 10 s≡ − + , and pH log [H ]10≡ − +
∞. The regu-

lar pH measures the acidic strength in the reservoir, 

while the membrane pK (or dK ) is a fixed (and usually 
unknown) parameter that depends on the membrane 
as well as on the binding H+ ions. Equation (6.111) 
can then be written as

        
1

10 e .s

s

pK pH s
φ

φ−
= − + Ψ � (6.116)

When half of the membrane is charged, 0.5sφ = , the 
given pK relates the solution pH with the surface 
potential:

          pH pK ln 10 .s ( ) ( )Ψ = − � (6.117)

In Figure 6.15b, we show the dependence of sφ  on 
pH for process of protonation/deprotonation for the 
case of one membrane with: 0.5nma =  and 12α = −  
pK 4.1( ). The typical shape of pHsφ ( ) is a sigmoid 

and is obtained by solving numerically Eq. (6.118) with 
the charge regulation boundary condition of Eq. (6.113).
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and for the additional requirement of large w (or 
a /D

2
Bλ � � )
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In the opposite limit, only a small fraction of the ioniz-
able surface groups are dissociated, 1s φ , which results in 

expd b sK n ( )Ψ  and

	
K

n
e 1.s

d

b

sφ −Ψ� � � (6.122)

If, in addition to small sφ  also 1s wφ , expanding the right-
hand side of Eq. (6.119) gives

	 w2 1.s sφΨ � � � (6.123)

As stated in the beginning of this section, the charge regu-
lation boundary condition lies between the constant charge 
and constant potential boundary conditions. In other words, 
the osmotic pressure obtained for constant charge (CC) 
boundary condition, CCΠ , will always be more repulsive than 
the pressure, CRΠ , of charge regulation (CR). Furthermore, 
the latter is more repulsive than CPΠ , the pressure for constant 
potential (CP), yielding CC CR CPΠ > Π > Π . 

A calculated example manifests this fact and can be seen 
in Figure 6.16, where we show the osmotic pressure, Π, in 
units of  λ( )k T / 4πB B D

2  as a function of the dimensionless 
inter-membrane separation, λd / D. We use Eqs. (6.69) and 
(6.113) to obtain numerically the surface potential, sΨ , for 
the symmetric charge regulation boundary condition for any 
intermembrane separation, λd / D. The midplane potential 
is obtained from Eq. (6.79), and the pressure is calculated 
via Eq. (6.58). The difference in the osmotic pressure for 

the three boundary conditions arises only for small separa-
tions, Dd λ , while in the large separation limit, Dd λ , the 
three pressures coincide. From the extrapolation of the CR 
surface potential at large separations, s d( )Ψ → ∞ , we find 
the constant surface potential to be, 1.7s

(const)
Ψ − , while 

the constant surface charge is / 4.35nmconst
2

 eσ − .
The behaviour of CPΠ  for small distances, Dd λ ,  

is very different from the behaviour of CCΠ  and of CRΠ ,  
as CPΠ  saturates at a value of 1.85CP Π  (in units of 

/ 4πB B D
2

k T λ( )). For λ →d / 0D  and finite GC , CCΠ  is 
always in the ideal gas regime (see Table 6.2), thus diverg-
ing as Π ∼ d1/CC . Note that the osmotic pressure CRΠ  
also diverges when λ →d / 0D , but only as Π ∼ d1/CR

1/2, 
which is weaker than for CCΠ  (Markovich, Andelman and 
Podgornik 2016).

6.8.1 �C harge Regulation via Free Energy

The Langmuir–Davies isotherm (Eq. 6.115) can also be 
derived from a free-energy minimization (Diamant and 
Andelman 1996). It is done by including a surface free 
energy, Fs, to account for the association/dissociation of 
ions onto/from the membrane. The total free energy is 
F F Ft v s= + , where the volume contribution, Fv, is the same 
as in Eq. (6.11) and the surface free energy is

  

φ φ φ

φ φ α φ( ) ( ) ( )

