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ABSTRACT: Charged colloidal monolayers at the interface
between water and air (or oil) are used in a large number of
chemical, physical, and biological applications. Although
considerable experimental and theoretical effort has been
devoted in the past few decades to the investigation of such
monolayers, some of their fundamental properties are not yet
fully understood. In this article, we model charged colloidal
monolayers as a continuum layer of finite thickness, with a
separate charge distribution on the water and air sides. The
electrostatic surface free energy and surface pressure are calculated via the charging method and within the Debye−Hückel
approximation. We obtain the dependence of surface pressure on several system parameters: the monolayer thickness, its
distinct dielectric permittivity, and the ionic strength of the aqueous subphase. The surface pressure scaling with the area per
particle, a, is found to be between a−2 in the close-packing limit and a−5/2 in the loose-packing limit. In general, it is found that
the surface pressure is strongly influenced by charges on the air side of the colloids. However, when the larger charge resides on
the water side, a more subtle dependence on salt concentration emerges. This corrects a common assumption that the charges
on the water side can always be neglected due to screening. Finally, using a single fit parameter, our theory is found to fit the
experimental data well for strong- to intermediate-strength electrolytes. We postulate that an anomalous scaling of a−3/2,
recently observed in low ionic concentrations, cannot be accounted for within a linear theory, and its explanation requires a fully
nonlinear analysis.

■ INTRODUCTION

Molecular monolayers at the water/air or water/oil interfaces
have been investigated intensively for more than a century,
starting with the pioneering work of Langmuir and
Blodgett.1−7 They not only provide an important manifestation
of the thermodynamics of two-dimensional systems but also
equally offer several interesting applications in nanolithog-
raphy, micropatterning, and optical coatings.7−9

Related systems are monolayers of colloidal particles
deposited at fluid/fluid interfaces. Much interest in the latter
systems followed the seminal work of Pieranski,10 who found
that submicrometer polystyrene spheres are trapped at the air/
water interface and self-assemble into a triangular lattice due to
electrostatic repulsive interactions. More recently, a wide range
of studies, including the crystallization and aggregation of
colloidal particles, have been performed on such mono-
layers.11−14

Another key property of colloidal monolayers is their surface
pressure/area isotherm. Such quantitative knowledge allows for
the direct control of particle spreading and self-assembling at
the interface. The surface pressure can be used to fine tune the
interparticle spacing when the monolayer is deposited from an
aqueous solution.15 Furthermore, from measurements of
interparticle forces and the monolayer surface pressure, one
can infer the magnitude of the effective colloidal charge,16−19

as this quantity is otherwise hard to measure.
Several approaches have been suggested for calculating the

surface pressure.16,17,20−23 Levental et al.20 and Biesheuvel and

Soestbergen21 modeled a charged monolayer as a surface with
a continuous and uniform charge density and calculated the
electrostatic contribution to the surface pressure. Using the
nonlinear Poisson−Boltzmann (PB) theory leads to a non-
linear expression for the surface pressure, Π, expressed in terms
of hyperbolic functions. This result, when treated within the
linearized PB theory (the Debye−Hückel theory, DH, valid for
small zeta potentials), yields a surface pressure that scales with
a, the average area per particle, as Π ∼ a−2. In the opposite
limit of weak electrolytes, however, the scaling is found to be
Π ∼ a−1.20 Because the model is valid only for a uniform
surface charge density, it is restricted to the close-packing limit
of the colloids, where the monolayer surface charge can be
considered to be approximately uniform.
In the other limit of large interparticle separation, Aveyard et

al.16 studied the surface pressure of a charged monolayer at the
water/oil interface and calculated Π using a superposition of
interparticle forces. These forces can be explained as a
consequence of trapped charges residing at the particle/oil
surface (in contact with the oil phase), away from the oil/water
interface. The charges induce opposite image charges inside
the aqueous phase as a way to satisfy the dielectric
discontinuous jump at the water/oil interface. The monolayer
in the dilute limit can be treated as a dipolar layer and yields a
surface pressure that scales as Π ∼ a−5/2. We note that the
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same scaling law was found to be in agreement with their own
experimental results.16

The model by Aveyard et al.16 mentioned above does not
take into account the bulk concentration of ions in the aqueous
subphase and is a reasonable approximation only in the high-
ionic-strength (hence screened) limit. Moreover, because the
model does not explicitly consider the distinct value of the
dielectric constant of the colloidal monolayer, the dependence
of Π on the Debye screening length and the monolayer
dielectric constant has not been calculated.
Recently, Petkov et al.17,18 measured the monolayer surface

pressure, Π, for charged silica particles deposited at the air/
water interface. They calculated Π from the Maxwell stress
tensor, employing the so-called Bakker formula.24 The
electrostatic field is assumed to vanish in the aqueous phase
and was calculated in the air phase by postulating some specific
ionic profiles. The surface charge density of each colloid and its
accompanying screening were evaluated within a cell that is
superimposed on a square lattice. In the large interparticle
separation limit, it was found that the surface pressure scales as
Π ∼ a−3/2.
This scaling was shown to be in good agreement with

