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ABSTRACT
Based on a collective description of electrolytes composed of charge-regulated macro-ions and simple salt ions, we analyze their equilibrium
charge state in the bulk and their behavior in the vicinity of an external electrified surface. The mean-field formulation of mobile macro-ions
in an electrolyte bathing solution is extended to include interactions between association and dissociation sites. We demonstrate that above a
critical concentration of salt, similar to the critical micelle concentration, a non-trivial distribution of charge states sets in. Such a charge state
can eventually lead to a liquid–liquid phase separation based on charge regulation.
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I. INTRODUCTION

The Derjaguin–Landau–Verwey-Overbeek (DLVO) theory
identifies the interplay between attractive Lifshitz–van der Waals
(vdW) fluctuation forces (based on electrodynamics) and repulsive
Poisson–Boltzmann (PB) electrostatic forces as the crucial ingre-
dient controlling the stability of colloidal suspensions in aqueous
electrolyte solutions.1 As much as DLVO is recognized as a sem-
inal work, it was shown later on to exhibit shortcomings on the
level of its formal methodology and its model assumptions.2 How-
ever, despite those shortcomings, it has been noted more recently
by Borkovec and collaborators3,4 that the classical DLVO the-
ory still provides a surprisingly accurate description of the mea-
sured colloidal interactions when complemented with numerical
solutions of the PB equation and with fully implemented charge
regulation.

Charge regulation (CR) refers to ion exchange between disso-
ciable macromolecular moieties and their bathing electrolyte solu-
tion.5–8 The CR mechanism can be derived either via the law of mass
action9 or by modifying the free energy that describes the dissocia-
tion process10 in order to include any non-electrostatic interactions.
The latter approach is particularly well suited to formulate a gen-
eralized PB theory for interacting CR macromolecular surfaces10,11

and extending in this way the CR phenomenology. On the other
hand, the theory of interacting mobile CR macro-ions in an elec-
trolyte solution was analyzed in less detail. In several works, it was
done on the level of the cell model,6,12,13 which treats the macro-ions
as fixed and is less appropriate to describe collective phenomena.
More recently, a general mean-field (MF) formalism based on a col-
lective description was put forward, accounting for the effects of
mobile CR macro-ions in dilute solutions.14,15 The macro-ions are
treated consistently as mobile point-like particles with full transla-
tional entropy, while still retaining their relevant internal degrees
of freedom responsible for the CR processes. In this approach, CR
is easily extended to include, for example, the pH-dependent pro-
tonation/deprotonation mechanism, which is relevant to protein
electrostatics. Through this mechanism, the proteins respond to the
presence of other proteins, nucleic acids, and molecular surfaces (for
details, see Ref. 16).

The model of mobile CR macro-ions assumed so far14,15 a
simple CR mechanism, where each ion association/dissociation is
related to a constant free-energy gain, independent of the number of
associated sites. However, interactions between different adsorption
sites, stemming from more complex chemical reactions, vdW forces,
conformational changes, and cooperative processes, have important
implications on the collective behavior of CR systems.
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Hence, this observation serves as a motivation to our present
work, where we specifically account for the interaction between the
macro-ion association and dissociation sites. We explore the bulk
behavior and the interfacial properties in the presence of a charged
surface (i.e., an electrode), and in particular, we study the thermody-
namic charge states. Above a critical concentration, it is shown that
an additional charge state can develop. Under certain symmetry con-
ditions, a bimodal phase can be obtained in which the macro-ions
can be either positively or negatively charged. In relation to a recent
thermodynamic analysis of pH-driven phase separations,17 we sug-
gest that the emergence of distinct charge states could lead to a phase
separation in this complex charged system.

The outline of the paper is as follows: In Sec. II, we present
a general approach of treating solutions containing mobile CR
macro-ions via an additional free-energy contribution. We then
restrict ourselves to symmetric CR models containing interac-
tions between different adsorption sites and formulate the equa-
tions that govern the bulk behavior in the limit of a large number
of association sites. In Sec. III, we introduce the phase space of
the bulk solution and identify a critical salt concentration, above
which the system behavior undergoes an abrupt change. We finally
calculate the screening length and the spatial distribution of macro-
ions close to a charged interface, near the critical concentra-
tion. In Sec. IV, we conclude by discussing possible connections
between our model and the emergence of a liquid–liquid phase
separation.

II. THE MODEL
Consider an electrolyte solution composed of simple monova-

lent ions and macro-ions dissolved in an aqueous solvent having a
dielectric constant ε. The solution is in thermal equilibrium at tem-
perature T. The concentration of positive ions, negative ions, and
macro-ions is denoted by n+, n−, and P, respectively. In the absence
of external electric fields, the system is homogeneous, with bulk
concentrations nb

+, nb
−, and Pb.

While the charge on the small ions is fixed and equals to ±e,
where e is the elementary charge, the charge of the macro-ions
can vary due to its dissociable groups via association/dissociation
of monovalent ions from/to the solution (see Fig. 1). We assume
that each macro-ion has N+ groups that can either be neutral or
adsorb a positive ion and become positively charged, and simi-
larly, N− groups that can either be neutral or adsorb a negative
ion and become negatively charged. We refer to such groups as
“sites.” The macro-ion can exhibit large deviations of its net charge
so that a priori one does not know whether this charge is small
or large. For simplicity, we identify the dissociating ions to be of
the same type of the monovalent salt. This assumption simpli-
fies the calculation, but is not an essential one, and can be easily
relaxed by explicitly formulating the CR mechanism in the proto-
nation/deprotonation language. In addition, we make two impor-
tant simplifications for the model: (i) the macro-ions are treated as
point-like; (ii) our model relies on the mean-field (MF) approxi-
mation. These rather common simplifications make the formalism
fairly straightforward to implement, but they limit the validity of
our model to dilute solutions bearing macro-ions with relatively low
charge.2

FIG. 1. Schematic drawing of three possible macro-ion charge states due to asso-
ciation of ions from the bathing solution: (a) a positively charged macro-ion, (b) a
negatively charged macro-ion, and (c) a macro-ion with both positive and negative
charges, resulting in an overall neutral macro-ion.