( ) = Ψ +

+ − − + −

a F Ak T/ ln

1 ln 1 1 ,

2
s B s s s s

s s s � (6.124)

where A is the lateral membrane area and a is its thickness. 
The first term describes the coupling between the surface 
charge density σ φ= e a/s

2 (taken as positive) and the sur-
face potential ψΨ = e k T/s s B . The second and third terms 
describe the mixing entropy of dissociated (charged) sur-
face sites of fraction sφ  and associated (thus neutral) ones 
of fraction 1 sφ− . Finally, the fourth term is proportional to 
1 sφ− , the amount of B−  ions adsorbing onto the membrane. 
It accounts for the excess surface interaction as an ion binds 
onto the membrane creating a neutral AB group. The sur-
face interaction parameter, α , is the same as the one defined 
after Eq. (6.112). 

In order to obtain the surface isotherm, one needs 
to take the variation of tF  with respect to φ σ= a e/s

2 , 
δ δφ δ δφ µ= =F F/ /t s s s s , giving

	 ln
1

0.s
s

s
s

φ
φ

βµ α( )Ψ +
−





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+ − = � (6.125)

For a dilute ionic solution, the chemical potential of the 
ions is related to their bulk density by k T lnb B bµ φ= , as 
explained after Eq. (6.6). In thermodynamical equilib-
rium, the chemical potential is equal throughout the solu-
tion, hence, s bµ µ= , and by rearranging Eq. (6.125) the 
Langmuir–Davies isotherm emerges,

	 1
e

.s
b

b
s

φ φ
φ

− =
+ α −Ψ � (6.126)
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FIGURE 6.16  The pressure for two symmetric membranes in 
units of λ( )4πB B D

2
k T , in the presence of three different bound-

ary conditions: constant charge (CC), constant potential (CP), and 
charge regulation (CR). The pressure inequality, seen in the fig-
ure, ΠCC > ΠCR > ΠCP, is an inequality that holds in general. The 
parameters used are a = 0.5 nm, nb = 0.1 M, and α = −6 (pK ≃ 1.48).
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The above equation is exactly the Langmuir–Davies 
isotherm of Eq. (6.115). 

The advantage of the free-energy formulation presented 
in this section over the chemical equilibrium one presented 
earlier is that the former can be generalized to other cases 
of surface interaction, such as cooperativity between the 
surface sites modelled by adding a 1 s

2
b φ( )−  term to Fs, 

adsorbing of several ion types with different ion–surface 
interactions, α , and other extensions of the simple charge 
regulation mechanism (Diamant and Andelman 1996, 
Ariel, Diamant and Andelman 1999). Recently, the free-
energy formulation was also used to study the collective 
behaviour of mobile charge-regulation macromolecules 
(Markovich, Andelman and Podgornik 2017b, Avni et al. 
2018, Hallett et al. 2018, Avni, Andelman and Podgornik 
2019, Avni, Podgornik and Andelman 2020).

6.9 � VAN DER WAALS’ INTERACTIONS

Long-range van der Waals’ (vdW) interactions between mol-
ecules are universal and result from the molecular dipolar 
fluctuations (for details see Parsegian 2005, Bordag et  al. 
2009). These fluctuations can have different origins. For 
polar molecules with permanent dipoles, their orientational 
fluctuations lead to Keesom interaction. When orientational 
fluctuations of a permanent dipole induce a dipole in another 
nonpolar but polarizable molecule, the induced dipole leads 
to Debye interaction. In all remaining cases, transient dipoles 
of nonpolar polarizable molecules induce other transient 
dipoles and lead to London dispersion interactions.

In general, one can write the total vdW interaction 
potential V(r) between two molecules at positions r1 and r2 
separated by r = r1 – r2, in the form

	
α α
ε( )

= − = −
π

( )
3

4

1
.6

B 1 2

0
2 6V

r

k T

r


r � (6.127)

The 1 / 6r  interaction reflects the dipolar nature of vdW 
interaction: dipolar field of the first molecule decays as 
1 / 3r , interacts with the second molecule, and then propa-
gates back to the first molecule, yielding a squared dipolar 
interaction, 1 / 6r . This argument does not take into account 
the relativistic corrections and, thus, corresponds to the 
nonretarded case.