experimental data17,18,25 measured either in the absence of salt
or for weak electrolytes (using two fitting parameters).
However, it contradicts the scaling law found in ref 16. Albeit
there is agreement between the model and experiment, the
model was not derived in a self-consistent fashion. In
particular, the use of the Bakker formula cannot be justified
because it relies on the homogeneity of the surface charge
distribution and the ionic profiles were postulated a priori to
have a preset form. In addition, the ansatz used to express the
screening resembles the form of a typical solution in DH
(strong electrolyte) theory, although the considered exper-
imental regime (weak electrolytes) is clearly beyond the scope
of this approximation.
Motivated by these different models that yield distinct

scaling forms (Π ∼ a−α, where α = 1, 2,20 5/2,16 or 3/217), we
present in this article a different, more fundamental self-
consistent approach. The thermodynamic definition of the
surface pressure is employed without the need to make any
further assumptions other than using the linearized DH theory.
Our calculation shows that for small interparticle separation
the collective monolayer surface charge behaves as a
continuum density and the surface pressure scales as Π ∼
a−2, in agreement with ref 20. For large separation, the colloids
exhibit dipole-like behavior and the scaling becomes Π ∼ a−5/2,
in agreement with the results in ref 16. In addition to the
agreement with the two limiting scenarios of colloidal packing
in previous works,16,20 our model provides a general depend-
ence on the entire area per particle range, Π = Π(a). The
theory derived herein also agrees well with available
experimental data16,25 within the DH regime.
The present study addresses a generalized setup in which the

colloidal monolayer has a finite thickness and an arbitrary value
of the effective dielectric constant. By generalizing previous
works,16−23 we allow the colloidal charge distribution to be
different on the water side versus the air side of the monolayer.
The surface pressure is obtained for any average intercolloidal
distance and is found to depend differently on the monolayer
permittivity in the two limits of interparticle separation.
Furthermore, the dependence on the salt concentration can
become nonmonotonic for specific values of the charge density
on the water side. This finding is in contrast with the

commonly employed assumption that the pressure depends
solely on the charge located on the air side of the colloids, for
which the dielectric constant is much smaller, and when there
is no screening.

■ SURFACE PRESSURE OF A CHARGED INTERFACE
We present a general framework for calculating the surface
pressure of an arbitrarily charged interface coupled to a bulk
ionic solution. The definition of the surface tension, γ, is

F
A T V,
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zzzγ = ∂

∂ (1)

where F is the free energy of the system (comprising an
interface coupled to a bulk) and A is the overall surface area.
The surface pressure is related to the change in surface

tension. For a charged surface, we can compare the surface
tension with and without the charges

0 elγ γ γΠ = − ≡ −Δ (2)

where γ0 and γ denote the surface tension in the absence and
presence of surface charges, respectively. The electrostatic
contribution to the surface pressure, Π, is expressed in terms of
Δfel, the change in the electrostatic surface free energy,
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The surface free energy, Δfel, is defined as the amount of work
(per unit area) needed to construct the surface. We introduce
now the spatially averaged surface free energy as

f
A

f r
1

d
Ael el

2∫⟨Δ ⟩ = Δ
(4)

and via eq 3 write the surface pressure in terms of the mean
area per colloid as a ≡ A/N, where N is the number of colloidal
particles on the surface,

f a
f

a
T V

el
el

,

i
k
jjjjj

y
{
zzzzzΠ = −⟨Δ ⟩ −

∂⟨Δ ⟩
∂ (5)

It is important to consider how the surface area is controlled
in experiments. For a uniform surface charge density (for
which ⟨Δfel⟩ = Δfel), two fundamentally different situations can
occur and are known as the Gibbs monolayer and the Langmuir
monolayer.5 For Gibbs monolayers, the particles are soluble in
the aqueous subphase. The monolayer is an open system
exchanging particles with the bulk such that the chemical
potential remains fixed. For a charged monolayer, this means
that when the monolayer expands or contracts its surface
charge density remains constant because the underlying
physical properties that determine the surface coverage, such
as the adsorption energy per unit area, remain approximately
fixed.21,26,27 As a result, ⟨Δfel⟩ is independent of the surface
area and Π = −⟨Δfel⟩ by virtue of eq 5.
On the other hand, for Langmuir monolayers, the particles

at the surface are completely insoluble in the water subphase,
and the monolayer is a closed system with a fixed number of
particles. The total monolayer charge, Q = ∫ σ d2r, remains
fixed, meaning that σ ∼ a−2, even when the monolayer
undergoes expansion or compression. For a uniformly charged
surface and within the linear DH theory, the surface free
energy satisfies ⟨Δfel⟩ ∼ a−2, and from eq 5, Π = ⟨Δfel⟩.
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Although these two simple cases may seem similar at first
glance, the Gibbs and Langmuir monolayers yield opposite
relations between Π and ⟨Δfel⟩, as shown above. Clearly, these
two extreme cases of uniform surface charge density are an
oversimplification, and for nonuniform surface charge
densities, the relation between Π and ⟨Δfel⟩ becomes more
intricate.
In the present study, we consider only the case of insoluble

