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This article is dedicated to the memory of Löıc Auvray. An outstanding gentleman of science
who introduced us to a wealth of physical phenomena and concepts in polymers,

polyelectrolytes, biophysics and charged soft matter systems. His unique
kindness and deep understanding of physics will always be remembered.

Abstract. The properties of ionic solutions between charged surfaces are often studied within the Poisson-
Boltzmann framework, by finding the electrostatic potential profile. For example, the osmotic pressure
between two charged planar surfaces can be evaluated by solving coupled equations for the electrostatic
potential and osmotic pressure. Such a solution relies on symmetry arguments and is restricted to either
equally or oppositely charged surfaces. Here, we provide a different and more efficient scheme to derive the
osmotic pressure straightforwardly, without the need to find the electrostatic potential profile. We derive
analytical expressions for the osmotic pressure in terms of the inter-surface separation, salt concentration,
and arbitrary boundary conditions. Such results should be useful in force measurement setups, where
the force is measured between two differently prepared surfaces, or between two surfaces held at a fixed
potential difference. The proposed method can be systematically used for generalized Poisson-Boltzmann
theories in planar geometries, as is demonstrated for the sterically modified Poisson-Boltzmann theory.

1 Introduction

Ionic solutions are governed by the interplay between elec-
trostatic interactions and the ion mixing entropy [1–3].
Within mean field theory (MFT), this interplay results in
the Poisson-Boltzmann (PB) equation, which determines
the spatial variation of the electrostatic potential. For 1:1
monovalent salt, the PB equation in Gaussian units reads

ǫ

4π
∇2Ψ = 2nbe sinh

(

eΨ

kBT

)

, (1)

where Ψ is the electrostatic potential, ǫ the dielectric con-
stant of the solution, nb the bulk concentration of ions,
e the elementary charge, and kBT is the thermal energy.
Note that within PB theory, ions are assumed to be point-
like and uncorrelated, corresponding to rather dilute so-
lutions.

Consider a planar electrostatic setup, where two in-
finitely large, flat surfaces are aligned along the xy-plane
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and bound an ionic solution. Generally, surface charges are
distributed heterogeneously [4], but as a convenient ap-
proximation, the surface-charge density can be modeled as
constant. Between two such homogeneously charged sur-
faces, the electrostatic potential, Ψ(Z), varies along the
normal direction to the bounding surfaces, taken here to
be the Z coordinate. Equation (1) can then be integrated
analytically once, leading to

− ǫ

8π
Ψ ′2 + 2nbkBT cosh

(

eΨ

kBT

)

= P, (2)

where Ψ ′ = dΨ/dZ. The integration constant, P , is the
pressure in the electrolyte solution [5,6], and is a constant
throughout the solution. The first term on the left-hand
side of eq. (2) is the electrostatic contribution to the pres-
sure, as given by the Maxwell stress tensor, and the second
term is the van ’t Hoff ideal gas contribution.

Evaluating eq. (2) at the charged surface bounding
the ionic solution leads to a relation between the sur-
face charge, surface potential and pressure, known as the
Grahame equation. On a broader scope, it is related to
the contact theorem [3,7] that exceeds the validity of the
PB theory and is considered to be exact [8–10] for sys-
tems that are translationally invariant in the xy-plane. For
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a single surface in contact with the electrolyte solution,
the electrostatic potential and electric field decay to zero
far away from the surface. Evaluating the pressure at
such large distances yields the bulk van ’t Hoff term,
Pb = 2nb kBT . On the other hand, when two surfaces
bound an electrolyte solution, the bulk conditions are not
met within the finite system, leading to a pressure dif-
ference between the bounded solution and the bulk one,
Posm = P − Pb. This pressure difference is the osmotic
pressure, Posm, and it depends on the inter-surface sepa-
ration, D, and the electrostatic boundary conditions.

