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Charge oscillations in ionic liquids: A microscopic cluster model
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In spite of their enormous applications as alternative energy storage devices and lubricants, room-temperature
ionic liquids (ILs) still pose many challenges from a pure scientific viewpoint. We develop an IL microscopic
theory in terms of ionic clusters, which describes the IL behavior close to charged interfaces. The full structure
factor of finite-size clusters is considered and allows us to retain fine and essential details of the system as a
whole. Beside the reduction in the screening, it is shown that ionic clusters cause the charge density to oscillate
near charged boundaries, with alternating ion-size thick layers, in agreement with experiments. We distinguish
between short-range oscillations that persist for a few ionic layers close to the boundary, as opposed to long-range
damped oscillations that hold throughout the bulk. The former can be captured by finite-size ion pairs, while the
latter is associated with larger clusters with a pronounced quadrupole (or higher) moment. The long-wavelength
limit of our theory recovers the well-known Bazant-Storey-Kornyshev (BSK) equation in the linear regime, and
elucidates the microscopic origin of the BSK phenomenological parameters.
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Recently, room-temperature ionic liquids (ILs) have been a
subject of intense research due to their numerous applications
as electrolytes in batteries, fuel cells, and supercapacitors, and
as molecular “green” lubricants [1–6]. In addition, being a
highly interacting Coulomb system, the statistical mechanics
modeling of ILs, especially near electrified interfaces, contin-
ues to pose a great theoretical challenge [7,8].

As ILs are solvent-free electrolyte systems, they can be
modeled as concentrated ionic solutions. Although ILs are
frequently compared with dilute ionic solutions, for which
the theoretical understanding and fits to experiments are
well established [9], experiments and simulations reveal key
differences between these two systems. Unlike dilute solu-
tions, the IL charge distribution near charged interfaces is
often nonmonotonic and can decay in an oscillatory manner.
A combination of x-ray structure measurements [10], force
measurements [11–14], and molecular dynamics simulations
[15–17] revealed that close to charged interfaces, cations and
anions form alternating layers of about one ionic diameter in
thickness. When confined between two charged surfaces, ILs
can even go through a phase transition into a solidlike phase
[18]. Another distinct feature is underscreening. Namely, the
screening in ILs and in concentrated ionic solutions is much
weaker than the dilute-solution prediction [19–22].

The most common theory of ionic solutions is the Poisson-
Boltzmann (PB) theory. This is a mean-field (MF) theory [9]
that is valid for low ionic concentrations. At high concentra-
tions, as in the case of ILs, ionic correlations that are neglected
in the PB theory become important [23,24]. Nevertheless,
in the attempt to construct an effective theory for ILs, the
PB equation has been often used with further modifications
that were supposed to account for deviations from the dilute
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regime [25–28]. Other approaches include liquid-state theory
[29,30] and one-dimensional lattice-gas models [31,32].

One of the significant contributions to describe theoreti-
cally ILs has been suggested by Bazant, Storey, and Korny-
shev (BSK) [33], who developed an equation that modifies
the PB equation in two important ways. It uses a lattice-gas
entropy instead of an ideal-gas one, and it has a biharmonic
term in the electrostatic potential, ∇2∇2ψ (r). While the en-
tropy modification is more standard in incorporating steric
interactions [34], the additional biharmonic term is a purely
phenomenological way to incorporate ionic correlations via a
nonlocal dielectric constant [35], whereas other works sug-
gested that it can be related to structural nonelectrostatic
interactions [36]. The BSK equation requires fine tuning of
the model parameters in order to obtain the experimentally
observed wavelength of charge-density oscillations [10], but
it comes at the expense of a too short decay length, which is
not realized in physical systems. In this Rapid Communica-
tion, we address those issues and offer a more microscopic
approach to ILs, which predicts some of their main features.

It has long been conjectured that ionic clusters are likely
to form in concentrated electrolytes [37–39], due to the strong
electrostatic interactions and reduced entropy. Recent simu-
lations that follow single-ion trajectories in ILs support this
description and show that the fraction of free ions is only
around 20% [40]. We note that ionic clusters (e.g., ion pairs)
in concentrated ionic solutions were investigated previously
[41–44] and were shown to increase the screening length
relative to the Debye length, suggesting underscreening [21].
However, the connection between cluster formation and the
observed charge oscillations near interfaces has not yet been
fully explored.