Langmuir monolayers where the total charge Q and particle
number N at the interface are constant but the charge density
(per unit area) σ can vary. The charged surface is coupled to
an electrolyte solution, and Δfel is calculated using the
Poisson−Boltzmann (PB) theory.28,29 The water and air
phases are treated as two continuum media with dielectric
constants εw and εa, respectively. The mobile ions in the
aqueous solution are taken to be pointlike, yielding the well-
known PB equation for a monovalent 1:1 electrolyte

en e
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ε ε
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(6)

where ψ is the electrostatic potential, e is the elementary
charge, ε0 is the vacuum permittivity, nb is the bulk
concentration of the electrolyte, and kBT is the thermal energy.
For an interface with surface charge σ separating two media,

the electrostatic boundary condition is

n r r
0

ε ψ ε ψ σ
ε

̂ ·[ ∇ − ∇ ] =− − + +

(7)

where n̂ denotes the unit vector normal to the surface. The ±
superscripts on the potential and relative permittivity εr of the
media (e.g., εa, εw, etc.) denote the external (+) and internal
(−) regions with respect to the surface, and the direction of n̂
is chosen to point from inside toward the outside.
From the well-known charging method,28−30 the electrostatic

free energy due to the presence of an electric double layer can
be evaluated as

f ( ) del 0 s∫ ψ σ σΔ = ′ ′
σ

(8)

Equations 4−8 are sufficient for obtaining the surface pressure
in the most general case. (Although the above charging
method takes into account the entropy of the mobile ions in
the solution, it does not include the entropy of the surface
charges. In our model, those charges originate from the charge
distribution on large colloidal particles, forming a monolayer at
the air/water interface, but because the colloids are considered
to be macroparticles, this entropy contribution can be
ignored.) However, for simplicity, the Debye−Hückel (DH)
linearization scheme can be employed28 for eq 6,

2
D
2ψ κ ψ∇ = (9)

for cases in which ψ ≪ kBT/e. In eq 9, the inverse Debye
screening length is l n8D B bκ π= , and the Bjeruum length lB =
e2/(4πε0εwkBT) is about 0.7 nm in water (εw ≃ 78) at room
temperature.
In the DH regime, ψs and σ are linearly related,

28,30 and eq 8
becomes

f
1
2el sψ σΔ =

(10)

This equation can be generalized for two charged surfaces, Si,
i = 1, 2, each with a surface potential ψs,i and a surface charge
σi,

f
1
2 i

i iel
1,2

s,∑ ψ σΔ =
= (11)

Equation 11 is obtained by the linearization of the expression
presented in ref 31 in the context of two interacting charged
surfaces. In the following section, the above equation will be
used to calculate the free energy for Langmuir monolayers,
which are modeled as two charged interfaces separated by a
dielectric layer (Figure 1b).

■ MODELING OF THE COLLOIDAL MONOLAYER
We first consider a model for a monolayer of charged colloidal
particles at the air/water interface as presented in Figure 1a.
Micrometer-sized colloids are modeled as dielectric spheres (of
permittivity εc) partially submerged in the aqueous phase.
Different charge distributions are present on the colloids’
water- and air-facing surfaces, which, together with the ions in
the electrolyte solution, give rise to the electrostatic
interactions. Note that the colloids’ finite-size dictates an
excluded volume for the compression. This complex geometry,
however, hinders the simplicity of our surface free-energy
method.
The aforementioned setup can be greatly simplified when

the partially immersed spherical colloids are modeled as
dielectric cubes with the same dimensions, and the surface
charges are now positioned on the water- and air-facing facets
of the cubes (Figure 1b). Such an approximation recovers the
main physical features. The redistribution of charge merely
introduces geometric corrections (as was similarly approached
in refs 17−19 and 32).
Moreover, we replace the dielectric constant as seen by the

colloids with an effective permittivity of εeff smeared over the
monolayer region. This effective permittivity is comparbale to
the permittivity of the colloids and for simplicity is taken as
εeff = εc. For the close packing of colloids, this represents a
reasonable approximation. For loosely packed monolayers, we
find that the interaction is dictated by dipole−dipole forces

Figure 1. σi and εi refer to the surface charge on interface i and
permittivity in medium i, respectively. (a) Cross section of a colloidal
monolayer at the air/water interface. Spherical colloids are partially
immersed in the aqueous phase, with different charge distributions on
their air- and water-facing sides. (b) Simplified model, where the
colloids are now cubes with surface charges residing only on the air-
and water-facing facets. The monolayer region has a uniform effective
dielectric constant of εc.
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mediated primarily through the air phase. The role played by
εeff is to merely determine the dipole strength, which is a local
feature of the colloidal particle itself, consistent with our
approximation εeff = εc.
The charged colloidal monolayer is schematically depicted in

Figure 2. It is located at the interface between a dielectric
medium of constant εa (nonaqueous medium such as air or oil)
on its top side and a monovalent 1:1 electrolyte solution of
dielectric constant εw on its bottom side. The colloidal
monolayer medium is considered to be continuous with a finite
thickness d (we later set it equal to the colloid diameter, thus
ignoring immersion in the aqueous phase due to wetting) and
a dielectric constant εc. The charges residing on each side of a
single colloid are modeled as a patch of surface charge (Figure
1). The charge distribution can take different values on the air-
facing (z = 0) and water-facing (z = −d) sides.
The monolayer itself is constructed by repeating the pairs of

surface charge patches (each representing an individual
colloid) on a square lattice with lattice parameter L, as seen
in Figure 2. Here, L is the average distance between the
colloids, which takes into account the colloids’ excluded
volume. Note that the patches can have an arbitrary shape and
charge distribution on a typical length scale, D < L, which
serves as an effective colloid diameter. For an arrangement on a
square lattice, the total surface charge densities on the
monolayer air side and water side, σa(x, y) and σw(x, y),
become periodic functions in x → x + L and y → y + L.
To calculate the surface pressure, we first need to evaluate

the electrostatic potential. The potential in the air phase, ψ(a),
as well as inside the colloidal monolayer region, ψ(c), satisfies
the Laplace equation

0, 02 (a) 2 (c)ψ ψ∇ = ∇ = (12)

while the potential in the aqueous phase, ψ(w), satisfies the DH
equation, eq 9

D
2 (w) 2 (w)ψ κ ψ∇ = (13)

and depends on the solution ionic strength via the Debye
screening length, κD

−1.
The boundary conditions at the z = 0 and z = −d planes are

obtained from eq 7,
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and at z→±∞, we demand that the electrostatic field
vanishes, limz→±∞ |∇ψ| = 0.