In this work, we consider two types of electro-
static boundary conditions: i) constant potential (CP) —
surfaces held at a constant potential correspond to the
Dirichlet boundary condition:

Ψ |Z=−D/2 = Ψ1,

Ψ |Z=D/2 = Ψ2. (3)

ii) Constant charge (CC) —surfaces with fixed surface-
charge densities, σ1,2, correspond to the Neumann bound-
ary condition via Gauss’ law:

dΨ

dZ

∣

∣

∣

∣

Z=−D/2

= −4π

ǫ
σ1,

dΨ

dZ

∣

∣

∣

∣

Z=D/2

=
4π

ǫ
σ2. (4)

Here we assumed that the electric field does not penetrate
the surfaces, as is often done in models due to a high
dielectric mismatch between ǫ ≈ 80 for water, and the
value of the external medium.

For convenience, we rescale hereafter the important
variables to be dimensionless:

ψ ≡ eΨ/kBT,

p ≡ P/(2nbkBT ), Π ≡ Posm/(2nbkBT ), (5)

where ψ, p and Π are, respectively, the dimensionless elec-
trostatic potential, pressure and osmotic pressure. Fur-
thermore, the Z coordinate and the inter-surface sepa-
ration, D, are rescaled with the Debye screening length
λD = 1/

√
8πlBnb, where lB = e2/(ǫkBT ) is the Bjerrum

length, such that

z ≡ Z/λD, d ≡ D/λD, (6)

and the rescaled (dimensionless) electric field is

E ≡ −dψ

dz
. (7)

With these variables, eq. (2) reduces to p = −E2/2 +
cosh ψ, and the bulk value of p reduces to unity. Therefore,
the dimensionless osmotic pressure is

Π = p − 1 = −1

2
E2 + 2 sinh2 ψ

2
. (8)

Equation (8) can be used to derive an integral expres-
sion for z(ψ), in an arbitrary interval [z1, z2] between the

two surfaces

z2 − z1 = ±
∫ ψ2

ψ1

dψ
√

4 sinh2 ψ
2
− 2Π

, (9)

where ψ1 = ψ(z1) and ψ2 = ψ(z2), and the ± sign is a
result of taking the square root of eq. (8). Its sign depends
on whether ψ(z2) < ψ(z1) or vice versa, and is chosen to
ensure that the entire right-hand side of eq. (9) is positive
in order to match z2−z1 > 0 on the left-hand side. Such ±
signs appear in numerous equations throughout this work.

It is important to note that the field E = −dψ/dz must
maintain the same sign in the interval z1 ≤ z ≤ z2, such
that ψ = ψ(z) is a monotonic function, which can be in-
verted as z = z(ψ). In addition, since the osmotic pressure
is not known a priori, Π should be viewed as a parameter
in eq. (9). Solving this equation yields a potential pro-
file ψ = ψ(z;Π) that depends on Π. The value of Π is
determined as to satisfy eq. (8) for the given boundary
conditions at z = ±d/2.

So far we reviewed the standard scheme to obtain the
osmotic pressure, Π. This procedure is useful, but has
two disadvantages. First, it requires finding the full elec-
trostatic potential profile, ψ(z), as an intermediate step.
Second, it is limited for the study of symmetric or antisym-
metric boundary conditions. For symmetric boundary con-
ditions, where both surfaces have the same fixed surface-
charge density or potential, the electric field vanishes by
symmetry in the mid-plane between the surfaces. Simi-
larly, for antisymmetric boundary conditions of opposite
surface charge or potential [11,12], the potential vanishes
in the mid-plane. As a consequence, the potential in both
the symmetric and antisymmetric cases is monotonic be-
tween the mid-plane and any of the two surfaces: [−d/2, 0]
or [0, d/2]. On the other hand, for a non-monotonic poten-
tial, integrals of the form of eq. (9) must be written sepa-
rately for each interval where ψ is monotonic. Due to such
extra integrals, it is not possible to directly relate the os-
motic pressure, inter-surface separation and the boundary
conditions.

Below we revisit this problem and present an improved
scheme for calculating the pressure between two charged
surfaces, without the need to find the potential ψ(z) and to
ensure its monotonicity. The advantage is that the scheme
enables us to solve the PB equation between any two arbi-
trary and asymmetric charged boundary conditions. Fur-
thermore, we extend the same treatment to augmented
PB theories such as the sterically modified one, provided
that we restrict the system to have a planar symmetry.

