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Shear viscosity of two-state enzyme solutions
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We discuss the shear viscosity of a Newtonian solution of catalytic enzymes and substrate molecules. The
enzyme is modeled as a two-state dimer consisting of two spherical domains connected with an elastic spring.
The enzymatic conformational dynamics is induced by the substrate binding and such a process is represented by
an additional elastic spring. Employing the Boltzmann distribution weighted by the waiting times of enzymatic
species in each catalytic cycle, we obtain the shear viscosity of dilute enzyme solutions as a function of substrate
concentration and its physical properties. The substrate affinity distinguishes between fast and slow enzymes,
and the corresponding viscosity expressions are obtained. Furthermore, we connect the obtained viscosity with
the diffusion coefficient of a tracer particle in enzyme solutions.
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I. INTRODUCTION

Molecular enzymes are nanometer-size proteins that cat-
alyze chemical reactions in the presence of substrate
molecules. Here substrates are chemical species that react
with enzymes and generate product molecules. Catalytic pro-
cesses that are carried out by molecular enzymes in the cyto-
plasm and the membrane are essential for cellular metabolism
and homeostasis [1]. In the presence of a substrate, enzymes
undergo conformational changes in each turnover cycle of
the chemical reaction [2]. In order to mimic actual enzymes,
these conformational dynamics have been simulated using
elastic network models [3–5], and the relationship between
conformational dynamics and the chemical reaction stages has
been studied recently [6].

One of the long-standing and interesting questions in the
field is whether a single enzyme exhibits a motile behavior
[7]. Thanks to recent developments of experimental tech-
niques, diffusion phenomena in enzyme solutions have been
studied by several groups. Using fluorescence correlation
spectroscopy, Muddana et al. [8] reported that diffusion of
a single enzyme is enhanced in the presence of a substrate.
Later on, Riedel et al. [9] showed that the heat released
during turnovers also enhances the enzyme diffusion. Illien
et al. [10], however, revealed experimentally that not only
exothermic enzymes but also endothermic ones contribute to
the diffusion enhancement. In the presence of a gradient in
substrate concentrations, enzymes exhibit collective motions
in the direction of higher or lower concentrations [11,12].
Moreover, the enhanced diffusion of passive objects in enzy-
matic solutions have been observed independently [13,14].
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To understand these experimental findings, several models
have been proposed using equilibrium as well as nonequi-
librium approaches. Illien et al. [15] modeled an enzyme
consisting of hydrodynamically coupled subunits, and in-
troduced two discrete equilibrium states corresponding to a
free enzyme and a substrate-enzyme complex. They showed
that diffusion of an enzyme is enhanced due to equilibrium
fluctuations [15,16]. Within a nonequilibrium framework,
Golestanian [17] proposed four possible mechanisms leading
to diffusion enhancement by enzymes. They included self-
thermophoresis, boost in kinetic energy, stochastic swimming,
and collective heating. Mikhailov and Kapral [18,19] modeled
an enzyme as an active force dipole that exerts forces on
the surrounding fluid. When such dipoles are immersed in
aqueous fluids, hydrodynamic collective effects due to force
dipoles can lead to diffusion enhancement [18–20].

In spite of these extensive studies on enzyme diffusion,
a recent experimental work pointed out the difficulty of ac-
counting quantitatively for the observed enhanced diffusion
within such models as above [21]. Moreover, recent exper-
iments did not observe any change in the diffusion behav-
ior for a specific enzyme that was previously reported to
exhibit enhanced diffusion [22,23]. It was also noticed that
the viscosity of enzyme solutions is locally reduced while a
specific enzymatic reaction is taking place [7,24]. However,
the effect of enzyme conformational changes on the solution
shear viscosity has not been considered theoretically despite
its importance.

In this paper, we present an analytical study on the shear
viscosity of a dilute enzyme solution under steady shear flow.
As a coarse-grained model of catalytic enzymes, we use the
two-state dimer model in which conformational changes are
induced by substrate binding and product release [18]. Our
two-state dimer model consists of two hard spheres represent-
ing enzymatic domains, which are connected by a harmonic
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FIG. 1. A dilute solution of two-state dimers under steady shear
flow with shear rate γ̇ . Dimers consist of two green spheres of radius
a connected with an elastic spring, and immersed in a Newtonian
fluid having viscosity ηs. The enzymatic reaction, in which a dimer,
a substrate (red circle) and a product (blue square) participated, is
explained in Fig. 2.

spring [18,25,26]. Assuming that the conformational distribu-
tion is given by the Boltzmann distribution function, weighted
by the waiting time of an enzyme, we obtain analytically the
shear viscosity of a two-state dimer solution as a function of
the substrate concentration. As a result of the competition
between the energy difference of the enzyme two internal
states and the substrate concentration, we find that the enzyme
solution viscosity exhibits a nonmonotonic behavior that de-
pends on the physical properties of the binding substrates. We
shall also connect the obtained viscosity with the diffusion
coefficient of a tracer particle in enzyme solutions.

The outline of our manuscript is the following. In Sec. II,
we review the derivation of the shear viscosity of dimer
solutions originally used to describe polymer solutions. In
Sec. III, we discuss the shear viscosity of a two-state dimer
solution that represents enzyme solutions. We first introduce
the two-state dimer model and discuss the conformational
distribution function of dimers. Analytical results for the
shear viscosity due to dimers and its limiting expressions are
presented. Finally, some discussions and a summary are given
in Sec. IV.

II. VISCOSITY OF DIMER SOLUTIONS

A. Shear viscosity

We consider a dilute solution of dimers under steady shear
flow as schematically depicted in Fig. 1. Here the solvent vis-
cosity is ηs and each dimer is composed of two rigid spheres
of radius a, which are connected by an elastic spring. The
positions of two spheres are denoted by the three-dimensional
vectors r1 and r2. Then, the force acting between the two
spheres within the dimer is given by

fα = −∂U (r)

∂rα

, (1)

where U (r) is the elastic potential energy, r = |r| = |r2 − r1|
is the distance between the two spheres, and rα is the α

component of the vector r = (rx, ry, rz ).