■ RESULTS
The surface free energy and pressure can be calculated (both
numerically and analytically) by using the model periodicity
and employing the Fourier transform on the surface charges
and the electric potential. The two periodic charge densities,
σa(x, y) and σw(x, y), are expressed by their Fourier series
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(15)

where r = (x, y) is the in-plane vector. For a square lattice,
integer numbers {n,m} = 0, ±1, ±2..., parametrize the discrete

k-vector of the reciprocal space with ( )L n mk 2 / 2 2π= + ,

and sĩ(k) (i = a, w) is the k-component of the Fourier
transform of a single colloid charge distribution. In a manner
similar to eq 15, the surface potentials evaluated at the top and
bottom surfaces, ψs

(a) and ψs
(w), can also be written in terms of

their Fourier components

r k( ) ( )ei

n m

i k r
s
( )

,
s
( ) i∑ψ ψ= ̃

=−∞

∞
·

(16)

with i = a, w and ψ̃s
(i)(k) denoting the Fourier coefficients of

ψs
(i)(r).
A linear relation between the surface potential and surface

charge density emerges from the boundary conditions as our
model is linear. The generalized linear response is written in
Fourier space as the product

L
k C k k( )

1
( ) ( )s 2

1Ψ̃ = Σ̃−
(17)

Figure 2. Schematic drawing of the colloidal monolayer in between two interfaces: a top one, at z = 0, in contact with air (dielectric constant εa),
and a bottom one, at z = −d, in contact with an aqueous solution having a dielectric constant, εw, and a Debye screening length, κD

−1. (a) The layer
of finite thickness, d, is modeled as a dielectric layer with dielectric constant εc spread between the water and air phases. The colloidal charges
accumulate on the water side and air side and form a square lattice with lattice constant L. The two corresponding surface charge densities are
denoted, respectively, as σa and σw. (b) Cross section of the monolayer. The colloid charge density is spread over the colloid diameter, D, and the
distance between colloid centers is L.
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where in compact notation Ψ̃s(k) = (ψ̃s
(a)(k), ψ̃s

(w)(k)) and
Σ̃(k) = (sã(k), sw̃(k)) are vectors and C(k) is a 2 × 2 matrix.
The diagonal components of the C(k) matrix are the
differential capacitances (per unit area) of the ‘a’ and ‘w’
surfaces, while the off-diagonal components represent cross-
capacitance terms between the two surfaces. One can then
write ⟨Δfel⟩ as a function of the inverse capacitance and the
surface charge by using eq 11 and Parseval’s theorem,

f
L

C
1

2 k
el 4

1∑⟨Δ ⟩ = Σ̃ Σ̃−

(18)

Because ⟨Δfel⟩ depends explicitly on the area per colloid a =
L2, eq 5 can be employed to calculate the surface pressure
(details in Appendix A).
The quantities appearing in eq 18 are all obtained from the

explicit solution of the boundary value problem defined in
“Modeling of the colloidal monolayer” Section for the
electrostatic potential (details in Appendix A). To obtain the
potential, the boundary conditions (i.e., the surface charge
distributions) must be specified. Here, we assume that this
charge distribution is Gaussian, with separate values on the air
(a) and water (w) sides of the monolayer
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(19)

where r = |r|, and Q = Qa or Qw is the charge on the ‘a’ or ‘w’
side, respectively. The limiting values for the surface pressure,
however, remain independent of this specific choice of profile.
Close-Packing Colloid Limit, L→ D. In the close-packing

limit, the interparticle spacing L approaches the colloid
effective diameter D. In this case, the limiting value of the
surface pressure Π can be derived analytically (details in
Appendix A)

Q d Q Q
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Π ≃ +

+

(20)

where a ≡ L2 is the area per colloid. Therefore, in the close-
packing limit Π scales as a−2 and is consistent with the
continuum limit of the monolayer surface charge. As the
colloids approach each other, their double layers overlap and
resemble the response to a uniform surface charge density at
the air/water interface. Note that eq 20 is independent of the
specific surface charge distribution, s(r), of each colloid.
Dilute Colloid Limit, L ≫ D. The opposite regime of

interparticle separation is the dilute limit, where L ≫ D. A
closed-form analytical expression for Π can be derived by using
the Euler−Maclaurin formula (details in Appendix A). The
result obtained suggests that the surface pressure originates
from dipolar interactions between the colloids
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where the effective dipole moment peff is written as the sum of
two terms,

p p p Q d
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= + = +
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(22)