In this Rapid Communication, we use an elegant yet simple
cluster picture to obtain an effective MF theory for ILs.
For small electric fields (or small charge density), we show
that the clusters induce the formation of layers near charged
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interfaces, having alternating charge and a microscopic thick-
ness. While our theory is derived from a microscopic model
with a clear interpretation of all the physical parameters,
it is able to reproduce the qualitative mesoscopic features
observed in experiments.

The cluster model. We consider a system of positive and
negative ions of charge ±q. The bulk concentration of the two
types of ions is n0 and the system is in thermal equilibrium at
temperature T . As there is no additional solvent surrounding
the ions, the relative dielectric constant is the same as the
vacuum one, ε = 1. The three characteristic length scales
are the Bjerrum length, lB = βq2/4πε0, where β = 1/kBT
and ε0 is the vacuum permittivity, the Debye length λD =
1/κD = (8π lBn0)−1/2, and the ionic size a (assumed for sim-
plicity to be the same for both cations and anions). The
ionic concentration can be expressed in units of a−3 such
that 2n0 = γ a−3, where the fraction γ is smaller than unity
but a substantial fraction of it. We consider room-temperature
ILs (T � 300 K) and take q = e (the electron charge), such
that lB � 55 nm. The ion size in typical ILs is of the order
a � 1 nm. For simplicity, we assume γ � 0.5, leading to
κDa = √

4πγ
√

lB/a � 20 � 1. Such large κD values indicate
that the regular PB theory is no longer valid.

We postulate the formation of various types of clusters, as
a way to incorporate ionic correlations. Each ion cluster has
a specific internal configuration, defined up to rotation and
translation of the entire cluster (Fig. 1). We treat all clusters of
the same ionic composition on equal footing, and neglect the
steric repulsion between clusters. The latter can be justified
in the linear regime, as will be employed further below. The
resulting MF equation [45–47] can be written as

∇2ψ (r) =

− 1

ε0

[
ρ f (r) +

∑
m

nm

∫
d


∫
dr′′ρm(
; r − r′′)

× exp

(
−β

∫
dr′ρm(
; r′ − r′′)ψ (r′)

)]
, (1)

where ψ (r) is the electrostatic potential, nm and ρm are the
bulk concentration and internal charge density of the m-type
cluster, respectively, and ρ f is some fixed charge density.
The cluster charge density depends on the orientation 
,
defined by the three Euler angles ϕ, θ , and ζ , with d
 =

1
8π2 sin θ dϕ dθ dζ . The sum in Eq. (1) is over all cluster
types, including the free ions. The Boltzmann factor for each
cluster depends on the value of the electrostatic potential
ψ (r) within the cluster volume, rendering the equation non-
local. The bulk cluster concentrations nm depend on various
physical conditions [39,48,49]. We treat the concentrations
as model parameters and relate them below to measurable IL
properties.

We now take the limit of small electrostatic potentials,
βqψ (r) � 1, and linearize Eq. (1). Within this linear limit,
steric interactions are expected to have a negligible effect on
electrostatic properties [34]. In Fourier space, the linearized
version of Eq. (1) takes the form

−k2ψ̃k = 1

ε0

[
β

∑
m

nmSm(k)ψ̃k − ρ̃ f ,k

]
, (2)
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FIG. 1. A schematic drawing of ionic clusters in ILs. Densely
packed free ions (left) can be viewed as a combination of free ions
and clusters of bound ions. Clusters with the same ionic composition
(e.g., ion pairs) are treated in the same way (right).

where f̃k = ∫
dr f (r)eik·r is the Fourier transform of f (r) and

Sm(k) is the charge-density structure factor of the m cluster,
defined by

Sm(k) ≡
∫

d
|ρ̃m,k(
)|2 = 1

4π

∫
d�k|ρ̃m,k|2. (3)

The last equality in Eq. (3) is due to the observation that
the average over the orientation angles of the cluster can
be replaced by an average over �k, the solid angle in k
space.

