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Ionic solutions are often regarded as fully dissociated ions dispersed in a polar solvent. While this
picture holds for dilute solutions, at higher ionic concentrations, oppositely charged ions can associate
into dimers, referred to as Bjerrum pairs. We consider the formation of such pairs within the non-
linear Poisson-Boltzmann framework and investigate their effects on bulk and interfacial properties
of electrolytes. Our findings show that pairs can reduce the magnitude of the dielectric decrement
of ionic solutions as the ionic concentration increases. We describe the effect of pairs on the Debye
screening length and relate our results to recent surface-force experiments. Furthermore, we show
that Bjerrum pairs reduce the ionic concentration in bulk electrolyte and at the proximity of charged
surfaces, while they enhance the attraction between oppositely charged surfaces. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4982885]

I. INTRODUCTION

Ionic solutions are ubiquitous in electrochemical, col-
loidal, and biological systems. The solution properties
are determined by the interplay between the ion mixing
entropy and their electrostatic interaction.1–3 An important
length emerging from this interplay is the Bjerrum length,
lB = e2/ (4πεkBT ), where e is the electronic unit charge, ε the
dielectric constant of the solution, and kBT the thermal energy.
At this length, the Coulombic interaction between two unit
charges is equal to the thermal energy. For water, ε ≈ 78 ε0,
where ε0 is the vacuum permittivity, and the Bjerrum length
is equal to about 0.7 nm, at room temperature.

When the Bjerrum length is comparable with the lattice
spacing, it is favorable for a salt crystal (e.g., NaCl) to dis-
sociate, forming an ionic aqueous solution. In such solutions,
another important length scale naturally emerges. This is the
Debye screening length, λD, that was introduced in the 1920s4

by Debye and Hückel (DH). For fully dissociated monovalent
salt with bulk concentration nb, the Debye screening length is
given by

λD =
1

√
8πlBnb

, (1)

and at distances larger than λD, the electric field induced by an
ion is exponentially screened.

The apparent dichotomy between the salt crystal and fully
dissociated free ions in solution is an over-simplification, espe-
cially for concentrated solutions, where complexation of ions
has been proposed already in the early works of Bjerrum.5

Bjerrum postulated that oppositely charged ions in solution
can associate into ionic pairs (dipoles), which are nowadays
referred to as Bjerrum pairs. These pairs were shown, for
example, to play an important role on the critical behavior
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of ionic solutions.6,7 In addition, they arise naturally in
two-component hardcore plasma.8

The formation of ionic pairs has a two-fold effect on
the screening length, λD ∼ (ε/nb)1/2. First, pairs reduce the
concentration of free ions that participate in the screening to
a value lower than nb.9 Second, pairs increase the solution
permittivity, ε, due to their permanent dipolar moment. Fur-
thermore, free ions are known to lower the dielectric constant
of ionic solutions, due to their hydration shells.10,11 This phe-
nomenon was recently described using correlation effects12,13

and may also be related to the exclusion of water dipoles, as
is described below. In this picture, ionic pairs can increase the
dielectric constant by excluding less water dipoles.

The simple remarks above are related to recent surface-
force experiments14 conducted on ionic solutions at relatively
high ionic concentrations (up to about 4M). The screening
length fitted from the force profiles between two surfaces was
shown to be non-monotonic as a function of the ionic concen-
tration. It first decreases for low ionic concentrations and then
anomalously increases for higher values.

In this paper, we systematically incorporate the formation
of Bjerrum pairs into the Poisson-Boltzmann (PB) theory. We
demonstrate that pairs have a qualitative effect on bulk elec-
trolyte properties. Our model predicts that a non-negligible
fraction of salt ions associate into pairs. Considering both free
ions and pairs, we are able to account for the nonlinear behav-
ior of the dielectric decrement of ionic solutions on the mean
field (MF) level. Furthermore, the screening length is found to
be qualitatively modified by Bjerrum pairs, and it depends on
the relative strength of the dipolar moment of the ion pairs, as
compared to that of the solvent. Finally, we obtain the effect
of Bjerrum pairs on the counterion profiles next to charged
surfaces and on the osmotic pressure between two oppositely
charged surfaces.

The outline of our paper is as follows. The model is
formulated in Section II, where we calculate the bulk con-
centration of Bjerrum pairs. In Section III, we describe how
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ion pairs modify the dielectric constant and screening length.
Next, in Section IV, we present results for the ionic pro-
files at the proximity of a charged surface and elaborate on
the local effects of the pair formation, and in Section V, we
solve the two-plate problem and calculate the correspond-
ing osmotic pressure. Finally, Section VI offers a discussion
that includes a comparison with previous models and relevant
experiments.

II. MODEL

Consider an aqueous solution with added electrolytes.
For simplicity, we assume a monovalent electrolyte with
cations/anions of unit charge ±e. The two ionic species have
the same bulk concentration, nb, satisfying electro-neutrality.
The solvent (water) molecules are modeled as dipoles of con-
centration nw and permanent dipole moment pw . We further
assume that a fraction of the cations and anions can associate
into Bjerrum pairs, modeled as dipoles with moment p = be,
and the length b corresponds to a typical separation between
the paired ions. As a result of the association, the total number
of ions partitions into free ions of concentration ns, and ion
pairs (dipoles) of concentration np, satisfying ns + np = nb.
The two ionic states (free ions and pairs) are in chemical equi-
librium that determines the ns and np values for a given nb, as
is described below.