The prefactor   gives the strength of the interaction and 
is proportional to the product of polarizabilities, 1 2α α , of 
the two molecules and, thus, also to the product of molec-
ular volumes. If the molecules interact in a medium of 
dielectric constant wε , then the strength of the interaction is 
proportional to /1 2 w

2α α ε( ) .

6.9.1 �T he Hamaker Pairwise Summation

The simplest way to account for the vdW interactions 
between two large macroscopic bodies is called the Hamaker 
summation. It results from the pairwise summation of the 

molecular vdW interactions, yielding for the interaction 
free energy:


r r
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where 1,2n  are the densities of the molecules in the two 
bodies, and the volume integrals go over the volumes of the 
two bodies, 1V  and 2V .

For two planar membranes of constant molecular density 
1n  and 2n , each of finite thickness h at a separation d  (see 

Figure 6.17), the above Hamaker integral yields an interac-
tion energy per unit surface area A of the form

∫ ∫ ∫
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where r = (z, ρ) in cylindrical coordinates. In this case of 
two planar dielectric media (membranes) interacting across 
a gap of dielectric constant wε  (water), the excess polariz-
abilities are given by 2 /1,2 1,2 0 w 1,2 w 1,2 wn α ε ε ε ε ε ε( ) ( )= − +  
(Israelachvili 2011). The integrals over 1z  and 2z  can be eval-
uated analytically, yielding

 
d h

A d d h d h
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with a prefactor defined as the Hamaker constant
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From this general expression, one can derive two inter-
esting scaling limits for small and large inter-membrane 
separation, d .

For small separations, d h, corresponding to the vdW 
interaction between two semi-infinite media separated by 
distance d ,

	
d

A d d

( )
12π

1
,2 2−� ∼

F H
� (6.132)

FIGURE 6.17  Illustration of two planar membranes of thick-
ness h each and with dielectric constants ε1 and ε2 interacting 
across a water slab of thickness d of dielectric constant εw.
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while for large separation, d h, corresponding to the 
interaction of two thin sheets,

	
d h

A

h

d d

( , )
2π

1
.

2

4 4−� ∼
F H

� (6.133)

The d  dependence obtained from the Hamaker summation 
is, to the lowest order, the same as obtained in more sophis-
ticated approaches. However, the Hamaker constant, , can 
only be taken heuristically and, in fact, cannot be obtained 
from the simple pair-wise summation procedure.

6.9.2 �M acroscopic Theory of vdW Interactions

A more sophisticated theory for vdW interactions between 
macroscopic bodies was developed by J. M. Lifshitz in the 
1950s (see Parsegian 2005). In the Lifshitz theory, the vdW 
interactions are electromagnetic fluctuation interactions, and 
the Hamaker coefficient, , is a functional of the frequency-
dependent dielectric permeabilities of the interacting media. 
It can be evaluated from either experimentally determined 
dispersion properties or calculated dispersion spectra of the 
interacting materials. It consistently includes the relativistic 
retardation effects due to the finite velocity of light propaga-
tion and finite temperature effects (Woods et al. 2016).

In the Lifshitz theory, the free energy of two planar 
semi-infinite bodies is typically cast into the Hamaker-type 
form (Safran 1994, Parsegian 2005)

	
d h

A

d h

d

( , ) ( , )
12π

,2

F H= − � (6.134)

as in Eq. (6.132), but with the important difference that the 
d -dependent ( ) d  can now be calculated explicitly via the 
Lifshitz formalism, when dielectric frequency-dependent 
properties of the interacting materials are available.

The most important characteristics of vdW interactions 
in the context of biomatter and, specifically, intermembrane 
interactions come from the presence of solvent, i.e., water 
(Ninham and Parsegian 1970) and can be consistently taken 
into account within the Lifshitz theory. The calculated 
nonretarded Hamaker constant between lipid bilayers in 
water is found to be in the range of 10 10 J20 21−− − . The high 
static dielectric constant of water and the low static dielec-
tric constant of hydrocarbons (consisting of the membrane 
core region) lead to an anomalously large contribution to 
the entropic part of the vdW free-energy, which remains 
unretarded at all separations. Some characteristic values of 
the Hamaker constant for interaction of different materials 
across a water layer are given in Table 6.3.