In the presence of potential forces, the equation of motion
of an overdamped dimer can be written as [27,28]

∂rα

∂t
= 2

ζ
fα − 2kBT

ζ

∂ ln ψ

∂rα

+ dαβrβ, (2)

where ζ is the friction coefficient of the sphere, kB is the
Boltzmann constant, T is the temperature, ψ (r, t ) is the time-
dependent configurational distribution of a dimer, and the
velocity gradient tensor is given by

dαβ = ∂vα

∂rβ

. (3)

Notice that vα is the α component of the velocity v =
(vx, vy, vz ). Throughout this work, we assume summation
over repeated indices. The second and third terms on the
right-hand side of Eq. (2) represent the velocity due to thermal
motion of the solvent and that imposed by the flow field,
respectively.

Such models of dimers have been used extensively to
model polymer solutions. For polymer solutions, the stress
tensor due to the presence of dimers is given [27,28]

σαβ = n〈rα fβ〉, (4)

where n is the number density (per unit volume) of dimers,
and 〈· · · 〉 denotes the thermal average over all dimer con-
figurations. To calculate the statistical average in Eq. (4),
we introduce the following Fokker-Planck equation for the
conformational distribution ψ (r, t ),

∂ψ

∂t
= − ∂

∂rα

(
2

ζ
fαψ − 2kBT

ζ

∂ψ

∂rα

+ dαβrβψ

)
. (5)

In the above, the continuity equation,

∂ψ

∂t
= −∇ ·

(
∂r
∂t

ψ

)
, (6)

where ∇ = (∂rx, ∂ry, ∂rz ) and Eq. (2) have been used. From
the time evolution of 〈rαrβ〉 in a steady state, the stress tensor
in Eq. (4) can be written as [27,28]

σαβ = nkBT δαβ + nζ

4
[dαγ 〈rβrγ 〉 + dβγ 〈rαrγ 〉]. (7)

For simple shear flow whose velocity components are
given by vx = γ̇ ry, vy = vz = 0, where γ̇ is the shear rate (see
Fig. 1), the viscosity due to dimers has a simple form,

η = σxy

γ̇
= nζ

4

〈
r2

y

〉
. (8)

In order to calculate the average 〈r2
y 〉, we need to specify the

conformational distribution function ψ (r).

B. Fraenkel dimer model

Let us first discuss a dimer consisting of two spheres that
are connected by a harmonic spring having an elastic constant
K0, and a natural length �0. Its potential energy is then given
by

U0(r) = K0

2
(r − �0)2. (9)

This is the “Fraenkel dimer model” [29], and is different than
other polymer dynamic models, such as the Hookean dimer
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model. For Fraenkel dimers, the conformational distribution
function ψ0 is given by

ψ0(r) = C exp

[
− K0

2kBT
(r − �0)2

]
, (10)

where C is the normalization constant. Here, we assume that
the characteristic relaxation time of a dimer is much smaller
than that of a shear flow, i.e., ζ�2

0γ̇ /(kBT ) � 1. The physical
meaning of this condition will be separately explained in
Sec. IV.

Although the shear viscosity of the Fraenkel dimer model
was discussed in Ref. [30], its explicit expression was not
derived. By calculating 〈r2

y 〉 in Eq. (8) using Eq. (10), we
obtain the shear viscosity for a Fraenkel dimer solution η0 as

η0(ε)

Gτ

= 2ε

3

2ε(5+2ε)e−ε +√
πε(3 + 12ε+4ε2)[1 + erf (

√
ε)]

4ε2e−ε + 2
√

πε(ε + 2ε2)[1 + erf (
√

ε)]
,

(11)

where ε = K0�
2
0/(2kBT ) is the dimensionless elastic energy,

G = nkBT is the relaxation modulus, τ = ζ/(4K0) is the
relaxation time, and erf (x) = (2/

√
π )

∫ x
0 dt e−t2

is the error
function [31]. Notice that Gτ corresponds to the viscosity of a
dimer solution when the natural length of the spring vanishes,
i.e., ε = 0 [28,30].

The limiting behaviors of η0 for the Hookean, ε � 1, and
stiff Fraenkel dimers, ε � 1, are given by [27,30]

η0(ε)

Gτ
=

⎧⎪⎪⎨
⎪⎪⎩

1 + 4

3

√
ε

π
ε � 1,

2

3
ε ε � 1.

(12)

For ε � 1, the viscosity is almost constant, indicating that
thermal energy dominates over elastic energy. For ε � 1, on
the other hand, the viscosity increases linearly with ε.

III. TWO-STATE DIMER SOLUTIONS

A. Two-state dimer model

Catalytic enzymes undergo conformational changes in the
presence of substrate molecules. To model such situations, we
use a previously proposed two-state dimer model with a state
parameter that can get two values, s = 0 or 1 [18,25,26]. In
Fig 2(a), we schematically illustrate an enzymatic cycle that
is driven by binding a substrate to an enzyme. In the s = 0
state, i.e., the state of the dimer with the elastic constant K0

and the natural length of the spring �0, this model corresponds
to the Fraenkel dimer model.

When a substrate is supplied to a dimer enzyme whose size
is r = �0, a transition from s = 0 to s = 1 occurs with the re-
action rate k1. At the same time, the reverse reaction, namely,
the substrate dissociation process, can occur also when r = �0

with the reaction rate k−1. For the state s = 1, the substrate
adds another intradimer interaction, which is modeled as an
additional spring, whose elastic constant and natural length
are K1 and �1, respectively. Then, the dimer relaxes to a new
equilibrium conformation having the size r = �∗, as will be

FIG. 2. (a) The enzymatic cycle of the two-state dimer model. A
substrate (red circle) binds to a free enzyme (s = 0) with the reaction
rate k1 (A → B), while its dissociation also occurs with the reaction
rate k−1 (B → A). Once the substrate-enzyme complex (s = 1) is
formed, it starts to contract until the equilibrium conformation is
attained (B → C). Then, the product (blue square) is irreversibly
released with the reaction rate kcat , and the bare enzyme comes
back to its initial conformation. (b) The schematic illustration of the
energy for a two-state dimer as described by Eq. (13). There are two
energy branches U (r, 0) and U (r, 1). The transition between them
takes place at r = �0 and r = �∗, which are the equilibrium values
of U (r, 0) and U (r, 1), respectively, as are indicated by black circles.
This transition is followed by the downhill relaxational motion along
each branch. The forward and reverse transition rates, (s = 0) �
(s = 1), are given by k1, k−1, respectively, and (s = 1) → (s = 0)
is given by kcat .

explicitly given after Eq. (13). Once the substrate molecule is
irreversibly converted to a product molecule with the reaction
rate kcat, a transition from s = 1 to s = 0 takes place at r = �∗.
Finally, the product is released from the enzyme.