In Appendix B, we calculate Π directly from an effective
model of dipole−dipole interactions and arrive at an identical
result. This approach suggests that the dilute limit, as in eqs 21

and 22, is independent of the specific functional form of the
surface charge density. One might indeed expect this behavior
because the interparticle distance satisfies D ≪ L and the
details of the colloidal charge distribution are washed out.
We note that there are two separate cases for the effective

dipole moment, eq 22:
(i) In the case of strong electrolytes, where κDd ≫

[1 + (Qw/Qa)](εc/εw), peff is approximated as

p p Q d
2

eff 1
a

c
a

ε
ε

≃ =
(23)

and mainly depends on p1 because the air-exposed charge
induces an image charge in the aqueous phase at a distance of
2(εa/εc)d.
(ii) In the case of weak electrolytes, namely, κDd ≪

[1 + (Qw/Qa)](εc/εw), peff is well approximated by the second
term, p2,

p p Q Q
2

( )eff 2
a

w
a w D

1ε
ε

κ≃ = + −

(24)

The relevant charge determining the dipole moment is the net
charge on both sides of the particle as a result of the
electroneutrality due to screening. The charge separation is
then proportional to the screening length.
For a given interparticle separation L, we express the

dependence of Π on the ionic strength using eqs 21 and 22,
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Π = + + Π∞
(25)

where Π∞ = Π(κDd → ∞) is the surface pressure for a
vanishing screening length. From eq 25, we deduce that for
Qw/Qa > 0, Π is a monotonic function of the Debye screening
length and converges to Π∞ for very high electrolyte
concentrations. However, if the ratio Qw/Qa becomes negative,
Π might even vanish for certain values of κD, as can be seen in
Figure 3 for a specific choice of Qw/Qa = −100. Moreover, Π is
nonmonotonic with respect to the salt concentration. This
presents compelling evidence that surface charges on both
sides of the colloid particle can play a role in determining the
magnitude of Π. We shall discuss this observation further in
the following sections.

General Interparticle Separations. The surface pressure,
Π, can be calculated numerically for any intermediate value of
interparticle separation L. In this case, it is most convenient to
define a dimensionless parameter ξ ≡ D/L where 0 < ξ ≤ 1,
with ξ → 1 denoting the close-packing limit and ξ ≪ 1
denoting the dilute regime. We restrict ourselves to the more
common case of strong electrolytes, κDd ≫ [1 + Qw/Qa] ×
(εc/εw), with Qw = 0, d = D, and κDd = 10. We have chosen Qw
= 0 on the water side, without a loss of generality, because it
merely denotes the strong electrolyte regime as κDd ≫ εc/εw.
The average electrostatic surface free energy, ⟨Δfel⟩, is

calculated by summing 100 terms of the two series in eq A4,
where their explicit form is also given in Appendix A. Π(ξ) is
then evaluated via eq A5.
The quantities ⟨Δfel⟩ and Π, rescaled by their maximal

values at ξ = 1 (Π0 and ⟨Δf 0⟩, respectively), are shown in
Figure 4 on a log−log plot. Clearly, both coincide in the close-
packing limit (ξ ≲ 1), where the continuum limit holds, i.e.,
Π ≃ ⟨Δfel⟩ ∼ ξ4 ∼ a−2. However, in the dilute regime (ξ ≪ 1),
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the surface free energy and surface pressure differ considerably
as ⟨Δfel⟩ ∼ ξ2 ∼ a−1 and Π ∼ ξ5 ∼ a−5/2.
A plot of Π, rescaled by its maximal value, is given in Figure

5 for different values of the monolayer dielectric constant,
εc = 1, 2 ,4, and 8. The variation of the rescaled surface
pressure with εc is quite substantial only in the dilute-packing
limit, where it varies as 1/εc, as is implied by eq A19. We note
that Π0 (the rescaling prefactor) is the close-packing value of
Π, Π0 = Π(ξ = 1), and is by itself proportional to 1/εc (eq 20).

■ COMPARISON TO EXPERIMENTS
It would be of value to compare our theoretical predictions to
previous experiments. In refs 16 and 25, the surface pressure of
charged polystyrene latex particles is measured at octane/water
and decane/water interfaces, respectively. The fit to these
experimental data shown in Figure 6 employs the full
expression as prescribed in eqs A5 and A7−A9 and uses a
single fit parameter, which is the air-exposed surface charge of
a single colloid, σa = Qa/[π(D/2)

2].
In general, there are two fit parameters, σa and σw. However,

we observe that the experiments in refs 16 and 25 used
intermediate to high salt concentrations. Thus, κD

−1 ≤ 1 nm is
much smaller than the colloid particle size D ≥ 1 μm, and εa ≪
εw for the two bounding media. It is then justified to neglect σw
because the contribution from the water charges becomes
much smaller (details in Discussion section). We also find
explicitly that employing σw as a second fit parameter makes no
substantial difference. Nevertheless, there might exist physical
scenarios where the assumption σw = 0 is inaccurate (as is
discussed below).
Figure 6a presents the fit with the data in ref 16. The data

corresponds to an experimental setup with a 10 mM NaCl
solution and particles of diameter D = 2.6 μm. The resulting
air-exposed surface charge σa is obtained as a fit parameter,
σa = 870 μC/m2 ≃ 5 × 10−3 e/nm2, which is a reasonable
surface charge density. We set the layer thickness d to be equal
to the particle diameter D, i.e., d = D, thus ignoring the effects
of colloid immersion in the aqueous phase due to wetting. The
dielectric permittivities were taken to be εw = 80, εc = 2.5, and
εoil = 2 for the water, polystyrene latex beads, and oil (decane
or octane) phases, respectively. This represents a good fit in
the intermediate ionic strength regime.
In a similar fashion, Figure 6b shows multiple fits to the data

in ref 25. The surface pressure was measured for different aging
times by varying the exposure time of the monolayer in contact
with 250 mM NaCl solution, for 2, 19, and 115 h. As was
mentioned in ref 25, the number of dissociated groups on the
colloid surface, corresponding to the surface charge, diminishes
with time. Hence, Figure 6b shows a decrease in surface
pressure with aging time. (Given that the three isotherms