TABLE 6.3
Values of the Hamaker Constant for Different Materials 
Interacting across Water (from Parsegian 2005)

Material Hamaker Constant × 1021 [ J ]

Polystyrene 13

Polycarbonate 3.5

Hydrocarbons 3.8

Polymethyl methacrylate 1.47

Proteins 5–9

LIFSHITZ THEORY

The vdW interaction free energy is obtained in the Lifshitz theory as a sum, Eq. (6.136), over discrete imaginary 
Matsubara frequencies:

	
2

, 0,1,2 ,B



ζ = π = …k Tn
nn � (6.135)

where / 2 h π=  and h is the Planck constant. The terms of this sum involve the dielectric response functions of the 
different media: the two lipid bilayers separated by a slab of aqueous medium. The Hamaker constant in Eq. (6.134) 
depends on the dielectric response functions and can be obtained quantitatively.

The dielectric response function at imaginary frequencies, iε ζ( ), is given formally by the Kramers–Kronig rela-
tion (Smith 1985)

	 i 1
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d ,2 2
0∫ε ζ

ω ε ω
ω ζ

ω( ) ( )
= +

π
″
+

∞

� (6.136)

with ε ω( )″  being the imaginary part of the complex frequency-dependent dielectric function, iε ω ε ω ε ω( ) ( ) ( )= ′ + ″ . 
Quite generally, iε ζ( ) is a real, monotonically decreasing function of its argument, ζ . The Kramers–Kronig relation 
also establishes the connection between the vdW interactions and the measurable dispersion part of the dielectric 
response functions, ε ω( )″ . For this reason, the vdW interactions are also referred to as the dispersion interac-
tions. The imaginary frequencies can be rationalized intuitively as follows: just as ε ω( ) characterizes the temporal 
response of a material to an external oscillating electric field i texp ω( )∼ , iε ζ( ) characterizes the spontaneous time 

decaying fluctuation exp tζ( )∼ − .
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From the full Lifshitz formula for interacting lipid mem-
branes, the limit of thick membranes, h d , Eq. (6.134), 
without any retardation effects, yields the Hamaker con-
stant in the form

	 k T i n

n

3
2

,B
2

0

∑ ζ( )= ∆ 
′

=

∞
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where the dielectric contrast is defined as
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in terms of the dielectric response function between the 
interacting media, i.e., the lipid Lε  and water wε , at imagi-
nary frequencies. Note that the prime in the summation of 
Eq. (6.137), ′Σ , means that we have taken the lowest 0n =  

term with weight 1/2.

Standard forms for these dielectric responses can be 
used (Mahanty and Ninham 1976, Dagastine, Prieve and 
White 2000), where the dielectric response of water is 
described by twelve different relaxation frequencies: one 
microwave relaxation frequency, five infrared relaxation 
frequencies, and six ultraviolet relaxation frequencies. 
Similarly, the hydrocarbon materials (lipid membrane) are 
modelled by four ζ  ultraviolet relaxation frequencies (for 
details, see Parsegian 2005). In this limit of thick mem-
branes, h d , the Hamaker constant is indeed a constant, 
independent of the separation d  but becomes d -dependent, 

( ) = d , if the finite velocity of light is taken into account. 
These retardation effects change the scaling of the inter-

action free energy from the 1 / 2d  into a 1 / 3d , at separa-
tions of 10 100nmd − , usually too large to be of practical 
importance for interacting lipid membranes. We further 
stress that the summation over the discrete frequencies set 
is something that cannot be derived from a simple Hamaker 
summation procedure of Section 6.9.1.

Using model expressions for the dielectric response 
of the hydrocarbon core of lipid bilayers and the aqueous 
medium, one ends up with the value of 4.3 10 J21× −  for 
the relevant Hamaker coefficient (Podgornik, French and 
Parsegian 2006). A comparable value has been obtained in 
experiments for small membrane spacings. For example, 
it was found that the values of the Hamaker constant for 
dimyristoyl phosphatidylcholine (DMPC) and for dipal-
mitoyl phosphatidylcholine (DPPC) membranes, which 
forms a multistack, are in the range of 2.87 9.19 10 J21− × −  
(Petrache et al. 1998).