Notice that the reaction rates, k1, k−1, and kcat, are the bare
rate constants that do not depend on the energy difference
between any two states. This also holds for the reaction rates
in the cascade reactions discussed in Appendix A. Moreover,
the transition of a dimer occurs only when r = �0 or r = �∗;
hence, the reaction rates k1, k−1, and kcat are simply taken to
be constant in our model.

The state-dependent total potential energy of this two-state
dimer can be written as

U (r, s) = K0

2
(r − �0)2 + sK1

2
(r − �1)2, (13)

which gives the equilibrium length for s = 1 as �∗ =
(K0�0 + K1�1)/(K0 + K1). In Fig. 2(b), we schematically il-
lustrate the energy of a two-state dimer given by Eq. (13)
when �0 > �1. Under this condition, the substrate-enzyme
complex shrinks as compared to the bare enzyme [18,25,26].
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In this work, however, we do not require such a condition. In
physiological conditions, the sizes of actual substrate-enzyme
complexes either decrease (�0 > �1) or increase (�1 > �0)
upon substrate binding [7]. Hereafter, the subscripts “0” and
“1” denote physical values for the enzyme and the substrate-
enzyme complex, respectively.

As represented by the second term in the right-hand side
of Eq. (2), a dimer in our model undergoes conformational
fluctuations due to thermal energy. In other words, a free
enzyme (or a substrate-enzyme complex) fluctuates around
r = �0 (or r = �∗) during turnover cycles. This corresponds to
the situation in which enzymes are subject to thermal motion
of solvent molecules. Notice, however, that conformational
fluctuations between multistate enzymes [32,33] are not con-
sidered. This is because the original dimer model [18,25,26]
that we employ follows the simple Michaelis-Menten kinetics
[see Eq. (14)] with the advantage that the problem becomes
tractable.

B. Conformational distribution function

The above two-state dimer model describes a chemical
equation following the standard Michaelis-Menten reaction
[34]:

E + S
k1

�
k−1

ES
kcat−→ E∗ + P. (14)

This chemical reaction equation describes the enzymatic cycle
composed of three states of an enzyme: a free enzyme (E),
a substrate-enzyme complex (ES), and a free enzyme after
the reaction (E∗), as depicted in Fig. 2. Furthermore, S and P
stand for the substrate and product, respectively. When dimers
are connected by elastic springs, the time spent during the
transition between these chemical states can be characterized
by a relaxation time τ = ζ/(4K0) as introduced after Eq. (11).

For a two-state dimer, we assume that the characteristic
relaxation time is much smaller than that of a shear flow, i.e.,
ζ�2

0γ̇ /(kBT ) � 1 as adopted for the Fraenkel dimer model
in Sec. II. We further assume that the transition time spent
between enzymatic states is much smaller than the waiting
time in each of the states, s = 0, 1, i.e., τ/Ws � 1, where
the waiting time Ws will be defined later in Eq. (16). This
assumption is justified for enzymes such as adenylate kinase
having a relatively large waiting time, τ/W1 ≈ 0.1 [6]. For
completeness, however, the general case of arbitrary waiting
times is discussed in Sec. IV. Under these conditions, we
can introduce the Boltzmann distribution function that is
weighted only by the waiting time in the respective enzymatic
states. The validity of this assumption has been confirmed
by numerical solutions of the Langevin equation for a single
two-state dimer [26].

The distribution function for the two-state dimer model for
an enzyme is then given by

ψe(r) = W0e−βU (r,0) + W1e−βU (r,1)∫
dr [W0e−βU (r,0) + W1e−βU (r,1)]

, (15)

where β = 1/(kBT ). Here the waiting time in the state s is
defined by [35,36]

Ws =
∫ ∞

0
dt ps(t ), (16)

where ps(t ) is the time-dependent probability distribution
function of an enzyme in state s, which will be explicitly
given in Eq. (18). The case of a cascade reaction containing
N substrate-enzyme complexes is discussed in Appendix A as
a generalization, and Eq. (15), hence, corresponds to the case
N = 1.

C. Waiting times

Since we consider a dilute solution of two-state dimers, we
employ a single enzyme kinetics to obtain the waiting time
that an enzyme spends at each catalytic step (see also Ap-
pendix B). The validity of using a single enzyme kinetics for
an enzyme solution will be discussed later in this subsection.
For two-state dimers, the corresponding kinetic equations are
written in terms of the probability functions as [32,33,37,38]

d p0

dt
= k−1 p1 − k′

1 p0,

d p1

dt
= k′

1 p0 − (k−1 + kcat )p1,

d p∗
dt

= kcat p1. (17)

Here, p0(t ), p1(t ), and p∗(t ) are the probability distribution
functions for the two-state dimer in one of the two states, s =
0, 1, and the free enzyme after the catalysis (E∗), respectively.
In the above, we have introduced the pseudo-first-order rate
constant k′

1 = k1cS, where cS is the time-independent substrate
concentration. Such an assumption is justified when cE � cS

is satisfied, where cE is the enzyme concentration.
By solving the above coupled kinetic equations using the

initial conditions, p0(0) = 1 and p1(0) = p∗(0) = 0, under
the normalization condition p0(t ) + p1(t ) + p∗(t ) = 1, the
time-dependent probability distributions are obtained [37]:

p0(t ) = 1

2a
[(a + b − k′

1)e(a−b)t + (a − b + k′
1)e−(a+b)t ],

p1(t ) = k′
1

2a
[e(a−b)t − e−(a+b)t ],

p∗(t ) = k′
1kcat

2a

[
1

a − b
e(a−b)t + 1

a + b
e−(a+b)t

]
+ 1, (18)

where

a = [(k′
1 + k−1 + kcat )

2/4 − k′
1kcat]

1/2,

b = (k′
1 + k−1 + kcat )/2. (19)

Because a − b < 0 and a + b > 0, both p0(t ) and p1(t ) decay
exponentially for t → ∞, and consequently p∗ → 1.

Substituting p0(t ) and p1(t ) of Eq. (18) into Eq. (16), we
obtain the waiting times for s = 0 and 1 as

W0 = k−1 + kcat

k′
1kcat

, W1 = 1

kcat
. (20)

As a result, the distribution function in Eq. (15) can be written
as

ψe(r) = e−βU (r,0) + νe−βU (r,1)∫
dr [e−βU (r,0) + ν e−βU (r,1)]

, (21)
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where we have introduced the dimensionless parameter ν,

ν = k1

k−1 + kcat
cS = cS

KM
, (22)

and KM is the Michaelis constant [1],

KM = k−1 + kcat

k1
. (23)

Physically, ν represents the fraction of the s = 1 state during
one turnover cycle of the enzymatic reaction. It depends only
on the substrate concentration and the bare rate constants.
In the following analyses, we vary this state parameter ν to
investigate the shear viscosity of enzyme solutions. Some
numerical estimates of ν are given in the end of this section.