In order to study the IL behavior near an electrified bound-
ary, we consider in Eq. (2) the simple case of a charged
surface, with fixed charge density σ0 immersed in the liquid at
z = 0 such that ρ f (r) = σ0δ(z). More realistic surfaces, i.e.,
a thick dielectric or conductor, present a nontrivial boundary
condition problem. In such cases, the exact surface properties
need to be specified, for example, via a surface free energy
[50]. Denoting αm as the fraction of ions that belong to the
m-type cluster, we get that for an m cluster with Nm ions,
nm = 2n0αm/Nm and

∑
m αm = 1. Introducing the normalized

quantities ẑ = z/a, k̂ = ka, and S̃m(k̂) = Sm(k̂)/q2Nm, we ob-
tain

ψ (ẑ) = σ0a

ε0

1

2π

∫
dk̂

e−ik̂ẑ

k̂2 + κ2
Da2

∑
m

αmS̃m(k̂)
. (4)

The denominator of Eq. (4) can be interpreted in terms of a
nonlocal dielectric constant [43,46,51–55].

The value of the k integration in Eq. (4) is determined
from the residue theorem by the poles in the lower half
of the complex plane, which are given by the equation
k̂2 + κ2

Da2 ∑
m αmS̃m(k̂) = 0 (see also Ref. [56]). Each pole

can be written as k = ±ω − iκ with positive κ, ω > 0. The
contribution of each pole to ψ (z) is Ae−κz cos (ωz + φ), where
A and φ are real constants. Since S̃m(k̂) is a non-negative
function, the poles will always have a nonzero imaginary
value, κ 	= 0, causing ψ (z) to decay exponentially. How-
ever, some poles might have a nonzero real value as well,
ω 	= 0, corresponding to oscillating decaying modes. The
most dominant pole at large z distances (“the first pole”) has
the smallest imaginary part (denoted by κ1). Therefore, the
condition for long-range damped oscillations, as opposed to
a purely long-range decay, is that the first pole is not purely
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FIG. 2. The charge density ρ(z), rescaled by σ0/a, as a function
of the distance from a charged surface for (a) short and (b) long
distances. Only free ions and pair clusters are considered, with
corresponding fractions: α1 = 0.1, αp = 0.9, and κDa = 20. The
solid black line in (a) and (b) is the exact solution from Eq. (4). The
green line in the inset of (a) is plotted for α1 = 0.4 and αp = 0.6, for
comparison. The dashed red line in (b) is a fitted exponential function
with the decay length κ−1

1 , taken from the first pole of Eq. (4). White
and gray backgrounds distinguish between positive and negative
charge densities, respectively. The ion-pair clusters reverse the sign
of ρ(z) at short distances, yet in the long-distance limit, ρ(z) has a
pure monotonic decay.

imaginary. We show below how this is determined by the
cluster composition.

The exact clusters that are likely to form in ILs depend
on the molecular structure of the cations and anions. We
implement the general formalism on a simplified system that
contains only two types of clusters, other than free ions:
An ionic pair, composed of a cation and an anion with
internal charge density ρ(r) = q[δ(r − ax̂) − δ(r + ax̂)], and
an ionic square cluster, composed of two antiparallel ionic
pairs with ρ(r) = q[δ(r − ax̂ − aŷ) + δ(r + ax̂ + aŷ) −
δ(r − ax̂ + aŷ) − δ(r + ax̂ − aŷ)]. We denote m = 1 for the
single positive/negative ion cluster, m = p for the pair cluster
and m = s for the square cluster, resulting in

S̃1(k̂) = 1,

S̃p(k̂) = 1 − sin(2k̂)

2k̂
, (5)

S̃s(k̂) = 1 − 4 sin(2k̂) − √
2 sin(2

√
2k̂)

4k̂
.
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FIG. 3. The same plot as in Fig. 2, with the addition of square
clusters on top of free ions and pair clusters, with fractions: α1 =
0.3, αp = 0.1, αs = 0.6, and κDa = 20. The solid black line is the
exact solution from Eq. (4). In (b), the dashed red line is a fitted
exponential function with the decay length κ−1

1 , taken from the first
pole of Eq. (4), and the dotted blue line is the approximated solution,
corresponding to Eq. (6). Due to the presence of square clusters, the
charge density oscillates even at large distances. The disagreement
between the exact and approximated solutions shows that high-order
terms in the expansion of Sm(k) in powers of k are essential to capture
the correct oscillation wavelength.