For thin membranes, h d , the Lifshitz formula is valid 
in the nonretarded limit. The Hamaker constant of Eq. 
(6.137) has the same scaling of 1 / 4d  as in the Hamaker 
summation of Eq. (6.133). The same Hamaker constant is 
obtained also for membranes of finite thickness (see Eq. 
6.130).

VdW interactions for symmetric bodies, e.g., two identi-
cal membranes interacting across a finite gap, are always 

attractive, just as electrostatic interactions between two 
symmetric bodies in the PB theory are always repulsive 
(Neu 1999). For asymmetric bodies, e.g., material ‘1’ inter-
acting with material ‘2’ across water ‘w’, the Hamaker con-
stant is given by a generalization of Eq. (6.137):
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This form of the Hamaker constant allows us to pro-
pose approximate combining relations that allow to 
extract unknown Hamaker constants from known ones 
(Israelachvili 2011). For the case of two media of mate-
rial ‘1’ interacting over material ‘3’, the combining relation 
assumes the simple form 2131 11 33 13   + − , where 13  
is for media ‘1’ and ‘3’ interacting across vacuum.2 

The Lifshitz form of the Hamaker constant for asym-
metric bodies also suggests that the vdW interaction can 
change sign, becoming repulsive. Sometimes this repul-
sive vdW interaction is referred to as quantum levitation 
(Munday, Capasso and Parsegian 2009).

6.9.3 �T he Derjaguin–Landau–
Verwey–Overbeek Theory

In the Derjaguin–Landau–Verwey–Overbeek (DLVO) 
theory (Verwey and Overbeek 1948), the total interac-
tion energy between charged bodies (colloidal particles or 
membranes) is assumed to be a simple sum of the electro-
static and vdW interactions. For interacting planar bilayer 
membranes, the total interaction free energy is

	   ( ) ( ) ( )= +d h d h d h, , , ,el vdW � (6.140)

where the electrostatic part,  ,el d h( ), is calculated in the 
PB framework as in Section 6.6. Since the PB osmotic pres-
sure is easier to evaluate, the corresponding free-energy 
can be obtained via the integral

	 
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∞
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with Π calculated as in Section 6.8. The vdW interaction 
free energy, vdW, is calculated either from the Hamaker 
summation procedure or, more appropriately, from the 
Lifshitz theory.

Because of the 1 / 2d  dependence of the vdW free 
energy, the total interaction free energy exhibits a uni-
versal primary minimum at vanishing spacings. However, 
since the assumption of the continuum solvent is bound to 
break down in this small d  limit, this minimum is more 
related to the continuum theory assumption inherent in the 
Lifshitz theory than to the physical interactions between 
membranes. In fact, a strong hydration interaction (related 
to the breakdown of the continuum model of the solvent) 
usually obliterates the primary minimum and results in a 
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monotonic repulsive interaction even for very small inter-
membrane separations (Parsegian, Fuller and Rand 1979).

Apart from the primary minimum at small separations, 
a secondary minimum can emerge at larger separations, 
depending on the system parameters. In Figure 6.18, we 
plot some of these scenarios for various assumptions on the 
electrostatic interactions. The curves shown in Figure 6.18 
embody the essence of the DLVO theory. They can either 
show a monotonic repulsion extending over the whole 
ranges of separation, or attraction that is turned into repul-
sion or vice versa. In Figure 6.18a, the DLVO free energy 
is shown for the three different boundary conditions: con-
stant charge (CC), constant potential (CP), and charge regu-
lation (CR). Two minima are clearly seen: a minimum at 

/ 0Dd λ → , which is the nonphysical primary minimum 
mentioned earlier, and a minimum at / Dd λ → ∞.