We discuss here the validity of using a single-enzyme ki-
netics. In our model, we have assumed that the concentration
of enzymes is small enough so that hydrodynamic interactions
between enzymes are negligible [28]. Such a dilute condition
corresponds to having only a single enzyme in the system,
leading to a renewal process [37]. In the renewal process,
the probability distribution function is identically and inde-
pendently distributed [39]. This means that in every turnover
cycle, waiting times follow the same probability distribution,
and hence these times can be uniquely determined as shown
in Eq. (20).

For systems containing mesoscopic numbers of enzymes,
however, stochasticity in enzymatic reactions plays more im-
portant roles as discussed in Refs. [39,40]. Enzyme stochas-
ticity leads to nonrenewal processes and causes breakdown
of the Michaelis-Menten equation in steady state [39,40].
Since the waiting time distributions depends on the number of
enzymes for nonrenewal processes, one needs to derive master
equations for waiting time distributions when a solution of
multiple enzymes is considered [39]. This is beyond the scope
of the present work.

D. Viscosity of two-state dimer solutions

To calculate the shear viscosity of a two-state enzyme
solution, we introduce the following notations: κ = K1/K0,
λ = �1/�0, and λ∗ = �∗/�0 = (1 + κλ)/(1 + κ ), where �∗ =
(K0�0 + K1�1)/(K0 + K1) is the effective natural length for a
dimer in the s = 1 state. In Appendix C, we show that the
viscosity of a two-state enzyme solution is given by

ηe(ν, ε, κ, λ) = η0 + (η1 − η0)
zν

1 + zν
, (24)

where the quantity η1 (η0) corresponds to the viscosity when
all the enzymes are in the s = 1 (s = 0) state

η1(ε, κ, λ)

Gτ
= 2ε

3

g4(ε(1 + κ ), λ∗)

g2(ε(1 + κ ), λ∗)
, (25)

and

z(ε, κ, λ) = exp

[
− εκ

1 + κ
(λ − 1)2

]
g2(ε(1 + κ ), λ∗)

g2(ε, 1)
. (26)

See also Eq. (11) for the Fraenkel dimer viscosity η0(ε). In
the above, gm(p, q) is given by an integral,

gm(p, q) =
∫ ∞

0
dr rme−p(r−q)2

, (27)

FIG. 3. Contour plot of ηe/(Gτ ) as a function of the parameters
ν = cS/KM [see Eq. (22)] and κ = K1/K0 for ε = K0�

2
0/(2kBT ) = 1

and λ = �1/�0 = 1.

and its explicit expression is obtained in Appendix C [see
Eq. (C6)]. Specifically, the functions g2(p, q) (m = 2) and
g4(p, q) (m = 4) are given by

g2(p, q) = q

2p
e−pq2 +

√
π (1 + 2pq2)[1 + erf (

√
pq)]

4p3/2
,

(28)

and

g4(p, q) = q(5 + 2pq2)

4p2
e−pq2

+
√

π (3 + 12pq2 + 4p2q4)[1 + erf (
√

pq)]

8p5/2
, (29)

respectively. Equations (24)–(29) for the viscosity are the
main result of this work.

In Eq. (26), the factor εκ (λ − 1)2/(1 + κ ) in the exponen-
tial function corresponds to the dimensionless energy differ-
ence, U (�∗, 1) − U (�0, 0), between the two equilibrium states
of a two-state dimer with �0 and �∗, as shown in Fig. 2(b).
Although only the bare reaction rates are taken into account,
the above energy difference naturally emerges by defining the
weighted distribution function as in Eq. (21).

When ν = 0, ηe of Eq. (24) simply reduces to η0, the
viscosity of the Fraenkel dimer solution [s = 0, see Eq. (11)].
For ν �= 0, the enzyme solution viscosity ηe is determined by
the ratio between the two viscosities η0 and η1. Due to the
factor z, however, ηe also depends on the energy difference
between the two states of the enzyme. This effect causes a
nonmonotonic behavior of the viscosity as we will show later.

Before analyzing the behavior of ηe, we estimate typical
values of ε = K0�

2
0/(2kBT ). The enzyme size can be taken as

�0 ≈ 10 nm [1]. Moreover, considering typical forces, 1 pN,
generated by a two-state dimer with size �0, we estimate the
spring constant as K0 ≈ 10−4 N/m [18]. Using these values
and kBT ≈ 4 × 10−21 J in physiological conditions, we obtain
ε ≈ 1. Hence, we fix the ε value hereafter to ε = 1.
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FIG. 4. Contour plot of ηe/(Gτ ) as a function of the parameters
ν = cS/KM [see Eq. (22)] and λ = �1/�0 for ε = K0�

2
0/(2kBT ) = 1

and κ = K1/K0 = 1. The white region corresponds to larger absolute
values of ηe.

In Fig. 3, we present the contour plot of the rescaled viscos-
ity due to two-state dimers, ηe/(Gτ ), as a function of ν and κ

for ε = λ = 1. One can see that ηe becomes smaller for large
ν and κ , implying that the viscosity decreases when enzymatic
reactions occur more frequently and substrates are stiffer
(large K1). Notice that stiff dimers lead to a decrease of ηe

because its stiffness suppresses the enzyme size fluctuation. In
Fig. 4, we plot the rescaled viscosity, ηe/(Gτ ), as a function of
ν and λ for ε = κ = 1. Here we see a nonmonotonic behavior
of the viscosity in λ characterized by a peak around λ ≈ 3.2.
Note that for larger λ values, ηe becomes independent of ν.

To see more detailed behavior, we plot in Fig. 5 the rescaled
viscosity, ηe/(Gτ ), as a function of ν for κ = 0.1, 1, and
10, while keeping ε = λ = 1. The dashed line corresponds
to the constant viscosity for a Fraenkel dimer solution, i.e.,

FIG. 5. Plot of ηe/(Gτ ) as a function of the parameter ν for
κ = K1/K0 = 0.1, 1, and 10. The other parameter values are ε =
K0�

2
0/(2kBT ) = 1 and λ = �1/�0 = 1. The black dashed line repre-

sents η0 in Eq. (11). The red dotted lines represent the two limiting
expressions in Eq. (30) for κ = 1.