Figure 3. Rescaled surface pressure, Π/Π∞, for the dilute limit
(ξ ≪ 1) plotted as a function of the reduced screening parameter,
κDd. The rescaling factor, Π∞ = Π(κDd → ∞), is the pressure for
strong electrolytes. Taking εc = 4 for silica particles and εw = 80, we
compare the dependence on κDd for two values of the charge ratio.
For Qw/Qa = 1 (blue solid line), the dependence is monotonic and
does not vanish, while for large negative ratios, Qw/Qa = −100
(dashed green line), the surface pressure is nonmonotonic and even
vanishes for a certain value of κDd.

Figure 4. Rescaled surface pressure, Π/Π0 (green solid line), and
rescaled surface free energy, ⟨Δfel⟩/⟨Δf 0⟩ (blue dashed line), plotted
on a log−log plot as a function of ξ = D/L. The rescaling is done with
respect to the close-packing values at ξ = 1. The free energy and
pressure scale identically as ∼ξ4 in the ξ → 1 limit, where the
monolayer can be regarded as having a uniform surface charge. In the
dilute limit (ξ ≪ 1), however, Π ∼ ξ5 and differs significantly from
⟨Δfel⟩ ∼ ξ2.

Figure 5. Log−log plot of the rescaled surface pressure, Π/Π0, with
Π0 = Π(ξ = 1), as a function of ξ = D/L for different values of the
monolayer dielectric constant, εc = 1, 2, 4, and 8. Two scaling regimes
of ξ5 and ξ4 can be seen, as in Figure 4. The rescaled surface pressure,
Π/Π0, does not show any dependence on εc in the close-packing limit.
In the dilute-packing limit, however, Π/Π0 scales as 1/εc.
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approach the same nonzero constant, it seems that there may
be a systematic offset in the measurements. We compensate for
this offset by introducing into our fit a constant added to the
surface pressure. We first fit the 2 h aging time isotherm and
obtain a value of 1.7 mN/m for the additive offset. Then, we
use this value for the two remaining isotherms.) The colloid
diameter was set to D = 3.1 μm, and for aging times of 2, 19,
and 115 h, the fits correspond to σa = 720, 650, and 530
μC/m2, respectively (charge densities of a few electrons per
thousand nm2). As seen in Figure 6, our model yields good
agreement with experiments, and the fits become even better
for stronger electrolytes (Figure 6b), as one might expect from
the DH approximation.
Figure 7a shows measurements made in the strong

electrolyte case and mainly in the close-packing regime.25

The prediction of the close-packing power law, Π ∼ a−2,
follows the data points quite well. However, Figure 7b shows
that in the absence of salt the measurements made in ref 25
and by Petkov et al.17 exhibit a different scaling, Π ∼ a−3/2.

This result is beyond the scope of our model that employs the
DH approximation.

■ DISCUSSION
Scaling laws derived from the analytical results for the surface
free energy and surface pressure are obtained in two limits: (i)
the dilute limit (L ≫ D, Figure 4 and eq 21; (ii) the close-
packing limit (L → D, eq 20).
In the dilute limit, we have found that the surface pressure

can be described in terms of dipole−dipole interactions, where
the effective dipole moment peff, eqs 23 and 24, arises from
ionic screening in the aqueous subphase. The charge
separation corresponding to this dipole moment,
peff = p1 + p2, is given in terms of the colloid thickness d for
p1 (eq 23) in the strong electrolyte limit or in terms of the
Debye screening length for p2 (eq 24) in the weak limit. The
sum of these two contributions, p1 + p2, constitutes the
effective dipole moment of each colloid. This description is

Figure 6. Fits of our model to experimental data. (a) Data adapted
from Aveyard et al.,16 with latex particles of radius 1.3 μm and ionic
strength 10 mM spread on the octane/water interface. The fit
parameter is σa = 870 μC/m2. (b) Data adapted from Vermant et al.,25

with latex particles of radius 1.5 μm and ionic strength 250 mM
spread on the decane/water interface for different aging times that
affect the surface charge. The horizontal axis, A/A0 ∼ ξ−2, is the ratio
between the measured area, A, and its close-packing value, A0. The fit
parameter σa = 720, 650, and 530 μC/m2 corresponds to aging times
of 2, 19, and 115 h, respectively.