2 The scheme

As the pressure is determined by the boundary condi-
tions and the separation d between the surfaces, it can
be found by extending the range of the integral in eq. (9),
such that z1 and z2 correspond to the positions of the two
bounding surfaces. Then, d = z2 − z1, and ψ1 = ψ(z1)
and ψ2 = ψ(z2) are given by the boundary conditions at
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Fig. 1. (Color online) Contour plots of equal osmotic pres-
sure in the (ψ, E) phase space. The lighter (brown) regions,
numbered 1 and 3, correspond to negative osmotic pressures,
Π < 0, while the darker (blue) regions, numbered 2 and 4, cor-
respond to positive ones, Π > 0. The black lines between the
four regions correspond to infinitely separated surfaces with
Π = 0.

z1,2 = ±d/2. When ψ is non-monotonic, only one bound-
ary of the integral in eq. (9) can be extended to its cor-
responding surface. In this case, we propose an integral
similar to eq. (9) that depends on the electric field instead
of the electrostatic potential.

In order to determine whether the potential ψ is mono-
tonic or not, we examine eq. (8). Assume that ψ is non-
monotonic, such that at some point in between the two
surfaces, −d/2 ≤ z∗ ≤ d/2, the electric field E van-
ishes. The osmotic pressure evaluated at this point yields
Π = 2 sinh2[ψ(z∗)/2] ≥ 0. We deduce that the elec-
trostatic potential is monotonic for a negative osmotic
pressure. Similarly, assume that the electric field is non-
monotonic, such that at some point z∗∗ the (dimension-
less) charge density, ρ = − sinhψ of eq. (1) vanishes. The
negative osmotic pressure is then Π = −E2(z∗∗)/2 ≤ 0,
implying that the electric field is monotonic for positive
osmotic pressures.

The above remarks are illustrated in fig. 1, where con-
tours of equal osmotic pressure are plotted in the (ψ, E)
phase space. The Π = 0 contour, which corresponds to in-
finitely separated surfaces, marks the boundaries between
four regions, as is indicated in the figure. It is evident that
E �= 0 throughout regions 1 and 3 of negative osmotic pres-
sures, while ψ �= 0 throughout regions 2 and 4 of positive
osmotic pressures. We emphasize that the osmotic pres-
sure is determined by both the boundary conditions and
inter-surface separation. As a result, surfaces with given
boundary conditions can exhibit repulsion at short separa-
tions and attraction at large separations or vice versa. We
consider next the negative and positive osmotic pressure
regimes, separately.

2.1 Attractive osmotic pressure Π < 0

For the negative (attractive) osmotic pressures, denoted
as Π− ≡ Π < 0, ψ(z) is an invertible function. We may
write dz = −dψ/E , where the relation E = E(ψ,Π−) is
defined by eq. (8). Integrating it once yields

d = −
∫ ψ2

ψ1

dψ

E = ±
∫ ψ2

ψ1

dψ
√

4 sinh2 ψ
2
− 2Π−

, (10)

where the sign of the integral ensures that d > 0. Note
that eq. (10) is a special case of eq. (9). Although this
expression is often used, we show here that it is justi-
fied only for negative osmotic pressures. Otherwise, the
interval of the integration must be limited, as is the case
between symmetric surfaces, where Π is always positive
and the integration is conveniently performed between the
mid-plane and any one of the two surfaces.

In the above equation, the values of the potential on
the surfaces, ψ1,2 are determined by the boundary con-
ditions. For CP, they are prescribed, while for CC, they
depend on the osmotic pressure according to eq. (8). Note
that by the choice of ψ as the integration variable for
Π− < 0, the argument of the square root in eq. (10) is
always positive definite and no divergence can occur.

Equation (10) can be solved analytically [3], leading to

d = ∓i r−F

(

iψ

2
; r−

) ∣

∣

∣

∣

ψ=ψ2

ψ=ψ1

, (11)

where r−≡
√

−2/Π− and F (t;m)=
∫ t

0
dθ/

√

1−m2 sin2 θ
is the elliptic integral of the first kind [13], and the choice
of the sign is in agreement with eq. (10). This equation
relates Π to the separation d and the boundary conditions,
without the need to specify the values of ψ throughout the
ionic solution. In particular, it enables the plotting of Π(d)
curves via the inverse function d(Π).