FIG. 6. Plot of ηe/(Gτ ) as a function of the parameter ν for
λ = �1/�0 = 0.1, 1, 4, and 5.3. The other parameter values are ε =
K0�

2
0/(2kBT ) = 1 and κ = K1/K0 = 1. The black dashed line repre-

sents η0 in Eq. (11). The blue dotted lines represent the two limiting
expressions in Eq. (30) for λ = 4.

η0/(Gτ ) ≈ 2.13. We see that ηe decreases with increasing ν

for all the κ values. The decrease of ηe is more enhanced for
larger κ values.

In Fig. 6, we plot ηe as a function of ν for λ = 0.1, 1, 4,
and 5.3, while keeping ε = κ = 1. We see that ηe shows
both increasing and decreasing dependency as a function of
ν depending on the value of λ. When λ = 0.1, 1, and 4, the
viscosity ηe increases with λ, reflecting the fact that larger
enzymes lead to higher viscosity. For larger λ such as λ = 5.3,
however, ηe becomes smaller, and as λ is further increased, the
viscosity approaches the value of η0 as indicated by the dashed
line. In this limit, both Fraenkel dimer solutions and two-state
enzyme solutions exhibit the same viscosity even when ν is
very large.

We discuss now the nonmonotonic behavior of ηe that
is seen in Fig. 6. Such a behavior occurs because z in
Eq. (26) increases for smaller λ, but strongly decreases for
larger λ due to the Gaussian function of Eq. (26). The factor
εκ (λ − 1)2/(1 + κ ) in the Gaussian function corresponds to
the rescaled energy difference between the s = 0 and s = 1
states. Hence, it can be regarded as an Arrhenius’ equation that
determines the transition rate from the s = 0 to s = 1 state.

E. Limiting expressions

Next, we present the limiting expressions of ηe for small
and large values of the ν parameter, ν � 1 and ν � 1. The
viscosity of two-state dimer solution in Eq. (24) becomes

ηe(ν, ε, κ, λ) ≈
⎧⎨
⎩

η0 + C1ν ν � 1,

η1 + C2

ν
ν � 1,

(30)

where C1(ε, κ, λ) = (η1 − η0)z and C2(ε, κ, λ) = (η0 − η1)/
z. In Figs. 5 and 6, we have plotted the above limits by the red
(for κ = 1) and blue (for λ = 4) dotted line, respectively.
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FIG. 7. Contour plot of C1/(Gτ ) [see Eq. (30)] as a function
of κ = K1/K0 and λ = �1/�0 for ε = K0�

2
0/(2kBT ) = 1 under the

condition ν � 1. The quantity C1 changes its sign from negative to
positive around λ ≈ 2.

In Fig. 7, we study the ν � 1 behavior and plot the
coefficient C1 = (η1 − η0)z of ν in Eq. (30) as a function of
κ and λ for ε = 1. The behavior of C1 is nonmonotonic, hav-
ing a minimum and a maximum around (κ, λ) ≈ (1, 1) and
(κ, λ) ≈ (1, 2.5), respectively. The quantity C1 vanishes for
large λ values, because the Gaussian function in z, Eq. (26),
dominates over the viscosity difference, η0 − η1. Notice that
C1 changes its sign from negative to positive around λ ≈ 2,
where the switching from decreasing to increasing behavior
of ηe as a function of ν occurs.

In Fig. 8, we study the ν � 1 behavior and plot the coef-
ficient C2 = (η0 − η1)/z of ν−1 in Eq. (30) as a function of κ

and λ when ε = 1. Here C2 exhibits a monotonic behavior in
κ and λ, and changes its sign from positive to negative around

FIG. 8. Contour plot of C2/(Gτ ) [see Eq. (30)] as a function
of κ = K1/K0 and λ = �1/�0 for ε = K0�

2
0/(2kBT ) = 1 under the

condition ν � 1. The quantity C2 changes its sign from positive
to negative around λ ≈ 2. The white region corresponds to larger
absolute values of C2.

λ ≈ 2. Since ηe is inversely proportional to ν in Eq. (30),
positive C2 leads to a decreasing behavior of ηe, whereas
negative C2 results in an increasing behavior.

F. Numerical estimates

To end this section, we give some numerical estimates of
the parameter ν = cS/KM in Eq. (22). The experimentally
accessible substrate concentration is 10−6 M < cS < 10−3 M
[12,14]. On the other hand, the value of the Michaelis constant
KM differs between fast and slow enzymes. For fast enzymes,
such as urease and catalase, it is given by KM ≈ 10−3 M
[9,12]. For slow enzymes, such as aldolase and adenylate
kinase, it is KM ≈ 10−6 M [6,10]. Hence, the ν range is
estimated as 10−3 < ν < 1 and 1 < ν < 103, respectively,
for fast and slow enzymes. These estimates imply that the
limiting expressions derived for ν � 1 and ν � 1 in Eq. (30)
correspond to these two types of enzymes for cS < 10−4 M
and cS > 10−5 M, respectively.

Next we discuss the values of κ and λ in order to estimate
the viscosity ηe for typical physiological conditions. Since an
enzyme consists of a large complex of macromolecules, the
size of substrate molecules is typically smaller than that of
enzymes [1]. Due to this size difference, the condition λ < 1
holds generally. Noncovalent bonds, such as hydrogen bonds,
van der Waals attractions, and hydrophobic forces, are respon-
sible for the formation of macromolecular assemblies. On the
other hand, covalent bonds are responsible for the formation
of substrate molecules. Then, the molecular flexibilities for
the substrates compared with the enzymes are different, which
leads to the condition κ > 1.

From the above argument, we choose λ = 0.1 and κ = 10.
Using these values and setting ε = 1, we obtain ηe/(Gτ ) ≈
2.11 and ηe/(Gτ ) ≈ 0.39 for fast and slow enzymes, respec-
tively, assuming that the maximum substrate concentration
cS = 10−3 M is attained. Since η0/(Gτ ) ≈ 2.13 for ε = 1,
the difference between the enzyme solution with substrates ηe

and that without substates η0 is negligible for fast enzymes,
whereas the viscosity ηe is approximately five times smaller
than η0 for slow enzymes.