The MF free energy, F, can be written as1,7

F =∫
⎡
⎢
⎢
⎢
⎢
⎣

−
ε0ε
2
(∇ψ)2 + e(n+ − n−)ψ − μ+n+ − μ−n−

− μPP − ST +
N+

∑
z+=0

N−
∑
z−=0

p(z+, z−)g(z+, z−)
⎤
⎥
⎥
⎥
⎥
⎦

d3r, (1)

where ψ(r) is the electrostatic potential, μ± and μP incorporate the
chemical potentials of the monovalent ions and the macro-ions,
and S is the total translational entropy. Within the aforementioned
point-like approximation, S is identified as the ideal-gas entropy,

S/kB = −∑
i=±

ni[ln(niλ3
i ) − 1]

−

N+

∑
z+=0

N−
∑
z−=0

p(z+, z−)[ln(p(z+, z−)λ3
P) − 1], (2)

with kB being the Boltzmann constant and λ± = h/
√

2πm±kBT and
λP = h/

√
2πmPkBT being the thermal de Broglie wavelength of the

positive/negative ions and macro-ions, respectively, where m+, m−,
and mP are their respective masses. We further assume that the small
ions have equal masses, m ≡ m+ = m−, and define λ+ = λ− ≡ λ. In
Eqs. (1) and (2), p(z+, z−) denotes the concentration of macro-ions
with 0 ≤ z+ ≤ N+ positively charged sites and 0 ≤ z− ≤ N− negatively
charged ones as the maximal z+ (z−) valency is simply N+ (N−). The
different macro-ion states appear in the entropy as different parti-
cle species due to their distinguishability, but they are related to one
another by the normalizing condition

∑
z+ ,z−

p(z+, z−) = P, (3)

where the shorthand notation ∑N+
z+=0∑

N−
z−=0 → ∑z+ ,z− is used. Note

that only the last term in Eq. (1) distinguishes a simple system, of
macro-ions with a fixed charge, from a CR one. For each macro-ion
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state characterized by a specific set of (z+, z−), this term contains the
respective macro-ion concentration multiplied by the free energy of
the macro-ion internal state, g(z+, z−). In its most general form, the
internal state free energy can be written as

g(z+, z−) = e(z+ − z−)ψ − kBT ln[(
N+

z+
)(

N−
z−
)]

+ FCR(z+, z−) − μ+z+ − μ−z−. (4)

The first two terms in Eq. (4) are the electrostatic energy of the
macro-ion and its internal entropy, accounting for different ways to
arrange z+ positively charged sites and z− negatively charged sites on
each macro-ion. The third term, FCR(z+, z−), is the free-energy gain
from the association/dissociation process. This phenomenological
term includes the energy gain from chemical reactions, vdW forces,
conformational changes, cooperative processes, and possibly others,
as well as the entropy within a single site (note that the entropy of
mixing between the different sites was already taken into account
separately by the second term). Finally, the last two terms incorpo-
rate the chemical potentials of the adsorbed positive and negative
ions.

Minimizing the free energy with respect to n+, n−, and
p(z+, z−), we obtain

n±(r) = nb
±e∓βeψ(r),

p(z+, z−; r) = pb(z+, z−)e−β(z+−z−)eψ(r),
(5)

where β = 1/kBT and pb(z+, z−) is the restricted bulk concentra-
tion of macro-ions having 0 ≤ z+ ≤ N+ positive and 0 ≤ z− ≤ N−
negative charges. In deriving Eq. (5), the chemical potentials acted
as Lagrange multipliers, enforcing the constraint that all concentra-
tions reach their bulk values at the bulk reference potential, ψ = 0.
More explicitly, μ± and μP satisfy the equations

μ± =
1
β

ln(nb
±λ

3
),

μP =
1
β

ln[pb(z+, z−)λ3
P] + g0(z+, z−),

(6)

where g0(z+, z−) is the bulk value of g(z+, z−), Eq. (4), evaluated in
the bulk, ψ = 0. From the relation between pb(z+, z−) and μP, we
obtain

pb(z+, z−) = Ae−βg0(z+ ,z−), (7)

with the coefficient A determined by Eq. (3) in the bulk and
∑z+ ,z− pb(z+, z−) = Pb. Thus, g(z+, z−) assumes its bulk value
(ψ = 0), g0(z+, z−), that can be written in the form

βg0(z+, z−) = − ln[(
N+

z+
)(

N−
z−
)] + βFCR(z+, z−)

− z+ ln(nb
+λ

3
) − z− ln(nb

−λ
3
). (8)

We note that Eq. (8) specifically pertains to the ion association
charging mechanism, i.e., adsorption of the monovalent ions onto
the macro-ion. For the opposite process of ion dissociation charg-
ing mechanism, Eq. (8) would have to be somewhat modified, as
is shown in Appendix A for a simple protonation/deprotonation
mechanism. For simplicity sake, in the remaining of the paper, we

only consider ionization by association of monovalent ions onto the
macro-ion, as in Eq. (8).