2.2 Repulsive osmotic pressure Π > 0

For positive (repulsive) osmotic pressures, denoted by
Π+ ≡ Π > 0, E(z) (and not ψ) is invertible. We write
dz = dE/ρ, where the charge density ρ = − sinhψ was in-
troduced earlier, and ψ = ψ(E ,Π+) according to eq. (8).
The pressure is determined by

d =

∫ E2

E1

dE
ρ

= ±
∫ E2

E1

dE
√

(1 + Π+ + 1

2
E2)2 − 1

, (12)

where E1,2 = E(±d/2) are the boundary values, and the
choice of the sign before the integral ensures that d > 0.
Since it is customary to solve for the electrostatic poten-
tial ψ, such an integral in terms of the electric field E
might seem odd. However, we find it to be very useful as
long as the osmotic pressure is positive, and conveniently
relates the pressure, inter-surface distance, and surface-
charge densities.
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Fig. 2. Osmotic pressure profiles between two constant
charged surfaces for the following boundary conditions (top to
bottom): (E1, E2) = (1,−1) in solid line, (E1, E2) = (1, 0) in long
dashes, (E1, E2) = (1, 1) in short dashes, and (E1, E2) = (2, 2)
in dotted line. The two upper repulsive profiles (Π > 0) were
plotted according to eq. (13), and the lower attractive ones
(Π < 0) according to eq. (11).

Similarly to the previous case of sect. 2.1, the val-
ues of the electric field on the surfaces, E1,2, are de-
termined by the boundary conditions. With our dimen-
sionless parameters, the constant surface-charge densities,
σ1,2, yield the boundary conditions E1 = 4πσ1lBλD/e and
E2 = −4πσ2lBλD/e. These two quantities are inversely
proportional to the corresponding Gouy-Chapman lengths
of each surface, lGC = e/(2πlB|σ|). Note that by the choice
of E as the integration variable for Π+ > 0, the argument
of the square root inside the E integral of eq. (12) is posi-
tive definite, similar to the integrand of eq. (10).

Equation (12) can be solved analytically, leading to

d = ±r+F

(

tan−1 E
√

2Π+

; r+

) ∣

∣

∣

∣

∣

E=E2

E=E1

. (13)

with r+ ≡
√

2/(Π+ + 2) and F being the elliptical inte-
gral as above. Similarly to eq. (11), this equation relates Π
to the separation d and the boundary conditions and en-
ables the plotting of Π(d) curves via its inverse function
d(Π). Pressure curves for different boundary conditions
are plotted in fig. 2. We note that Π can change its sign
as d varies, in which case both eqs. (11) and (13) should
be used; the former for Π < 0 and the latter for Π > 0.
Such a repulsion-attraction crossover is discussed in the
next section.

Equations (11) and (13) are our main results. They
demonstrate how the pressure is determined by the inter-
surface separation and boundary conditions. By the cor-
rect choice of variables, the electrostatic potential for neg-
ative osmotic pressures and the electric field for positive

osmotic pressures, we have obviated the need for extra
symmetry arguments. In particular, it enables the calcu-
lation of the osmotic pressure for asymmetric two-surface
systems.

We note that the specific choice of variables is rele-
vant also to the calculation of the electrostatic potential,
ψ. Once the osmotic pressure is determined by eq. (11)
or (13), the potential profile ψ(z), or the electric field E(z),
can be evaluated accordingly. This is done by inserting the
osmotic pressure, and replacing d → z and ψ2 → ψ(z) in
eq. (11), or E2 → E(z) in eq. (13). Therefore, it is also
possible to obtain the potential and electric field profiles
for asymmetric boundary conditions using our approach.

3 Repulsion-attraction crossover

Evaluating the osmotic pressure relies on a prior knowl-
edge of its sign. This imposes no difficulty as the criteria
for the repulsion-attraction crossover are already known
within PB theory [14–16]. For completeness, we re-derive
these criteria using our above proposed framework.