IV. DISCUSSION AND CONCLUSION

In this paper, we have investigated the viscosity of di-
lute two-state enzyme solutions under steady shear flow. We
have obtained the shear viscosity by taking into account the
enzyme conformational changes in a solution with a supply
of substrates. The waiting times, which correspond to the
respective conformations of the enzyme, are connected to
the reaction rates in the enzymatic cycle by using the single
enzyme kinetics [37]. In our approach, the two-state dimer
model [18,25,26] and the polymer dimer model [27–29] are
combined.

When the enzyme has the same structural properties as
the substrate, the shear viscosity decreases as the substrate
concentration becomes higher (see Fig. 5). For a substrate
larger than the enzyme, the viscosity increases with sub-
strate concentrations (see Fig. 6). When the substrate is large
enough, however, the viscosity reduces to that of a Fraenkel
dimer solution. Furthermore, we have obtained the limiting
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expressions of the viscosity for fast and slow enzymes [see
Eq. (30)]. For slow enzymes, the coefficient shows only a
monotonic behavior. For fast enzymes, on the other hand, the
coefficient of the substrate concentration exhibits a nonmono-
tonic behavior as functions of the stiffness and size of the
substrate.

Next, we comment on the connection between the viscosity
of a two-state dimer solution and the diffusion coefficient of a
tracer particle in such a solution. By following the discussion
in Refs. [41,42], the diffusion coefficient of a passive spherical
particle of radius R can be given by Einstein’s relation,

De = kBT

6π (ηs + ηe )R
, (31)

where we have assumed R � �0. In terms of the enzyme
volume fraction φ = 4π (�0/2)3n/3, De can be expanded up
to first order in φ as

De ≈ kBT

6πηsR

(
1 − 9aηe

2�0Gτ
φ

)
. (32)

Hence, the relative change of the diffusion coefficient with
respect to that of a Fraenkel dimer solution (denoted by D0) is

δD = De − D0 = 3kBT

4πηsR

a(η0 − ηe )

�0Gτ
φ. (33)

Since η0 > ηe holds for both fast and slow enzymes as
estimated before, catalytic enzymes give rise to the diffusion
enhancement under physiological conditions. Moreover, we
see that δD increases as cS is increased in the limits of
fast and slow enzymes (see Figs. 7 and 8). This behavior
qualitatively agrees with experiments for both tracers and
enzymes [8,14,21]. More specifically, using values such as
cS = 10−3 M, a/�0 = 0.2, φ = 0.1, we obtain that the diffu-
sion increases for slow enzymes as δD/D0 ≈ 0.15. In existing
experiments, however, φ is typically of the order of 10−5, and
hence experimental measurements using higher cE concentra-
tion are needed for a more accurately checking of the validity
of our model.

Here we discuss how the obtained viscosity is modified
by hydrodynamic effects that have been neglected so far. In
the presence of hydrodynamic interactions, the equation of
motion, Eq. (2), can be rewritten as [43]

∂rα

∂t
= (δαβ − ζGαβ )

(
2

ζ
fβ − 2kBT

ζ

∂ ln ψ

∂rβ

)
+ dαβrβ, (34)

where Gαβ (r) = (δαβ + rαrβ/r2)/(8πηsr) is the hydrody-
namic Oseen tensor [44]. If we assume all orientations to
be equally probable, an equilibrium-averaged hydrodynamic
interaction can be defined by taking the average of Gαβ (r)
over all orientations [45],

h = 1

3
Tr

(∫
dr ψ (r)Gαβ (r)∫

dr ψ (r)

)
, (35)

where Tr denotes the trace operation. This is called the pre-
averaging approximation [44]. Then, the equation of motion
can be approximated as

∂rα

∂t
≈ 2(1 − ζh)

ζ

(
fα − kBT

∂ ln ψ

∂rα

)
+ dαβrβ. (36)

Comparing Eqs. (2) and (36), one finds that the change over
from negligible hydrodynamic interactions to equilibrium-
averaged ones can be accomplished by replacing ζ with
ζ/(1 − ζh). Hence, for a single-state dimer as in Eq. (8), the
hydrodynamic interaction modifies the viscosity by a factor
of 1/(1 − ζh). In Appendix D, we derive h for the Fraenkel
dimer model. When a/�0 = 0.2 and ε = 1, for example, we
find that the viscosity is about 20% larger as compared to
the negligible hydrodynamic case. For the two-state dimers,
hydrodynamic effects do not affect the ν dependence of ηe

although some geometrical factors such as κ and λ can enter
in h.

In this study, we have assumed that the distribution func-
tions do not depend on shear flow [see Eqs. (10) and (15)].
Here we discuss how these distribution functions are modified
by an external flow and the regime where the flow does not
affect the distributions as assumed in this paper. For a steady-
state homogeneous potential flow, Eq. (5) has an analytical
solution [27],

ψ (r) = C′ exp

[
−U (r)

kBT

]
exp

[
ζ

kBT
rαdαβrβ

]
, (37)

where C′ is the normalization constant.
For a simple shear flow characterized by a shear rate γ̇ , the

distribution function becomes

ψ (r, θ, φ, γ̇ ) = C′ exp

[
−U (r)

kBT

]
exp

[
ζ r2γ̇

2kBT
sin2 θ sin 2φ

]
,

(38)

where rx = r sin θ cos φ and ry = r sin θ sin φ. When the
length of a dimer is r = �0, the characteristic relaxation time
is given by ζ�2

0/(kBT ) [29]. Hence, the shear flow does not
affect the distribution functions when ζ�2

0γ̇ /(kBT ) � 1.
We have assumed that the transition time spent from one

enzymatic species to another is much smaller than the waiting
time, i.e., τ/Ws � 1. Here, we consider the general case of
arbitrary waiting time. Because the total times in state s = 0
and s = 1 are given by W0 + τ and W1 + τ1, respectively, the
modified parameter ν becomes

ν = k1(1 + kcatτ1)cS

k−1 + kcat (1 + k1τcS)
, (39)

where τ = ζ/(4K0) as before and τ1 = ζ/(4K1). Since the
reverse reaction rate k−1 is negligible in general but may have
a finite value, we set it to be a constant. There are only four
relevant time scales, namely, k−1

cat , (k1cS)−1, τ , and τ1, and
Eq. (39) has four limiting expressions. When the transition
rates are vanishingly small, the modified parameter coincides
with ν in Eq. (22) as it should. For the two intermediate
regimes, Eq. (39) shows linear and inverse dependencies on
the transition time. When the transition time is infinitely large,
we have ν ∼ κ−1, indicating that the transition dynamics is
governed only by the relative stiffness between the enzyme
and substrate.