Substituting the above structure factors in Eq. (4), the
electrostatic potential profile ψ (z) and the charge density,
ρ(z) = −ε0ψ

′′(z), are obtained.
Results and discussion. In Figs. 2 and 3, we show the

charge density as a function of the distance from a charged
surface, for different choices of the fractions α1, αp, and
αs. We focus on the charge density at distances larger than
a/2, because for smaller distances, short-range interactions
between the clusters and surface should also be taken into
account. This can be done in future studies, e.g., by limiting
the spatial configurations of the clusters.

Our results show that if αs = 0, i.e., only free ions and ion
pairs are present, the first pole of Eq. (4) is always purely
imaginary, leading to a monotonic decay of ρ(z) at long
distances [Fig. 2(b)]. However, at short distances [Fig. 2(a)],
the complex higher-order poles are dominant and cause the
charge density to reverse its sign, corresponding to short-range
oscillations. These short-range oscillations exist due to the
finite distance between the ions inside the pair, and they vanish
for pointlike pairs. Moreover, as the ratio αp/α1 increases,
the short-range oscillations become more pronounced [see
the inset in Fig. 2(a)]. The case of αs = 0 resembles the
model considered by Buyukdagli et al. [46,53] of point-
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like ions embedded in a polar liquid with a finite solvent
size.

When square clusters are present as well (Fig. 3), we find
that above some concentration threshold (discussed below),
the first pole has a nonzero real part. This leads to damped
charge-density oscillations, both close to the surface and in
the distal region. In fact, the long-range behavior in this case
is dominated not by a single pole, but by two poles that
have very close imaginary values yet different real values (see
Supplemental Material [57]). The wavelength of both short-
and long-range oscillations is of the order of the ionic size
(see Figs. 2 and 3), in agreement with experiments and sim-
ulations [10,12,15]. We have thus shown that the formation
of ionic clusters, when taken into account properly (with a
finite separation between the ions inside each cluster), leads
to the formation of IL layers with alternating charge. We note
that these charge oscillations are different than the structural
density oscillations that are common in both charged and
uncharged liquids [58].

We turn now to the effective screening length (playing the
role of the Debye length λD), determined by the decay length
of the electrostatic potential ψ (z). At short distances, the
decay length is not defined, because ψ (z) is constructed from
multiple modes, each with a different characteristic decay
length. In the large distance limit, the effective screening
length is defined by the inverse of the imaginary part of the
first pole κ−1

1 . From this definition, we find that the screening
length is of the order of the ionic size a [see the dashed red
lines in Figs. 2(b) and 3(b)], which is much larger than the
decay length, λD = κ−1

D ≈ 0.05a, predicted by the Debye-
Hückel theory for dilute ionic solutions. Our results thus
qualitatively reproduce the underscreening effect. This is of
no surprise since the cluster picture initially assumes that only
a fraction of the total number of ions are free, and participate
in the screening. We note that experiments suggested an even
larger screening length [22].

The transition from pure decay to an oscillatory one at
large distances is depicted in Fig. 4, where the phase diagram
as a function of the fractions α1, αp, and αs is shown. As
α1 + αp + αs = 1, a ternary phase diagram is plotted in Fig. 4.
Although it is hard to see from the diagram, the vertex α1 = 1
always lies in the region of a pure monotonic decay, which
means that m 	= 1 clusters are needed for damped oscillation
to occur. The diagram shows that the long-range charge
oscillations are enhanced by both the free ions and square
clusters, but are suppressed by the pair clusters. This picture
is not limited to our specific choice of clusters. Clusters with
a pronounced dipole moment favor a long-range monotonic
decay of the charge density, while clusters with a small dipole
moment but pronounced quadrupole or higher multipoles are
likely to cause long-range oscillations. Figure 4 shows that the
area in the phase space of long-range oscillation grows when
κDa increases, until it reaches a limiting value for κDa →
∞. In interpreting Fig. 4, one should keep in mind that the
fractions α1, αp, and αs depend, in general, on κDa as well.