For CP boundary conditions, the osmotic pressure can
vanish only when the potentials on the two surfaces, ψ1

and ψ2, have the same sign. Otherwise, by continuity of
the potential profile, ψ vanishes at some point between the
two surfaces, leading to a negative osmotic pressure, as is
described in sect. 2. The crossover is obtained by taking
the Π− → 0− limit in eq. (10). We find that

d = ± ln
tanh(ψ2/4)

tanh(ψ1/4)
, (14)

where the choice of ± ensures that the right-hand side is
positive, depending on whether |ψ2| > |ψ1| or vice versa.
This defines the CP attraction region for potentials of the
same sign [16]

e−d <
tanh(ψ2/4)

tanh(ψ1/4)
< ed. (15)

Furthermore, surface potentials of opposite signs always
result in attraction, as is explained above.

For CC boundary conditions, the osmotic pressure can
vanish only when E1 and E2 at the two boundaries have
the same sign, corresponding to surfaces charged with op-
posite signs. Otherwise, by continuity of the electric field,
E vanishes at some point between the two surfaces, leading
to a positive osmotic pressure, as is described in sect. 2.
The crossover is obtained by taking the Π+ → 0+ limit in
eq. (12), leading to

d = ± ln
γ2

γ1

, (16)

where γi =
√

E−2
i + 4+2E−1

i , i = 1, 2 [3]. This defines the

CC attraction region [16]

e−d <
γ2

γ1

< ed, (17)
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Equations (15) and (17) demonstrate how the sign of
the osmotic pressure depends on the boundary conditions
and inter-surface separation. For surface potentials or sur-
face charges within a certain range, there is a finite sep-
aration where the osmotic pressure turns from positive
to negative or vice versa. For such boundary conditions,
eq. (11) can be used to plot the negative osmotic pressure
values and eq. (13) to plot the positive ones. However, this
more complex Π(d) profile will not be further discussed
in the present study.

4 Repulsive pressure regimes and scalings

We further demonstrate the advantages of our approach
employing the electric field, eqs. (12) and (13), by ob-
taining the pressure scaling in different repulsive pressure
regimes. For simplicity, in this section Π is the notation
for the positive (repulsive) pressure, and the scaling laws
are presented in terms of dimensionless variables. They
can be easily converted back into the physical ones using
eqs. (5)–(7).

4.1 Ideal gas regime

Assume that Π ≫ 1 and Π ≫ E2
i for the two surfaces,

i = 1, 2. Keeping only the Π2 term in the square root in
eq. (12) yields

Π ≈ 1

d
|E2 − E1| . (18)

Namely, the osmotic pressure is given by the ideal gas pres-
sure, where the excess concentration of ions is determined
by the overall charge on the surfaces. In particular, the
above result restores the result for symmetric surfaces [3].
The range of validity of this regime is d ≪ |E2 −E1| while
1/d ≫ E2

i /|E2 − E1|, for both surfaces, i = 1, 2.

4.2 Gouy-Chapman regime

Assume that E1 < 0 < E2 and E1, E2 ≫
√

Π, correspond-
ing to a large surface charge. The first argument of the
elliptic function in eq. (13) can then be approximated by
±π/2, and the osmotic pressure becomes independent of
the surface charge, according to

d ≈ 2rK(r), (19)

where K(m) = F (π/2;m) is the complete elliptic integral

of the first kind [13], and r =
√

2/(Π + 2) as was defined
above. Further assuming that Π ≫ 1, we arrive at

Π ≈ 2π2

d2
. (20)

As the pressure is independent of the surface charge in
the Gouy-Chapman regime, Π coincides with the known
result for symmetrical surfaces [3]. The range of validity
of this regime is |E1|, |E2| ≫ 1/d ≫ 1.

4.3 Intermediate regime

In the limit of large surface-charge densities but small
pressures, we keep the lowest order in Π ≪ 1 in eq. (19),
resulting in

Π = 32e−d. (21)

In this intermediate regime, Π also coincides with the re-
sult for symmetrical surfaces [3]. The range of validity of
this regime is d ≫ 1 ≫ 1/|E1|, 1/|E2|.