Finally, thermodynamic equilibrium requires that δF/δψ = 0.
This leads to a generalized Poisson–Boltzmann equation

−ε0ε∇2ψ(r) = enb
+e−βeψ(r) − enb

−eβeψ(r)

+ ∑
z+ ,z−

e(z+ − z−)pb(z+, z−)e−β(z+−z−)eψ(r). (9)

We note that in the bulk, the MF approximation is characterized
by a constant electrostatic potential, which was taken here as zero.
Therefore, when using the MF theory, the only effect of electrostatics
in the bulk is seen in the electro-neutrality condition,

nb
+ + ∑

z+ ,z−
z+pb(z+, z−) = nb

− + ∑
z+ ,z−

z−pb(z+, z−). (10)

A. The CR phenomenological free energy
While the system is formally characterized by Eqs. (5)–

(10), its behavior depends on the phenomenological free energy
FCR(z+, z−) that incorporates the details of the CR mechanism. Dif-
ferent CR models can be implemented by choosing different forms
of FCR. In the past, we considered only the case when FCR is lin-
ear in z±,14,15 resulting in the simplest CR mechanism. This is now
extended by taking into account second-order terms in FCR(z+, z−)
as well. For simplicity, we restrict ourselves to symmetric macro-
ions, havingN ≡N+ =N− and a symmetric FCR(z+, z−) = FCR(z−, z+).
The more general formulation of the non-symmetric model is pre-
sented in Appendix B.

Returning to the symmetric case, FCR has the form

βFCR = α(z+ + z−) +
χ1

2N
(z2

+ + z2
−) +

χ2

N
z+z−, (11)

with dimensionless parameters: α, χ1, and χ2. The linear term (con-
sidered already in Refs. 14 and 15) accounts for the independent
free-energy gain from each adsorption, while the quadratic terms
represent the change in the free energy due to short-range interac-
tions between adsorption sites. This is of relevance to CR macro-
molecules containing dissociable groups where the cooperativity
between the surface sites leads to ion adsorption onto different sites
that are not mutually independent.11,18

While our model treats the macro-ions as point-like, the inter-
action terms take into account the fact that sites that are far
from each other on the macro-ion surface do not interact. This is
accounted by the 1/N factor in the interaction terms, which is appro-
priate for the nearest neighbor type of interactions, with χ1 and χ2
being independent of N.

If the short-range interaction between equally charged sites is
repulsive and attractive between oppositely charged sites, we have
χ1 > 0 > χ2, while χ2 > 0 > χ1 is given by the opposite case. We
note that the sign and strength of χ1,2 do not necessarily relate to
simple attraction/repulsion between association sites but can also
indicate changes in the conformational free-energies or the stability
of the charge states. In either case, we treat χ1,2 as phenomenological
parameters.

The symmetry properties of the CR model, together with the
condition for overall neutrality, imply that nb

+ = nb
− ≡ nb. However,

in an inhomogeneous system, e.g., in the presence of an external
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electric field, the symmetry between the positive and negative local
concentrations will be broken.

B. Bulk CR behavior: The large N limit
We now consider the limit of a large number of adsorption

sites, N ≫ 1. It is then convenient to refer to the charge state of each
macro-ion not by z+ and z− but by the fractions of positively and
negatively charged sites, defined as ϕ+ ≡ z+/N and ϕ− ≡ z−/N with
0 ≤ ϕ± ≤ 1.

Defining g̃0(ϕ+,ϕ−) = g0(z+, z−)/N and using Stirling’s for-
mula, we obtain

βg̃0(ϕ+,ϕ−) = ϕ+ lnϕ+ + (1 − ϕ+) ln(1 − ϕ+) + ϕ− lnϕ−

+ (1 − ϕ−) ln(1 − ϕ−) − (ϕ+ + ϕ−)[ln(nbλ
3
) − α]

+
1
2
χ1(ϕ2

+ + ϕ2
−) + χ2ϕ+ϕ−, (12)

where g̃0 is defined up to a constant independent of ϕ±. Substituting
Eq. (12) in Eq. (7), we obtain

pb(ϕ+,ϕ−) = Ae−βg̃0(ϕ+ ,ϕ−)N . (13)

For fixed interaction parameters α, χ1, χ2 and a fixed bulk ion
concentration nb, the distribution function pb(ϕ+, ϕ−) is character-
ized by a sharp peak at the minimum of g̃0(ϕ+,ϕ−). If g̃0 has a single
global minimum, all the macro-ions (except for a negligible frac-
tion) will be characterized by the fractions ϕ± calculated at the global
minimum. The fractions ϕ± that extremize g̃0 are obtained from the
following two equations:

ϕ+

1 − ϕ+
= nbλ

3e−α−χ1ϕ+−χ2ϕ− ,

ϕ−
1 − ϕ−

= nbλ
3e−α−χ1ϕ−−χ2ϕ+ .

(14)

We note that if χ2 = 0, i.e., there is no interaction between the
different types of sites and the equations above reduce to two
Langmuir–Frumkin–Davies1,11,15 adsorption isotherms,

ϕ± =
1

1 + (nbλ3)
−1eα+χ1ϕ±

. (15)

However, g̃0 may have more than one minimum, depending on the
values of system parameters, and under certain conditions, g̃0 can
have more than one global minimum, leading to a coexistence of
different types of macro-ion charge states.