Figure 7. Power law fit to experimental data in different salt regimes.
(a) Data adapted from Vermant et al.25 The measurements were taken
in the close-packing limit and in the high-salt regime, where the DH
approximation holds, for aging times of between 2 and 115 h. For all
aging times, the expected A−2 power law agrees well with the data. (b)
Data adapted from Vermant et al.25 (main figure) and Petkov et al.17

(inset). Without added salt, a different power law of (A/A0)
−3/2 agrees

with the data from the same authors (main figure).25 Measurements
performed by Petkov et al. closer to the dilute limit and with no added
salt also agree with the a−3/2 power law (inset).
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valid for intermediate cases and demonstrates an explicit
dependence on the monolayer dielectric permittivity and the
subphase ionic strength. We note that in previous work16,33,34

less-general results were derived for the dilute limit, with either
p = p1

16 or p = p2 (and only for Qa = 0).34

The colloidal monolayer permittivity strongly affects the
surface pressure Π through the magnitude of p1 (eq 23). The
rescaled surface pressure Π/Π0 of Figure 5 scales as 1/εc in the
dilute-packing limit, implying that Π ∼ 1/εc

2 (eq 20). However,
in the close-packing limit, the rescaled surface pressure is
independent of εc; hence, Π ∼ 1/εc. The latter observation
stems from the difference between the two regimes: dipole−
dipole interactions vs a uniform electric double layer.
Several comments can be made on the effects of salt. First,

for strong electrolytes, the surface pressure is nearly
independent of ionic strength. This result is consistent with
experimental findings of a weak dependence of the interparticle
force and surface pressure on salt concentration.16,35 An
exception occurs when Qw and Qa have opposite signs. For
example, in Figure 3, we plot the dependence of Π on κD and
show that it is nonmonotonic and even vanishes for a specific
salt concentration.
The dependence on salt is quite different for weak

electrolytes. A clear divergence of the surface pressure is
observed for very weak ionic strength. We remark that eq 25
might be inaccurate in this limit because the validity of the DH
approximation breaks down for high surface charges and weak
electrolytes. Therefore, it may be more appropriate in this case
to consider methods other than the DH approximation.32,34,36

We pay special attention to the charge on the water side, Qw.
Although it was conveniently set to zero in Figure 6, we find
that Qw can, in certain cases, affect the surface pressure.
Because the energetic cost of charging a surface in contact with
a low-dielectric material is high, it is commonly believed17,19,34

that ions from the water phase prefer to diffuse to the air side
of the layer. These ions neutralize some of the air-side charges,
thus reducing their net charge. As a result, the water-facing
charge Qw can be much higher than Qa.
In contrast to previous theoretical derivations,16,17,19,35,37

which a priori neglected Qw, we can compare the contributions
to the surface pressure from charges located at the top and
bottom sides of the monolayer. For example, we calculate
separately the surface pressure that results from charges
residing only on the colloid/air interface (Πca for Qw = 0) and
the opposite case, when they reside only on the colloid/water
interface (Πcw for Qa = 0). The ratio between them, for each of
the scaling limits, is given by
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where β = 1 or 2 for the close-packing and dilute regimes,
respectively. Clearly, the contribution of the water-side charges
cannot be neglected when the surface charge residing on the
air side is much smaller than that on the water side. The
corresponding Qw/Qa ratio in the close-packing regime is
estimated to be 10−50 for 1 mM ionic aqueous solution at
room temperature and for silica particles of diameter D =
0.1−1 μm. Indeed, this scenario might be achieved in some
physical setups.

■ CONCLUSIONS

In this work, we study the surface pressure of a monolayer
composed of charged colloids at the air/water interface, within
the linear PB theory (DH theory). The colloidal monolayer is
treated as a continuum dielectric, with dielectric constant εc
and finite thickness d, separating two phases: an electrolyte
solution and air (or oil), with εw ≫ εa. Charges on the colloidal
particles facing the water side and air side are modeled as
surface charge patches superimposed on a square lattice. As
was previously suggested for similar setups,22,23 the presence of
charged particles at the air/water interface results in excess
surface free energy, and the surface pressure can be calculated
directly from the latter (eq 11).
Although the exact solution for the surface pressure requires

a numerical summation of many terms in eq A7 (Figure 4), the
scaling forms are obtained analytically, yielding for the close-
packing limit (ξ = D/L → 1), Π ∼ ξ4 ∼ a−2 and for the dilute
limit (ξ ≪ 1), Π ∼ ξ5 ∼ a−5/2. The former is consistent with
the uniform surface charge density,20,23,38 while the latter can
be viewed as originating from dipolar interactions between
discrete dipoles16,34 (Appendix B).
The effective dipole moment, peff, of the charged colloids is

calculated analytically and is found to depend on the ionic
strength (Figure 3), the dielectric properties of the colloidal
particles (Figure 5), and the number of charges residing on the
water side (Qw) and the air side (Qa) of the colloid. We detail
the physical conditions for which the contribution of the water
side charges to the surface pressure is not small, in contrast to
the common belief. In addition, the dependence on salt
concentration is explored. For close-packing and dilute colloid
limits, the monolayer permittivity (εc) is shown to affect the
surface pressure in different ways.
Our model agrees well with available experimental data

(Figure 6) using a single fit parameter and explains the physical
behavior for strong electrolytes (Π ∼ a−2 in the close-packing
limit). However, some experimental results17,18,25 that exhibit
longer-ranged interactions (Π ∼ a−3/2) for weak electrolytes
are still poorly understood. Our findings suggest that the latter
scaling cannot be obtained within a self-consistent linear
theory. This observation contradicts the theoretical model
presented in ref 17, where an ansatz of the linear theory was
employed to describe experiments outside its range of validity
(the no-salt regime). We note that previous theoretical work20

found the proper scaling in the no-salt regime for uniform
surface charge to be as strong as Π ∼ a−1, implying that the
long-range scaling of the surface pressure might eventually be
recovered from a fully nonlinear theory.
We hope that our study, restricted to the DH regime, will

stimulate even further theoretical and experimental inves-
tigations, which will hopefully shed light on the abnormal
surface pressure scaling of charged colloidal monolayers in the
no-salt regime.