In Figure 6.18b, we show the DLVO free energy for 
CC boundary conditions with three different ionic con-
centrations: 0.32Mbn =  0.54nmD λ( ), 0.35Mbn =  

0.52nmD λ( ), and 0.38Mbn =  0.5nmD λ( ). As shown 
in the figure, for these bulk salt concentrations, a second-
ary, very shallow, minimum appears. Increasing bn  lowers 
the energy barrier and strengthens the shallow secondary 
minimum. The appearance of this secondary minimum is 
an essential ingredient in the explanation of the stability of 
colloidal particles and interacting membranes. They come 
into stable equilibrium at this secondary minimum. The 
high energy barrier between the secondary and the primary 
minimum makes it stable.

6.10 � LIMITATIONS AND GENERALIZATIONS

The DLVO theory relies on approximations that have a 
finite range of validity (Naji et al. 2013). First, the vdW 
interaction is not really decoupled from the PB mean-field 

formulation and should be correspondingly modified. And 
second, one of the central results of PB theory that sym-
metric bodies always repel each other is incorrect. For 
physically interesting situations involving highly charged 
interfaces, or multivalent mobile ions, the electrostatic 
interaction can, in fact, be attractive.

These drawbacks of the classical DLVO theory, describ-
ing interactions between charged colloidal bodies or 
interacting membranes, can be amended. Recently, a new 
paradigm introduced a transparent systematization of the 
electrostatic interactions between charged bodies in terms 
of two useful regimes: weak coupling (WC) and strong cou-
pling (SC) (Boroudjerdi et al. 2005). This allows a more 
accurate evaluation of the electrostatic interactions and the 
coupling between electrostatic and vdW interactions. 

In order to introduce the WC and SC regimes, one needs 
to consider the relative strength of electrostatic interactions 
as compared with the background thermal energy. The ther-
mal energy can be compared either with Coulomb interac-
tion between two q ze=  charges of valency z giving rise 
to a modified Bjerrum length, 2

Bz , as well as a modified 
Gouy–Chapman length, z/GC , quantifying the strength of 
the electrostatic interaction between a point charge (q ze= ) 
and a surface charge density, σ . Dividing the two lengths 
leads to a fundamental dimensionless electrostatic cou-
pling parameter introduced by Netz (2001):

        / / 2π .2
B GC

3
B
2

  z z z σ( )Ξ = = � (6.142)

For a system composed purely of counterions, the regimes 
of WC and SC can be understood in the following way. 
When the coupling parameter is small, i.e., 1Ξ , one goes 
back to the PB theory, with an addition of thermal fluctua-
tions contributing a vdW-like interaction that scales linearly 
with Ξ and partially replaces the  Lifshitz  theory  results. 
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FIGURE 6.18  The interaction free energy density for two symmetric membranes,  ( , ) /d h A, Eq. (6.140). In (a), the electrostatic 
part is calculated with three different boundary conditions: constant charge (CC), constant potential (CP), and charge regulation 
(CR). The inequality, > >CC CR CP   , seen here is a general relation. The parameters used are a = 0.5 nm, nb = 0.1 M, and α = −6  
(pK ≃ 1.48). In (b), we calculate the electrostatic part of the free energy for constant charge boundary conditions with σ = −e/(7 nm2) 
for three different bulk ionic concentrations, nb = 0.32 M (solid black line), nb = 0.35 M (dotted red line), and nb = 0.38 M (dash-dotted 
blue line). The membrane width in (a) and (b) is h = 4 nm.
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This clearly establishes a connection between electrostatic 
and vdW interactions. 

In the opposite limit of large 1Ξ , one observes a very 
different behaviour and important deviations from the 
standard DLVO paradigm. Here, the mobile ions become 
strongly correlated. It leads to a fundamental consequence 
that the interactions between nominally equally charged 
surfaces can become attractive. This is shown clearly in 
Figure 6.19 that compares the WC and SC results for the 
osmotic pressure between two equally charged membranes. 
Extensive Monte-Carlo simulations show that the WC to 
SC crossover is associated with a jump in the heat capac-
ity and the appearance of short-range correlations between 
counterions for the coupling range 10 100< Ξ <  (Naji et al. 
2013). For very high values of the coupling parameter, 

3 104
Ξ × , a transition to a Wigner crystalline phase (char-

acterized by a diverging heat capacity) occurs. Therefore, 
the whole DLVO idea that the interaction is composed of 
repulsive electrostatic interaction and an attractive vdW, 
needs a serious revision for 1Ξ  (SC regime).