We define ⟨. . .⟩b to be the average over all charge configura-
tions of macro-ions in the bulk,

⟨. . .⟩b =
1
Pb
∑
z+ ,z−
(. . .)pb(z+, z−). (16)

Due to the symmetry of our model, ⟨ϕ+⟩b = ⟨ϕ−⟩b. However, this
does not necessarily mean that the macro-ions are overall neutral.
As an example, a solution where half of the macro-ions have a net
charge of Q, and the other half −Q, satisfies the above symmetry con-
dition. In order to better understand the macro-ion charge states, it

is useful to define two order parameters,

Φ ≡
1
2
⟨ϕ+ + ϕ−⟩b,

Z ≡
√

⟨(ϕ+ − ϕ−)2
⟩b ,

(17)

where 0 ≤ Φ ≤ 1 is the total fraction of charged sites and Z is the
standard deviation of the macro-ion charge divided by N. Both Φ
and Z are limited to the [0, 1] range, where Φ = 0 (or 1) corresponds
to macro-ions with completely empty (or full) sites and Z = 0 (or 1)
corresponds to neutral (or maximally charged) macro-ions. In the
N ≫ 1 limit, the (Φ, Z) state corresponds to the global mini-
mum/minima of g̃0, which is determined by χ1,2 and by the com-
bination ln(nbλ3) − α [see Eq. (12)]. Defining the rescaled chemical
potential,

μ′ ≡ ln(nbλ
3
) − α, (18)

we conclude that the bulk system can be described by a 3D phase
diagram, showing the (Φ, Z) state as a function of χ1, χ2, and μ′.27

III. RESULTS AND DISCUSSION
A. The phase space

We construct a phase diagram (Fig. 2) that distinguishes var-
ious {Φ, Z} states, depending on the values of χ1, χ2, and μ′.
Figure 2 displays cuts through the full 3D phase diagram, with
μ′ = const. in (a) and (b), and χ2 = const. in (c) and (d). Full lines
represent first-order phase transitions, where the new global mini-
mum/minima of g̃0 emerges, and consequently, the derivative of the
free energy with respect to χ1 and χ2 in (a) and (b) and χ1 and μ′
in (c) and (d) is discontinuous. Dashed lines describe the second-
order phase transition, where there is a bifurcation or merge of the
global minimum/minima, leading to continuous first derivatives of
the free energy, but discontinuous second derivatives. We note that
the objective in the following analysis is to show representative cases
of phase transitions through 2D cuts in the phase diagram rather
than presenting the full phase diagram.

For μ′ = −5 [Fig. 2(a)], we obtain three distinct phases: (i) a
unimodal phase where g̃0 has a single global minimum, with (Φ ≈ 0,
Z ≈ 0); (ii) a unimodal phase with (Φ ≈ 1, Z ≈ 0); and (iii) a bimodal
phase where g̃0 has two global minima with (Φ ≈ 1, Z > 0). In the first
phase, the macro-ions are overall neutral. Moreover, most of their
sites are neutral. This phase exists for large χ1 and χ2. The second
phase describes overall neutral macro-ions, having charged sites that
roughly cancel each other. Such a situation occurs for χ1 and χ2 at
the left bottom corner of Fig. 2(a) (either negative or positive and
small). The third phase corresponds to a system with two types of
macro-ions: highly positively charged or highly negatively charged,
occurring for small χ1 and large χ2, i.e., attraction between the same
charge sites and repulsion between the opposite charge sites. As the
system crosses the first-order phase-transition line (drawn as black
solid line), the global minimum changes discontinuously between
two (or more) local minima, causing either Φ or Z to experience a
“jump.” The three phases meet at χ1 ≈ −10 and χ2 ≈ 0. At this point,
there is in fact a coexistence of four macro-ion charge states because
the bimodal phase contains two charge states. We note that this is
not a regular “triple point” as it extends in the 3D phase diagram to
a line rather than a point.
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FIG. 2. Cuts through the (χ1, χ2, μ′) 3D phase diagram of macro-ions with (a) μ′ = −5, (b) μ′ = 0.5, (c) χ2 = 5, and (d) χ2 = −1. The interaction between similar and different
macro-ion sites is given by χ1 and χ2, respectively, and μ′ is related to the bulk ion concentration and to the non-interacting part of the free-energy gain by adsorption, as in
Eq. (18). The different phases are separated by the (Φ, Z) values [as defined in Eq. (17)] and are set by the global minimum of g̃0. A unimodal phase corresponds to a single
global minimum, while a bimodal phase to two global minima. The phases are separated by a solid line if Φ or Z changes discontinuously (due to the emergence of a new
global minimum/minima) and by a dashed line if both Φ and Z change continuously (due to a bifurcation or merger of the global minimum/minima).

For μ′ = 0.5 [Fig. 2(b)], the phase diagram is significantly dif-
ferent from that of Fig. 2(a) with μ′ = −5. Here, there are only two
phases: (i) a unimodal phase with Z ≈ 0, describing a system with
one dominant type of macro-ions that are overall neutral; and (ii) a
bimodal phase with Z ≠ 0, corresponding to a system with two types
of macro-ions: positively charged and negatively charged. Unlike the
case shown in Fig. 2(a), the transition here from the unimodal to
bimodal phase can occur in two ways. For large χ1, it occurs through
the bifurcation of a single global minimum into two, causing Z to
increase continuously from zero [dashed line in Fig. 2(b)]. In the sec-
ond case of negative and large χ1, it occurs via an emergence of two
new local minima, which at some point surpass the previous global
minimum, causing Z to “jump” from zero to a finite value [solid line
in Fig. 2(b)].