4.4 Debye-Hückel regime

For weak electrostatic interaction, Π ≪ 1 and E2
i ≪ 1 for

the i = 1, 2 surfaces, and the integral form of eq. (12) is
well approximated by

d =

∫ E2

E1

dE√
2Π + E2

. (22)

This integral is solvable, leading to

d = ln

(

E2 +
√

2Π + E2
2

E1 +
√

2Π + E2
1

)

. (23)

For Π ≪ E2
i , expanding the right-hand side of the above

equation results in

Π = −2E1E2 e−d. (24)

Note that this pressure is indeed positive, since E1E2 < 0
within this limit. The range of validity of this result is
|E1|, |E2| ≪ 1 while d ≫ 1.

For Π ≫ E2
i , the argument of the logarithm in eq. (23)

is close to unity. Expanding the logarithm yields

Π =
1

2

(E2 − E1

d

)2

. (25)

The range of validity of this result is |E2 −E1|/|Ei| ≫ d ≫
|E2−E1| for both i = 1, 2 surfaces. Equations (25) and (24)
restore the results of the linear Debye-Hückel theory for
asymmetrically charged surfaces in the corresponding lim-
its [17].

5 The modified Poisson-Boltzmann (MPB)
theory

The scheme presented above for the standard PB the-
ory can be generalized to other augmented PB theories.
We demonstrate it for the sterically modified Poisson-
Boltzmann theory (MPB) [18–20], which takes into ac-
count steric effects due to the finite size of ions. The ion
size adds another length scale to the standard PB theory,
a, which defines the close-packing density of ions, a−3. For
1:1 monovalent salt, the MPB equation in Gaussian units
reads

ǫ

4π
Ψ ′′ =

2nbe sinh( eΨ
kBT )

1 + 2nba3[cosh( eΨ
kBT ) − 1]

. (26)
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It is evident that the charge density on the right-hand
side is bounded in absolute value by ea−3 and reduces to
the standard PB form of eq. (1) for nba

3 ≪ 1. The first
integral of the MPB equation can be obtained analytically
and yields the pressure across the electrolyte [5],

P = − ǫ

8π
Ψ ′2 + a−3kBT ln

(

1 +
2nba

3

1 − 2nba3
cosh

eΨ

kBT

)

.

(27)
While the contribution of the Maxwell stress tensor is the
same as in eq. (2), the ideal gas van ’t Hoff pressure is
replaced by a more complex lattice-gas logarithmic term.
Note that steric effects can be accounted for also by con-
sidering short-range non-Coulombic repulsive interactions
between ions (see, e.g., ref. [21]). Such models produce
different expressions for the pressure, depending on the
exact form of the interaction.

As before, it is more convenient to use dimensionless
variables:

ψ ≡ eΨ/kBT, Ẽ ≡ −dψ/dz̃,

z̃ ≡ Z/λ, d̃ ≡ D/λ, (28)

with the characteristic length scale not being the Debye
length, but λ ≡ 1/

√
4πlBa−3. The pressure is rescaled ac-

cording to p̃ = P/(kBTa−3), and similarly for the osmotic

pressure, Π̃ = Posm/(kBTa−3). We also introduce a new
variable, Φ = 2nba

3 that is the volume fraction of ions
in the bulk electrolyte. For small Φ ≪ 1 values, steric ef-
fects are negligible and the MPB theory reduces to the
standard PB one.

Comparing the dimensionless variables of the MPB
theory with the previously defined ones of the standard
PB theory we find that

d̃ = Φ−1/2d, Π̃ = ΦΠ, and Ẽ = Φ1/2E . (29)

With these variables, the dimensionless osmotic pressure
is given by

Π̃ = −1

2
Ẽ2 + ln [1 + Φ(cosh ψ − 1)] . (30)

Following the same arguments presented after eq. (8), we

deduce that ψ is monotonic for Π̃ = Π̃− < 0 and Ẽ is

monotonic for Π̃ = Π̃+ > 0.
For negative osmotic pressures, ψ is chosen as the inte-

gration variable, and the integral equation relating d̃ and
Π̃− reads

d̃ = −
∫ ψ2

ψ1

dψ

Ẽ

= ±
∫ ψ2

ψ1

dψ
√

2(ln[1 + Φ(cosh ψ − 1)] − Π̃−)
. (31)