■ APPENDIX A

Derivation of the Surface Pressure
We derive the solution for the electrostatic potential within the
boundary value problem presented in the text. The potential

ψ̃(k, z) [with k = 2π/(Llnm) and where l n mnm
2 2= + ] in

the three spatial regions (with ‘a’, ‘w’, and ‘c’ denoting air,
water, and colloid, respectively) is obtained from eqs 12, 13,
and 16
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with Λnm ≡ 2πξlnm/D = 2πlnm/L. By employing the boundary
conditions, eq 14, we obtain for the four capacitance matrix
elements Cij

−1 (eq 17)
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with cnm above given by
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We now develop the mathematical framework required for
the derivation of the surface free energy and pressure. Using
the notation 0 ≤ ξ ≡ D/L ≤ 1, we write eq 18 as
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where θnm = (2 − δn0)(2 − δm0)/4 depends on the Kronecker
delta function, δnm, and where we made use of the square
lattice symmetry of our setup. Finally, from eqs 5 and A4, the
surface pressure is given by
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The Fourier transform of s(r) in eq 19 has a Gaussian form,
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Using this expression, the explicit solution of the electrostatic
potential and the capacitance matrix (eqs A1 and A2), we write
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where g(ρ) is a radially symmetric function (ρ = ξlnm) found
from eqs A1−A3,
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with h(ρ) above defined as
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For the analytical derivation of the surface pressure regimes
given below, it is sufficient to use g(ρ) and g′(ρ) evaluated at
the origin, ρ = 0,
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and
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In the close-packing limit, Π can be derived analytically by
investigating ⟨Δfel⟩ and its derivative in the ξ = D/L → 1 limit.
The dominant contribution to eq A7 originates from the first
term because a simple substitution of ξ → 1 in eq A7 implies
that the contributions from the two remaining series are
exponentially small, approximately on the order of exp(−π2) ∼
10−5, and can be safely neglected. Then, from eqs A7 and A10
one can derive
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Equation 20 is obtained from eqs A5 and A12 and by the
substitution (ξ/D)4 = L−4 = a−2.
For the dilute limit, ξ = D/L ≪ 1, we remark that ⟨Δfel⟩ has

the form of a Riemann sum.39 Following this observation, it
can be evaluated in the limit of small ξ. For convenience, we
express it as (see eq A7)
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Here, g(x, y) is a general well-behaved function of two
variables. For the one-dimensional sum, we employ the
Euler−Maclaurin formula,39
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where Bk represents the Bernoulli numbers, with the first five
given by
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If limx→∞ ∂
kg/∂xk = 0 for all k, then eq A14 implies that the

expansion of ∑n=1
∞ g(nξ, 0)ξ in powers of ξ is
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For the double sum, the generalization of the Euler−
Maclaurin formula is given by
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If g(x, y) has radial symmetry, then it can be written as

g(x, y) = g(ρ) where x y2 2ρ = + , coinciding with the
expression of g in eq A8, where ρ = ξlnm. We can then calculate
the double integral in polar coordinates (ρ, θ) while recalling
that g and all of its ρ derivatives should vanish at infinity. These
assumptions lead to the following expansion for the double
sum,
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Finally, by substituting eqs A15 and A17 into eq A13, we
obtain the expansion of ⟨Δfel⟩ for vanishing ξ,
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Using eqs A5, A11, and A18, we obtain the value of Π in the
dilute limit as
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Equation 21 in the text is recovered by substituting (D/ξ)2 = a.

■ APPENDIX B

Surface Pressure and Dipole Interactions for ξ ≪ 1
We present another way to obtain eqs 21 and 22. We start by
considering the interaction energy between two parallel
pointlike dipoles of magnitude p at a large separation L that
is perpendicular to the dipole direction. The dipoles are placed
in the upper half-space with a permittivity of εa. Assuming that
there is no contribution from the lower half-space (with
permittivity εw ≫ εa), the dipole−dipole interaction energy
is34

u
p

L8int

2

a 0
3πε ε

=
(B1)

and is equal to one half of the familiar expression for
interacting parallel dipoles. Summing over all pairs of parallel
dipoles placed on a square lattice embedded in a 3D space, the
lattice cohesive energy, Uc, is given by
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where ρnm = L(n,m) is an in-plane lattice vector, N the number
of particles (and lattice sites), and A = NL2 is the total surface

area. Similar to the derivation of eq 8, we neglect the entropy
of the large colloidal particles. Moreover, the entropy of the
mobile electrolyte ions approaches the bulk-solution value,
which is independent of the area, yielding Uc = Fel + const. In
eq B2, we performed a summation over all lattice sites,

m n
1

( )
9.03

m n( , ) (0,0)
2 2 3/2∑

+
≃

≠

The surface pressure is then recovered by taking Π = −dFel/dA
≃ −dUc/dA,

p
a

0.269
2

a 0
5/2ε ε

Π ≃
(B3)

Comparing eq B3 with eq 21, we find that the p value as
calculated above is p = 0.99peff for the peff in eq 21. Hence, in
the dilute limit, eq 22 can be regarded as the effective dipole
moment of the colloidal particle.
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