The WC/SC paradigm is clear for the simple counterions-
only case but becomes more complex in the presence of 
additional mobile charge components, e.g., polyvalent plus 
monovalent salt, surface charge heterogeneity, mobile ion 
with multipolar structure, and polarizable mobile ions. 
These different components introduce new coupling param-
eters (similar to Ξ) that lead to additional features mak-
ing the general form of the electrostatic interactions more 
complicated than in the simple PB and DLVO framework 
(Podgornik and Andelman 2020). 

In this review, we have presented in detail the PB treat-
ment for mobile ions in solutions for planar geometries 
as applicable to charged membranes. The PB equation 
is a mean-field equation that is obtained from the zeroth 

approximation in the WC regime (Podgornik and Žekš 
1988, Borukhov, Andelman and Orland 1998, 2000, Netz 
and Orland 2000, Markovich, Andelman and Podgornik 
2014, 2015). 

Our chapter does not treat the fluctuations around the 
mean-field solution explicitly but only indirectly via the vdW 
interactions. Thermal fluctuations, which represent ion–ion 
correlations, have a key role in many interesting phenomena. 
Among them, we mention surface tension of electrolyte solu-
tions (Onsager and Samaras 1934, Markovich, Andelman 
and Podgornik 2014, 2015, 2016, 2017a) and their dielectric 
decrement (Ben-Yaakov, Andelman and Podgornik 2011, 
Levy, Andelman and Orland 2012, Adar, Markovich and 
Andelman 2017, Adar et al. 2018). Furthermore, we do not 
cover the SC regime but only give some of its interesting 
results in this last section.

Apart from a more accurate treatment of electrostatic 
interactions, other simplifying assumptions were made at 
the base of the PB and DLVO theories presented in this 
chapter. As noted in the beginning of the chapter, the mem-
brane structure was completely ignored. Therefore, mem-
brane heterogeneities, curvature, and undulations were not 
discussed. The solvent (water) was treated as a featureless 
media with dielectric constant wε , and the effect of the 
mobile ions and the solvent structure (e.g., water permanent 
dipole) on the decrement of the solvent dielectric constant 
was ignored (Ben-Yaakov, Andelman and Podgornik 2011, 
Levy, Andelman and Orland 2012, Adar et al. 2018). This 
effect also gives rise to a dielectrophoretic saturation of the 
counterions close to the membrane, similar to the steric mPB 
saturation in Section 6.4 (Nakayama and Andelman 2015).

Other extensions of the PB theory can be done by con-
sidering mixture of solvents (Ben-Yaakov et al. 2009a and 
2009b) or nonelectrostatic interaction between the mobile 
ions themselves such as hydration interactions (Burak 
and Andelman 2000) or between the membrane and the 
mobile ions (Markovich, Andelman and Podgornik 2014, 
2015, 2016, 2017a). For simplicity, the ions were treated as 
point-like particles which neglects their internal structure 
and polarizability (see, e.g., Démery, Dean and Podgornik 
2012 and references therein). Unfortunately, these interest-
ing developments lie beyond the scope of this chapter and 
will be covered elsewhere (Andelman, Burak, and Orland, 
to be published). 

NOTES

	 1	 Throughout this chapter we use the SI unit system.
	 2	 Note that the combining relations can be also obtained from 

the simpler Hamakar pair-wise summation of Section 6.9.1.
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Corrections to “Charged Membranes”  (Chapter 6)  in:  
“Handbook of Lipid Membranes” 

by T. Markovich, D. Andelman and R. Podgornik 

 

1. Page 108, Eq. (6.41) should read: 
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2. Page 108, Eq. (6.42) should read: 
 

B

3 3d d ... (6.42)[ ]V vS r S k r
v

−= =∫ ∫  

 
 
 

3. Page 111, Eq. (6.55) should read:  
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