The sign of the right-hand side is chosen such that d̃ is
positive. For small Φ values, the logarithm term in the
denominator can be expanded to linear order in Φ. Con-
verting d̃ → d and Π̃− → Π−, the standard PB form of
eq. (10) is restored in this limit.
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Fig. 3. Osmotic pressure profiles between homogeneously
charged surfaces within MPB theory for (top to bottom):
(ψ0, ψ1) = (5, 5) in solid line, (ψ0, ψ1) = (3, 3) in long
dashes, (ψ0, ψ1) = (−0.5, 0.5) in short dashes, and (ψ0, ψ1) =
(−0.2, 0.2) in dotted line. The upper two repulsive profiles
(Π > 0) were plotted according to eq. (32), and the lower
attractive ones (Π < 0) according to eq. (31).

For positive osmotic pressures, Ẽ plays the role of the
integration variable, and the following relation is obtained:

d̃ =

∫ Ẽ2

Ẽ1

dẼ
ρ

= ±
∫ Ẽ2

Ẽ1

dE exp(Π̃+ + 1

2
Ẽ2)

√

[exp(Π̃+ + 1

2
Ẽ2) − 1 + Φ]2 − Φ2

. (32)

For small Φ values, the argument of the exponents, Π̃+ +

Ẽ2/2 = Φ(Π+ + E2/2) become small. Approximating the
numerator to zeroth order in Φ and the denominator to
first order in Φ, the standard PB results of eq. (12) for d,
Π+ and E are restored.

Equations (31) and (32) are the MPB analogs of
eqs. (10) and (12) of the standard PB theory. Although
they cannot be integrated analytically, as is the case for
the standard PB theory, they provide a direct relation be-
tween the separation, the osmotic pressure and the bound-
ary conditions, and enable the numerical plotting of pres-
sure curves, as is illustrated in fig. 3. It is possible to use
eqs. (31) and (32) to derive approximate forms of the MPB
pressure in different electrostatic regimes. Such a calcula-
tion exceeds the scope of the current study and is left for
future studies.

6 Conclusions

In this work, we present a different approach for calcu-
lating the osmotic pressure within PB theory. Analytical
results for the osmotic pressure are derived for arbitrary
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boundary conditions, both in the standard PB theory and
in the augmented sterically modified PB theory. As many
surface force experiments involve two bounding surfaces
with asymmetric boundary condition (either σ1 �= σ2 or
ψ1 �= ψ2), such analytical expressions should be helpful.

A useful concept found in the present work is that the
electric field, E , can be a more suitable variable to work
with, compared to the electrostatic potential, ψ. Explic-
itly, the sign of the osmotic pressure dictates which of the
two profiles (E or ψ) is monotonic between the two sur-
faces, and, therefore, can be inverted. Using the electric
field as the natural variable is especially convenient for
CC boundary conditions that dictate the values E1,2 on
the boundaries.

We clarify the limitations of the framework presented
in this paper. Our scheme relies on an analysis of the ana-
lytically obtained first integral of the PB equation (and its
possible generalizations). As a first integral does not ex-
ist for cylindrical or spherical geometries, we restrict our-
selves to planar geometry. Furthermore, augmentations of
the PB theory sometimes result in complicated first in-
tegrals. In such cases, relations of the form E(ψ,Π) and
ψ(E ,Π) and the resulting osmotic pressure cannot be ob-
tained analytically.

In this work, we focused on the CP and CC bound-
ary conditions that suffice for describing many experi-
mental setups. In a more physical picture, however, sur-
face charges are regulated by association and dissociation
of charged groups in equilibrium with the ionic solution.
Such processes can be accounted for using the so-called
charge regulation (CR) boundary condition [22–24]. The
CR case can also be analyzed using our framework, as will
be shown in a future study.

Finally, we note that our framework can be used to
determine electrostatic potential profiles, even when the
inter-surface separation, d, is related to the osmotic pres-
sure only via an integral form, as in eqs. (31) and (32). In
such cases, the osmotic pressure is determined numerically
by solving the integral equation. Then, the value of Π can
be inserted in the integrand, and the potential (or electric
field) profile can be found by numerical integration from
one of the boundaries to an arbitrary z.
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