In Fig. 2(c), the phase diagram in the (μ′, χ1) plane is shown
for the case of repulsion between oppositely charged sites, χ2 > 0,
while in Fig. 2(d), it is shown for the attraction case, χ2 < 0. We
note that as μ′ is a function of the ionic concentrations, changing
μ′ is similar to changing the pH (see Appendix A for the explicit
relation between our model parameters and the pH and pKa in a pro-
tonation/deprotonation mechanism). In both figure parts Figs. 2(c)
and 2(d), the phase-transition line terminates at an end point in the
(μ′, χ1) plane. Hence, changing μ′ for negative and large χ1 values
leads to a phase transition (“jump” in either Φ or Z), whereas at

sufficiently large χ1, a change in μ′ leads to a continuous change
(no transition) in Φ, together with Z = 0. We further note on the
difference between (c) and (d). In (c), the transition between two
unimodal phases is pre-empted by a bimodal phase, whereas in (d),
the system “jumps” directly from one unimodal phase to the second
one.

For a given macro-ionic solution, the interaction parameters
are fixed, and the only parameter that varies in the phase space
described by Fig. 2 is nb the bulk concentration of salt, which
is induced by a change in μ′. From the analysis presented above
(Fig. 2), we conclude that changing the salt concentration can vary
the macro-ion charge state, and particularly, it can shift the macro-
ion state from a unimodal charge distribution to a bimodal one. A
bimodal phase that persists for a large range of nb [as in Figs. 2(a)–
2(c)] is unique for the symmetric model. The multi-dimensional
phase space in a non-symmetric model might have multi-modal
phases as well, but of a more complicated form (see Appendix B).

B. The bulk behavior close to the critical salt
concentration

In Sec. III A, we investigated the phase space in the N ≫ 1 limit
and did not take into account the explicit relationship between the
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FIG. 3. The parameters Φ, Z, and nb/Pb are shown as functions of the total added salt concentration n0, normalized by a fixed macro-ion concentration, Pb, in (a)–(c),
respectively. The interaction parameters are χ1 = 2, χ2 = −8, and μ′′ = −7.5 for the blue solid line and χ1 = −8, χ2 = 2, and μ′′ = −8.5 for the red dashed line. For both
plotted cases, the number of positive and negative sites is taken as N = 60. The gray vertical lines in (a) correspond to the concentrations for which the macro-ion state
distribution is presented in Fig. 4. The onset of the plateau in (c), which defines the nCIC

0 , is highlighted by a star marker.

macro-ion concentration and the bulk ion concentration, nb, given
by

n0 = nb + ∑
z+ ,z−

z±pb(z+, z−), (19)

where n0 is the total concentration of positive/negative ions
(which are equal due to the electro-neutrality condition) [Eq. (10)].
Note that the parameter n0 should be distinguished from nb
because the latter nb parameter is the concentration of free ions
in the solution, which are not adsorbed by the macro-ions. As
the macro-ions are added to the solution in a neutral state and
adsorb ions from the solution, the former n0 (rather than nb) is
our control parameter as it corresponds to the total added salt
concentration.

We recall that the concentration of macro-ions at each charge
state, pb(z+, z−), is determined by nb through Eqs. (7) and (8). Thus,
via pb, Eq. (19) represents a complicated relationship between n0
and nb. However, as the relation is monotonic, it can be inverted,
allowing the calculation of the free ion concentration, macro-ion
concentration, and the order parametersΦ and Z, as a function of n0.
Assuming that the concentration of macro-ions, Pb, is fixed, while
nb changes as a function of n0, it is more convenient to define a new
rescaled chemical potential as

μ′′ ≡ ln(Pbλ
3
) − α = μ′ − ln(nb/Pb). (20)

Note that μ′′ is held fixed while changing n0. We recall that based
on the analysis of the N ≫ 1 limit in Sec. III A, at some nb, and for

FIG. 4. The distribution of macro-ions pb(z+, z−) at each (z+, z−) state. In (a), the macro-ion parameters are χ1 = 2, χ2 = −8, μ′′ = −7.5, and N = 60, corresponding to the
blue solid line in Fig. 3. In (b), the macro-ion parameters are χ1 = −8, χ2 = 2, μ′′ = −8.5, and N = 60, corresponding to the red dashed line in Fig. 3. The distribution is
shown for three values of the total salt concentrations, indicated in Fig. 3(a) by vertical gray lines, (i) n0 = 50Pb, (ii) n0 = 100Pb, and (iii) n0 = 150Pb. The gray color code is
associated with the magnitude of pb(z+, z−).
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certain interaction parameters, the system crosses a first-order phase
transition line where the global minimum/minima of g̃0 shifts from
one or two sets of (ϕ+, ϕ−) values to another one/two sets. As n0,
rather than nb, is our controlled parameter, the shift between global
minima of g̃0 is expected to start at some critical n0.

Figures 3(a)–3(c) show the behavior of Φ, Z, and nb, respec-
tively, as a function of n0 for different macro-ion parameters χ1,
χ2, and μ′′ and for N = 60. The solid (blue) line depicts the case
where χ1 > 0 and χ2 < 0, i.e., repulsion between sites having the same
charge and attraction between oppositely charged sites. The dashed
(red) line shows the opposite case, of attraction between sites having
the same charge, χ1 < 0, and repulsion between oppositely charge
sites, χ2 > 0. The distribution of macro-ion charge states, pb(z+, z−)
at three different n0 concentrations, depicted by gray vertical lines
in Fig. 3(a), is shown in Fig. 4 and further discussed below. In the
following, we denote the critical ionic concentration, nCIC

0 , as the
concentration that corresponds to the onset of the plateau in the nb
plot [see star markers in Fig. 3(c)].