The transition rates can depend on κ and/or λ for general
enzymatic solutions although these effects were not consid-
ered in this work. Using Kramers’ reaction-rate theory [46],
Aviram et al. [6] obtained free-energy profiles of enzymes by
experimentally measuring the transition rates. In the presence
of such an effect, the enzyme solution viscosity may exhibit
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more complicated dependences on κ and/or λ. Finally, we
have assumed that the viscosity due to enzymes does not
depend on the shear rate. Since the dimer model with finite
natural lengths predicts a viscosity that depends on the shear
rate [27,30], one can extend the present model to a non-
Newtonian enzymatic fluid.
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APPENDIX A: PROBABILITY DISTRIBUTION FUNCTION
FOR MULTIPLE-STATE ENZYMES

In this Appendix, we generalize the dimer enzyme into a
N-mer one. We derive the probability distribution function
for a single enzyme that has multiple intermediate states
in catalytic chemical reactions. We consider the following
cascade reaction containing N intermediate substrate-enzyme
complexes:

E + S
k1

�
k−1

(ES)1

k2

�
k−2

· · · (ES)s · · ·
kN

�
k−N

(ES)N
kcat−→ E∗ + P.

(A1)

Here (ES)s denotes the sth intermediate complex in the reac-
tion, and ks and k−s are the forward and backward reaction
rates to the states s and s − 1, respectively. At the final step,
the complex is irreversibly converted to an enzyme and a
product with the reaction rate kcat. The enzyme after the
catalysis is denoted by E∗.

Since we assume that a substrate having the energy Es

binds to (ES)s−1 with the reaction rate ks, the energy of an
enzyme in the state s can be written as

U (r, s) = E0 +
s∑

s′=1

Es′ , (A2)

where E0 is the energy of the free enzyme. Then, the waiting
time-weighted distribution function is given by

ψN (r) =
∑N

s=0 Wse−βU (r,s)∑N
s=0 Ws

∫
dr e−βU (r,s)

. (A3)

Here Ws is the waiting time in the state s, which is defined in
Eq. (16).

In order to obtain the viscosity of dimer solutions using
Eq. (8), we need to calculate the second moment 〈r2

y 〉. In
general, the average of any function f (r) over the distribution

function, Eq. (A3), can be written as

〈 f (r)〉N = 〈 f (r)〉0 +
N∑

s=1

[〈 f (r)〉s − 〈 f (r)〉0]

× zs0ws0

1 + ∑N
s′=1 zs′0ws′0

, (A4)

where 〈 f (r)〉s denotes the average of f (r) over all configura-
tions in the state s,

〈 f (r)〉s =
∫

dr f (r)e−βU (r,s)∫
dr e−βU (r,s)

, (A5)

while zss′ and wss′ are defined by

zss′ =
∫

dr e−βU (r,s)∫
dr e−βU (r,s′ ) , wss′ =

∫ ∞
0 dt ps(t )∫ ∞
0 dt ps′ (t )

. (A6)

Notice that the quantity z in Eq. (26) corresponds to z10 in the
above notation.

APPENDIX B: MICHAELIS-MENTEN KINETICS AND
SINGLE ENZYME KINETICS

In this Appendix, we briefly review the Michaelis-Menten
kinetics [34] and the single-enzyme kinetics. In the two-state
dimer model, the cascade reaction in Eq. (A1) reduces to the
Michaelis-Menten reaction [see Eq. (14)]. In the ensemble of
enzymatic experiments, the corresponding kinetic equations
become

dcE

dt
= k−1cES − k1cEcS,

dcES

dt
= k1cEcS − (k−1 + kcat )cES,

dcP

dt
= kcatcES, (B1)

where cE and cS were defined before, whereas cES and cP are
the concentrations of substrate-enzyme complex and product,
respectively. By replacing the concentrations of the chemi-
cal species with the probability distributions, we obtain the
kinetic equations for a single enzyme as in Eq. (17). In the
steady sate, dcES/dt = 0, the enzymatic velocity is given by

V = dcP

dt
= VmaxcS

KM + cS
, (B2)

where Vmax = kcat (cE + cES) is the maximum enzymatic ve-
locity and KM = (k−1 + kcat )/k1 is the Michaelis constant
defined in Eq. (23).

For a single enzyme, the corresponding reaction velocity
can be obtained from the inverse of the total waiting time
during one catalytic cycle. With the use of Eq. (20), this
velocity becomes

1

W
= 1

W0 + W1
= kcatcS

KM + cS
, (B3)

which is termed the single-molecule Michaelis-Menten equa-
tion [32]. Comparison of Eqs. (B2) and (B3) yields the
relation,

V

cE + cES
= 1

W
. (B4)
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This relation originates from the equivalence between the average over a single molecule’s long-time trace and that over a large
ensemble of identical molecules, i.e., the ergodicity [32,33].

APPENDIX C: DERIVATION OF ηe

In this Appendix, we present the derivation of ηe in Eq. (24). Using Eq. (21), we calculate 〈r2
y 〉 in Eq. (8) as

ηe = nζ

4

∫
dr r2

y

[
e−βU (r,0) + νe−βU (r,1)

]
∫

dr [e−βU (r,0) + νe−βU (r,1)]
. (C1)

With the use of Eq. (A4) for N = 1, we obtain

ηe = nζ

4

(〈
r2

y

〉
0 + [〈

r2
y

〉
1 − 〈

r2
y

〉
0

] zν

1 + zν

)
. (C2)

Since nζ 〈r2
y 〉0/4 = η0 and nζ 〈r2

y 〉1/4 = η1, we obtain Eq. (24). The viscosity of a Fraenkel dimer solution η0 is given by Eq. (11).
Next we calculate η1 in Eq. (25) as

η1 = nζ

4

∫
dr r2

y e−βU (r,1)∫
dr e−βU (r,1)

= nζ

12

∫ ∞
0 dr r4e−βU (r,1)∫ ∞
0 dr r2e−βU (r,1)

. (C3)

For a harmonic potential, the integration of rm can be generally expressed as

gm(p, q) =
∫ ∞

0
dr rme−p(r−q)2 =

∫ ∞

−q
du (u + q)me−pu2 =

m∑
n=0

m!