Relation to the BSK equation. Our cluster theory can
be related to the BSK equation [33]. By expanding Sm(k)
to fourth order in k, corresponding to a long-wavelength
approximation and transforming Eq. (2) back to real
space, we get an expression similar to the linearized BSK
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FIG. 4. Ternary phase diagram for κDa = 2 and κDa → ∞.
Depending on the cluster fractions α1, αp, and αs, ρ(z) either
has a regular decay (above the curves) or damped oscillations
(below the curves). The diagram is restricted to the large distance
limit.

equation,

[∇2 − ξ 2∇2∇2 − κ2
eff

]
ψ (r) = −ρ f (r)

ε0εeff
, (6)

where εeff , κeff , and ξ are given by

εeff = 1 + β

2ε0

∑
m

nmS′′
m(0),

κ2
eff = β

ε0εeff

∑
m

nmSm(0), (7)

ξ 2 = β

24ε0εeff

∑
m

nmS(4)
m (0).

An equation similar to Eq. (6) was derived for ions dissolved
in quadrupolar dielectrics [59,60]. However, in that case, it
is the solvent that is quadrupolar and is distributed homoge-
neously in space, unlike the clusters in our model.

The derivatives of the structure factor and, consequently,
the above coefficients, are related to different multipole mo-
ments of the cluster charge density [57]. For ξ 2 < 0, higher
orders of Sm(k) must be taken into account. In the specific
example used here, the free ions (α1), ionic pairs (αp), and
ionic squares (αs), give

εeff = 1 + 2αpκ
2
Da2

3
,

κ2
eff = α1κ

2
D

εeff
, (8)

ξ 2 = 2κ2
Da4(2αs − αp)

15εeff
.

This relates the fractions α1, αp, and αs to mesoscopic quanti-
ties. Note that the parameter ξ is equivalent to the phenomeno-
logical “correlation length” in the BSK theory [33], denoted
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there by lc, with the difference that here it is given in terms of
the cluster properties.

The linearized BSK equation predicts damped long-range
oscillation only if ξ 2κ2

eff > 1/4. In the limit κDa � 1, this
condition becomes

3α1(2αs − αp)

10α2
p

>
1

4
, (9)

predicting long-range oscillation for large α1 and αs and
small αp, similar to the predictions of Eq. (4). In fact, if we
construct the diagram in Fig. 4 from the approximated Eq. (6),
its qualitative features are unchanged [57], meaning that the
long-wavelength approximation captures the transition from
a monotonic decay to damped charge oscillations in the limit
z/a � 1.

However, the approximation incorrectly predicts that the
wavelength of the long-ranged oscillations is much larger
than the ionic size, as shown by the dashed blue line of
Fig. 3(b). This should not be of a surprise as short-wavelength
phenomena are captured by large wave numbers (large k’s). It
is therefore crucial to consider high-order terms in k, in order
to obtain the layering observed in experiments [10].

To summarize, we developed a microscopic model for
ionic liquids that is based on the assumption that a sub-
stantial fraction of the ions aggregates into clusters, as is
indicated by recent simulations. Our theory predicts both
the underscreening effect and interfacial charge-density os-
cillations of approximately one ionic layer thickness. This
is in accord with experiments and simulations. We show
that ionic pairs lead to short-range charge oscillations with
an amplitude that increases with the pair fraction, and
that more complex clusters can lead to long-ranged charge
oscillations.

Our theory is limited to the linear regime that can be justi-
fied for relatively small charge densities. In order to go beyond
the latter approximation, steric interactions must be included
in the theory. The advantage of the cluster description is in
its simplicity and clear interpretation, which quite remarkably
captures the key features of ionic liquids.
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