1. The case of χ1 > 0 and χ2 < 0
For low salt concentrations, the macro-ions adsorb a small

amount of positive and negative ions such that both Φ ≈ 0 and
Z ≈ 0. Around the critical ionic concentration nCIC

0 ≃ 95Pb [see the
blue solid line in Fig. 3(a)], similar to the critical micelle concen-
tration (CMC),19 it becomes favorable for the macro-ions to adsorb
many ions and to reach almost full occupancy of their sites. By
adding more salt beyond the critical concentration, n0 > nCIC

0 , the
additional ions get adsorbed by some of the macro-ions, resulting in
two-phase coexistence, where macro-ions with low occupation frac-
tions ϕ± ≈ 0 coexist with macro-ions with high values, ϕ± ≲ 1 [see
Fig. 4(a)]. We note that the limiting cases of ϕ± = 1 or 0 are never
reached due to the gain in entropy of mixing.

Upon increasing the salt concentration n0, the concentration of
highly adsorbing macro-ions increases at the expense of the concen-
tration of weakly adsorbing macro-ions, until almost all the macro-
ions are in the high adsorption state, and any additional ions remain
free in the solution. This process results in two distinct behaviors:
(i) Φ increases linearly from a small to a large value [Fig. 3(a)],
and (ii) nb goes through a plateau until it rises again [Fig. 3(c)].
As for Z, it slightly increases in the coexistence region and then
decreases again. However, it does not go through a noticeable change
[Fig. 3(b)], meaning that the macro-ions continue to be overall
neutral.

2. The case of χ1 < 0 and χ2 > 0
In a similar way to the previous case, there is a critical ionic

concentration nCIC
0 ≃ 85Pb above which another population of

macro-ions develops with high occupation fraction Φ [blue dashed
line in Fig. 3(a)], leading to a plateau in nb [Fig. 3(c)]. However,
this population is characterized by highly charged macro-ions, hav-
ing either saturated positive adsorption or negative ones, but not
both [Fig. 4(b)], corresponding to the bimodal phase introduced
in Sec. III A (see Fig. 2). Therefore, upon increasing n0 beyond
the critical concentration, Z increases until it reaches Z ≈ 1. Then,
the bimodal population of highly charged macro-ions takes over
[Fig. 3(b)] and Φ ≃ 0.5 [Fig. 3(a)].

We further comment on both cases discussed above. The results
presented in Figs. 3 and 4 are for a large number of sites, N = 60.
For smaller values of N, a similar transition occurs for the macro-
ion charge states, but its effect on the order parameter is different.
Figure 5 shows Φ and nb as a function of n0 for N = 10, 40, and
70. For simplicity, it shows a case with χ1 > 0 and χ2 < 0 case (the
opposite case of χ1 < 0 and χ2 > 0 is qualitatively the same). It is
evident that as N decreases, the transition of Φ becomes less sharp
and the plateau of nb loses its flatness and becomes narrower, until
it is not seen at all for N = 10.

As seen above, the nucleation of additional macro-ion charge
states resulted from surpassing a critical salt concentration,
n0 > nCIC

0 , while keeping the concentration of macro-ions fixed.
However, the criticality is determined by the ratio between the
total salt concentration and the macro-ion concentration, n0/Pb.
Therefore, we can alternatively vary Pb, while fixing n0, and obtain,
in complete analogy, a critical macro-ion concentration.

FIG. 5. (a) The order parameter Φ and (b) nb/Pb as a function of the total added
salt concentration n0, normalized by fixed macro-ion concentration Pb, for N = 10
(blue dotted-dashed line), N = 40 (red dashed line), and N = 70 (black solid line).
The interaction parameters are χ1 = 2, χ2 = −8, and μ′′ = −7.5. As N increases,
the linear increase of Φ and the plateau of nb, when n0 > nCIC

0 , become sharper.
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We conclude by comparing the above results to those pre-
sented in Sec. III A. The macro-ion charge state was shown in
Fig. 2 to experience, in some cases, a “jump” when changing nb,
suggesting a first-order phase transition. However, we have also
seen that this is an artifact of changing nb, rather than n0. When
the latter n0 is changed, the transition is never abrupt but changes
continuously as shown in Figs. 3 and 4. When n0 > nCIC

0 , nb
experiences a plateau, which is why the transition regions appear
as coexistence lines in Fig. 2. Moreover, in the transition region,
a bimodal and even a trimodal phase can develop [see Fig. 4(b),
where macro-ions with high positive, high negative, and neutral
charges coexist]. Note that the multimodal phases in the transition
between two free-energy minima are not unique to the symmetric
model but rather are expected to occur in a general non-symmetric
model.

C. Externally applied electric fields
Until now, we analyzed the bulk properties of a homogeneous

macro-ion solution. In order to investigate interfacial properties,
we consider an inhomogeneous system in the presence of a pla-
nar surface held at fixed potential V, at x = 0. The electrostatic
potential, ψ(x), has a spatial variation close to the interface, and the
corresponding PB equation, Eq. (9), should be solved with the
boundary conditions ψ(0) = V and ψ(∞) = ψ′(∞) = 0. At small
potentials, i.e., ezψ/kBT ≪ 1 for all possible macro-ion valencies
z, the above equation can be linearized, and the resulting potential
decays exponentially with an effective screening length,

λ−2
eff = 4πlB

⎡
⎢
⎢
⎢
⎣
nb

+ + nb
− + ∑

z+ ,z−
(z+ − z−)2pb(z+, z−)

⎤
⎥
⎥
⎥
⎦

, (21)

FIG. 6. The effective screening length, λeff, normalized by λ∗D, where λ∗D is the
Debye screening length, λD = (8πlBn0)−1/2 evaluated at n0/PB = 10, as a
function of the total salt concentration n0, normalized by the total macro-ion con-
centration, Pb. The interaction parameters are χ1 = 2, χ2 = −8, and μ′′ = −7.5
(blue solid line) and χ1 = −8, χ2 = 2, and μ′′ = −8.5 (red dashed line), as in Fig. 3.
In both (a) and (b), N = 60. In the inset, the blue solid line is shown, at a different
λeff scale, in order to show more clearly the plateau.