(m − n)!n!
qm−n

∫ ∞

−q
du une−pu2

. (C4)

The last integral can be further performed as follows.∫ 0

−q
du une−pu2 +

∫ ∞

0
du une−pu2 = p−(n+1)/2

2

[
(−1)n

∫ pq2

0
dt t (n+1)/2−1e−t +

∫ ∞

0
dt t (n+1)/2−1e−t

]
,

= p−(n+1)/2

2

[
[1 + (−1)n]

∫ ∞

0
dt t (n+1)/2−1e−t − (−1)n

∫ ∞

pq2
dt t (n+1)/2−1e−t

]
. (C5)

Finally, gm(p, q) becomes

gm(p, q) = 1

2

m∑
n=0

m!

(m − n)!n!
p−(n+1)/2qm−n

[
[1 + (−1)n]�

(
n + 1

2

)
− (−1)n�

(
n + 1

2
, pq2

)]
, (C6)

where �(x) = ∫ ∞
0 dt t x−1e−t and �(x, α) = ∫ ∞

α
dt t x−1e−t are

the gamma function and the incomplete gamma function of
the second kind, respectively [31].

APPENDIX D: HYDRODYNAMIC INTERACTIONS
BETWEEN TWO SPHERES

In this Appendix, we present the calculation of Eq. (35)
for the Fraenkel dimer model. With the assumption that the
fluid is isotropic, the Oseen tensor becomes δαβ/(6πηsr).
Substituting it into Eq. (35) yields

h = 1

6πηs

∫
dr ψ0(r)/r∫
dr ψ0(r)

. (D1)

By taking m = 1, 2 in gm(p, q), Eq. (C6), the dimensionless
combination ζh is obtained as

ζh(ε) = a

�0

g1(ε, 1)

g2(ε, 1)

= a

�0

e−ε + √
πε[1 + erf (

√
ε)]

e−ε + √
πε[1 + 1/(2ε)][1 + erf (

√
ε)]

. (D2)

For large dimers, a/�0 � 1, the hydrodynamic effects be-
come negligible. The limiting behavior of h for the Hookean,
ε � 1, and stiff Fraenkel dimers, ε � 1, is given, respec-
tively, by

ζh(ε) =

⎧⎪⎪⎨
⎪⎪⎩

2a

�0

√
ε

π
ε � 1,

a

�0

1

1 + 1/(2ε)
ε � 1.

(D3)

[1] B. Alberts, A. Johnson, P. Walter, J. Lewis, and M. Raff,
Molecular Biology of the Cell (Garland Science, New York,
2008).

[2] M. Gerstein, A. M. Lesk, and C. Chothia, Biochemistry 33,
6739 (1994).

[3] Y. Togashi and A. S. Mikhailov, Proc.
Natl. Acad. Sci. USA 104, 8697
(2007).

[4] T. Sakaue, R. Kapral, and A. S. Mikhailov, Eur. Phys. J. B 75,
381 (2010).

012610-10

https://doi.org/10.1021/bi00188a001
https://doi.org/10.1021/bi00188a001
https://doi.org/10.1021/bi00188a001
https://doi.org/10.1021/bi00188a001
https://doi.org/10.1073/pnas.0702950104
https://doi.org/10.1073/pnas.0702950104
https://doi.org/10.1073/pnas.0702950104
https://doi.org/10.1073/pnas.0702950104
https://doi.org/10.1140/epjb/e2010-00138-x
https://doi.org/10.1140/epjb/e2010-00138-x
https://doi.org/10.1140/epjb/e2010-00138-x
https://doi.org/10.1140/epjb/e2010-00138-x


SHEAR VISCOSITY OF TWO-STATE ENZYME SOLUTIONS PHYSICAL REVIEW E 101, 012610 (2020)

[5] C. Echeverria, Y. Togashi, A. S. Mikhailov, and R. Kapral,
Phys. Chem. Chem. Phys. 13, 10527 (2011).

[6] H. Y. Aviram, M. Pirchi, H. Mazal, Y. Barak, I. Riven, and G.
Haran, Proc. Natl. Acad. Sci. USA 115, 3243 (2018).

[7] Y. Zhang and H. Hess, ACS Cent. Sci. 5, 939 (2019).
[8] H. S. Muddana, S. Sengupta, T. E. Mallouk, A. Sen, and P. J.

Butler, J. Am. Chem. Soc. 132, 2110 (2010).
[9] C. Riedel, R. Gabizon, C. A. M. Wilson, K. Hamadani, K.

Tsekouras, S. Marqusee, S. Pressé, and C. Bustamante, Nature
(London) 517, 227 (2015).

[10] P. Illien, X. Zhao, K. K. Dey, P. J. Butler, A. Sen, and R.
Golestanian, Nano Lett. 17, 4415 (2017).

[11] S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E.
Ibele, P. J. Butler, and A. Sen, J. Am. Chem. Soc. 135, 1406
(2013).

[12] A.-Y. Jee, S. Dutta, Y.-K. Cho, T. Tlusty, and S. Granick, Proc.
Natl. Acad. Sci. USA 115, 14 (2018).

[13] K. K. Dey, F. Y. Pong, J. Breffke, R. Pavlick, E. Hatzakis,
C. Pacheco, and A. Sen, Angew. Chem. Int. Ed. 55, 1113
(2016).

[14] X. Zhao, K. K. Dey, S. Jeganathan, P. J. Butler, U. M. Córdova-
Figueroa, and A. Sen, Nano Lett. 17, 4807 (2017).

[15] P. Illien, T. Adeleke-Larodo, and R. Golestanian, Europhys.
Lett. 119, 40002 (2017).

[16] T. Adeleke-Larodo, P. Illien, and R. Golestanian, Eur. Phys. J.
E 42, 39 (2019).

[17] R. Golestanian, Phys. Rev. Lett. 115, 108102 (2015).
[18] A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112,

E3639 (2015).
[19] R. Kapral and A. S. Mikhailov, Physica D 318-319, 100 (2016).
[20] Y. Hosaka, K. Yasuda, R. Okamoto, and S. Komura, Phys. Rev.

E 95, 052407 (2017).
[21] M. Xu, J. L. Ross, L. Valdez, and A. Sen, Phys. Rev. Lett. 123,

128101 (2019).
[22] Y. Zhang, M. J. Armstrong, N. M. B. Kazeruni, and H. Hess,

Nano Lett. 18, 8025 (2018).
[23] J.-P. Günther, G. Majer, and P. Fischer, J. Chem. Phys. 150,

124201 (2019).
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