where lB is the Bjerrum length, lB = e2/(4πε0εkBT).
Within the symmetric model, we obtain

λeff = [4πlB(2nb + N2Z2Pb)]
−1/2

. (22)

As λeff depends on both Z and nb, it shows a rather complicated vari-
ation, see Fig. 3. This is reflected in the dependence of the effective
screening length λeff on n0. Note that in the absence of macro-ions,
Pb = 0, nb = n0, and the screening length reduces to the standard
Debye screening length, λD = (8πlBn0)

−1/2.
In Fig. 6, we show the dependence of λeff on n0, at fixed macro-

ion concentration Pb, for the same interaction parameters as the two
cases considered in Fig. 3. In the case of repulsion between sites
having the same charge (χ1 > 0) and attraction between oppositely
charged sites (χ2 < 0), λeff goes through a plateau together with nb
[see the blue solid line in Fig. 3(c)] as Z barely changes. In the oppo-
site case, χ1 < 0 and χ2 > 0, representing attraction between sites
having the same charge and repulsion between oppositely charged

FIG. 7. The concentration, P(Q), of macro-ions at a fixed distance from an elec-
trode with a fixed potential, normalized by the total macro-ion concentration, Pb,
as a function of the total charge Q/e. In (a), the parameters are χ1 = −3, χ2 = 0,
μ′′ = −8, and n0 = 500Pb. In (b), χ1 = −6, χ2 = 2, μ′′ = −8, and n0 = 130Pb.
In both (a) and (b), V = −0.2kBT /e and N = 15. The blue, red, and green lines
show the distributions at x = 0, λeff, and 2λeff, respectively. The continuous lines
connecting the data points are shown as a guide to the eye as Q/e only can have
integer values.
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sites, the effective screening length λeff decreases substantially due to
an increase in Z [see the red dashed line in Fig. 3(b)], and the system
crosses over from having a large screening length to having a very
small one.

For the non-linear PB regime, Eq. (9) can be solved numeri-
cally, and the distribution of ions n±(x) and macro-ions p(z±; x) near
the surface can be analyzed. In Fig. 7, we show the concentration of
macro-ions near an electrode held at a negative surface potential,
V < 0, as a function of the total charge Q = e(z+ − z−), for two sets of
macro-ion parameters. The charge distribution of p(Q), at a given x,
has either a single peak that shifts toward Q = 0 as x grows [Fig. 7(a)]
or several distinct peaks that change their relative height between
one another as a function of position [Fig. 7(b)]. In the latter case
[Fig. 7(b)], it is shown that for x < λeff, a substantial fraction of the
macro-ions are charged with Q/e > 10, while for x > λeff, most of the
macro-ions are overall neutral.

Comparing this result with the standard double-layer density
profile for a simple salt (the absence of the macro-ions), the pres-
ence of an electrified surface in the macro-ion solution thus leads
to a segregation of the different charged species as a function of the
distance from the surface, x, of order λeff.

IV. CONCLUSIONS
In the present work, we extend the mean-field theory14,15

of mobile charge-regulated (CR) macro-ions by taking explicitly
into account the interactions between association and dissocia-
tion sites on the macro-ions. The general behavior of this system
composed of macro-ions and salt ions is rather rich in complex-
ity. Above a critical ion concentration (CIC), it becomes favor-
able for the macro-ions to adsorb a large number of salt ions
from the bathing solution and to reach almost full occupancy
of the macro-ion association/dissociation sites. As the added salt
concentration surpasses the CIC value, the salt ions get further
adsorbed by the macro-ions. The system now exhibits a two-
phase (or even a three-phase) coexistence region where macro-
ions with low site occupation coexist with macro-ions of nearly
fully saturated sites. For symmetric macro-ions, a bimodal phase
in which the macro-ions are either highly positively or highly
negatively charged can persist throughout a large range of salt
concentration.

Interestingly, this behavior shows a similarity with the behav-
ior of micellar solutions close to the critical micelle concentration
(CMC),19 and even more so with a related phenomenon of micelle
and vesicle formation of cationic and anionic surfactants.20,21 How-
ever, here, the macro-ions are not formed at the critical concen-
tration, but instead they exist regardless of the small ions, and the
small ions can only change the macro-ion charge state. Moreover,
since the concentrations of small ions and macro-ions are inde-
pendent, we can vary either of them in order to reach the CIC
point.

The coexistence of several charge states may have additional
implications. In a recent and related study, the existence of sev-
eral macromolecular charged states was shown to induce a pH-
dependent liquid–liquid phase separation,17 which may possibly
explain the formation of membrane-less organelles in cellular
biological systems, which recently became an intensely pursued

research focus.22,23 While the employed model in Ref. 17 is differ-
ent from the one studied here, as it considers charging by proto-
nation and deprotonation and relies on the Flory–Huggins theory,
it shows that distinct charge states of macromolecules are impor-
tant ingredients in a CR-driven phase separation. While, in Ref. 17,
the existence of the coexisting charge states is a model assump-
tion, here we formally derive and interpret the physics leading
to it.

In order to study phase separation within our model (i.e., as
a result of the nucleation of the different charge states), one needs
to go beyond the mean-field level24 and to introduce a consistent
incorporation of the electrostatic potential fluctuations. This could
be done by a one-loop expansion or, equivalently, by using the
Debye–Hückel theory that leads to a correlation correction to the
free energy.25,26 These and related developments are left for future
studies.
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APPENDIX A: pH-DEPENDENT
PROTONATION/DEPROTONATION MECHANISM

We apply our model to a pH-dependent protonation/
deprotonation mechanism. The macro-ion surface sites are assumed
to have negatively charged ionic groups that are denoted by A−.
They can adsorb a proton, H+, and become neutral (AH). If the sites
are non-interacting, the protonation/deprotonation process can be
described by the chemical reaction

AH⇌ A− + H+. (A1)

However, as we focus in the present work on cooperative processes
with a coupling between protonation and deprotonation of different
sites, the proper definition of the process is

M⇌M−z + zH+, (A2)

where “M” denotes the neutral macro-ion and “M−z” denotes a
macro-ion with z negative dissociated sites. In this way, for each z,
the reaction is association with a different energy gain and a different
dissociation constant.

We note that in an acidic solution, the protons are likely to asso-
ciate with water molecules, H2O + H+

→ H3O+. However, for sim-
plicity, we disregard this additional reaction, and the concentration
of positive ions, n+, is simply the proton concentration [H+].

We recall that in this appendix, the adsorbed state is neutral,
AH, and the charging process is achieved by dissociation (unlike
charging by association considered in Secs. II and III above). More-
over, here, the positive ions H+ are the only ions exchanged between
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the macro-ions and the solution, and the macro-ion can only
become negatively charged, rather than both positive and negative
as considered in the main text. Due to these differences, the internal
free energy of a single macro-ion becomes

g(z) = −ezψ −
1
β

ln(
N−
z
) + FCR(z) + μ−z, (A3)

where FCR(z) is the free energy of the dissociated (rather than the
associated) state. Following the same derivation as in Sec. II A, we
obtain pb(z) = A exp[−βg0(z)], with

βg0(z) = − ln(
N
z
) + βFCR(z) + z ln(nb

+λ
3
). (A4)

Note that due to the dissociation charging mechanism, pb(z) is pro-
portional to (nb

+)
−z , whereas in an association charging mechanism,

it is proportional to (nb
+)

z . In other words, as the concentration of
free protons is larger, the macro-ion sites are more likely to be in a
neutral AH state.

Within the quadratic approximation we employed, FCR
becomes

βFCR = αz +
χ

2N
z2, (A5)

where α and χ are phenomenological parameters.
Next, we relate the model parameters to the solution pH and

the acid dissociation constant in Eq. (A2), pKa(z), that depends on z
as for each z the reaction may be different. The pH and pKa(z) are
defined by

pH = − log10[H
+
],

pKa(z) = − log10

[H+
]
z
[M−z]
[M]

,
(A6)

and within our formalism, they become

pH = − log10 n
b
+,

pKa(z) = − log10[(
N
z
)λ−3ze−αz−

χ
2N z2

].
(A7)

APPENDIX B: THE NON-SYMMETRIC MODEL
We present the corresponding analysis of Secs. IIA and IIB for

a general model of macro-ions (not necessarily symmetric between
the positive and negative sites). Note that to recover the symmetric
case, which was described in detail in the main text, we substitute
χ+ = χ− = χ1/2, χ+− = χ2/2, and N = NT/2.

We denote NT as the total number of sites, NT = N+ + N−.
Expanded to quadratic order, FCR has the form

βFCR = α+z+ + α−z− +
1
2
χ+

NT
z2

+ +
1
2
χ−
NT

z2
− +

χ+−
NT

z+z−, (B1)

where the linear terms account for the independent free-energy gain
from adsorption of a positive charge and a negative charge (first and
second terms, respectively), and the quadratic terms represent the

free-energy changes due to short-range interactions between posi-
tive, negative, and oppositely charged neighboring adsorption sites
(3rd, 4th, and 5th terms, respectively).

In the NT ≫ 1 limit, we define as before g̃0(ϕ+,ϕ−)
= g0(z+, z−)/N and use Stirling’s formula to obtain

βg̃0 = ζϕ+ lnϕ+ + ζ(1 − ϕ+) ln(1 − ϕ+) + (1 − ζ)ϕ− lnϕ−

+ (1 − ζ)(1 − ϕ−) ln(1 − ϕ−) − ζϕ+[ln(nb
+λ

3
) − α+]

− (1 − ζ)ϕ−[ln(nb
−λ

3
) − α−] +

1
2
χ+ζ2ϕ2

+

+
1
2
χ−(1 − ζ)2ϕ2

− + ζ(1 − ζ)χ+−ϕ+ϕ−, (B2)

where ζ is the fraction of sites that can be positively charged, satisfy-
ing the relations N+ = NTζ and N− = NT(1 − ζ). By minimizing g̃0,
the average values of ϕ± in the bulk are obtained as follows:

ϕ+

1 − ϕ+
= nb

+λ
3e−α+−ζχ+ϕ+−(1−ζ)χ+−ϕ− ,

ϕ−
1 − ϕ−

= nb
−λ

3e−α−−(1−ζ)χ−ϕ−−ζχ+−ϕ+ .
(B3)

If χ+− = 0, i.e., no interaction between the different types of sites,
the equations reduce to two Langmuir–Frumkin–Davies adsorption
isotherms,

ϕ+ =
1

1 + (nb
+λ3)

−1eα++ζχ+ϕ+

,

ϕ− =
1

1 + (nb−λ3)
−1eα−+(1−ζ)χ−ϕ−

.
(B4)

A phase diagram, similar to the one described in Fig. 2, can be
obtained from Eqs. (B2) and (B3). However, unlike the 3D phase
diagram in the symmetric case, here, the phase space has six dimen-
sions and can be parameterized by (ζ, ln(nb

+λ3
) − α+, ln(nb

−λ3
)

−α−, χ+, χ− , χ+−).
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