A. Free-ion and pair concentrations

The concentrations, ns and np, can be calculated, for exam-
ple, via a lattice-gas model. We model the bulk solution as a
cubic lattice with a unit cell of volume a3. Each cell is occu-
pied by either solvent, a cation, an anion, or a Bjerrum pair.
The ion-pair association energy is �J, which accounts for the
electrostatic attraction and, possibly, short-ranged ion-specific
interactions. As the electrostatic attraction governs in such
small length scales, we restrict ourselves hereafter to positive
J values, J > 0. Note that the limit of zero ion pairs corre-
sponds to the limit J → −∞. On the MF level, no additional
interactions are considered in the bulk.

For simplicity, we assign the same lattice size to the sol-
vent, cations, anions, and ion pairs, implying that all species

occupy a similar volume. Note that this volume is not nec-
essarily the bare ionic size. Water molecules form hydra-
tion shells around ions and dipoles and swell their effective
volume.1 Hence, the length a does not correspond to the ionic
diameter but to the diameter of the hydrated ion.

Without any interaction between unit cells, the grand-
canonical partition per cell is given by

Z = 1 + Λ+ + Λ− + Λ+Λ−eβJ , (2)

where β = 1/(kBT ) is the inverse thermal energy and the fugac-
ities,Λ± = exp (βµ±) , depend on the chemical potentials, µ±.
For convenience, the chemical potential of the solvent (water)
is set to zero. This is possible, as the number of solvent
molecules, nw , is determined from the condition,

a3
(
nw + 2ns + np

)
= 1. (3)

As Eq. (2) is symmetric under the exchange Λ− ↔ Λ+,
the two fugacities are equal, Λ+ = Λ− ≡ Λ. They are related
to the bulk ionic concentration by 2φ = Λ∂ ln Z/∂Λ, where
φ = nba3 is the average number of cations/anions in a unit cell,
ranging from φ = 0 for pure solvent to φ = 1, where all lattice
sites are occupied by Bjerrum pairs. It then follows that

φ =
(
ns + np

)
a3 =

1

1 + 2Λ + Λ2eβJ

(
Λ + Λ2eβJ

)
, (4)

where the first term on the right-hand-side is equal to nsa3 and
the second one is npa3.

Inverting Eq. (4) leads to the following expression for
Λ(φ):

Λ =
− (1 − 2φ) +

√
(1 − 2φ)2 + 4eβJφ (1 − φ)

2eβJ (1 − φ)
. (5)

From Eqs. (4) and (5), we obtain the dependence of the free-ion
bulk concentration on φ, ns = ns(φ), as is plotted in Fig. 1.

The limit of Λ� 1 corresponds to dilute ionic solu-
tions (φ� 1), where steric effects are negligible and Eq. (5)
simplifies to

nsa
3 ' Λ '

−1 +
√

1 + 4φeβJ

2eβJ
. (6)

FIG. 1. Dimensionless free-ion concentration, nsa3, as a function of φ = nba3, where a is the lattice size. The fully dissociated concentration without any
dipoles (ns = nb) is plotted as a black solid line. The exact result of Eq. (5) is plotted as dotted-dashed lines and the approximated one (Λ � 1) of Eq. (6) as
dashed lines, for J = 2kBT (red) and J = 4kBT (blue). (a) shows the dependence for the entire 0 ≤ φ ≤ 1 range, while (b) is a blow-up of the 0 ≤ φ ≤ 0.2 range.
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The dipolar concentration is then given by np = a3n2
s exp(βJ).

The result of Eq. (6) can also be obtained straightfor-
wardly9 by introducing a kinetic constant for the reaction,
K = a−3 exp(−βJ), satisfying K = [ns]2/[np]. However, Eq. (5)
is more general and can be applied to higher ionic concentra-
tions, where steric effects must be taken into account.

Another interesting case is the limit of small association,
φ exp(βJ)� 1, where the square root term in Eqs. (5) and
(6) can be Taylor-expanded, yielding ns = nb

[
1 − φ exp(βJ)

]
' nb. As expected, almost all ions are free in this case,
due to a combination of low ionic strength and small asso-
ciation energy. In the opposite limit of large association,
φ exp(βJ) � 1, Eq. (5) demonstrates that the free ion con-
centration is damped by a factor of exp (−βJ/2), yielding that
np ≈ nb.

The free-ion concentration, ns, with and without steric
effects (Eqs. (5) and (6), respectively), is presented in Fig. 1.
Both expressions lead to a smaller amount of free ions
(ns < nb), as compared to the standard theory without pairs
(ns = nb). We also note that pair association is more pronounced
for larger J values, leading to a further reduction in free ions.
Steric effects become evident for non-negligible concentra-
tions (φ & 0.1) and favor pair formation that decreases the
ionic volume fraction. As φ further increases, Eq. (6) breaks
down, and only the full expression of Eq. (4) remains valid. As
can be seen from Fig. 1(a), the free-ion concentration increases
with nb and reaches a maximal value always for φ = 0.5,
and independent of J. This can be understood because of the
φ↔ (1 − φ) symmetry of the lattice-gas model.

B. Modified dipolar Poisson-Boltzmann
(MDPB) equation

So far we discussed the properties of bulk ionic solutions
where the electrostatic potential, ψ, and the ionic concentra-
tions are fixed throughout the solution. However, a charged
surface induces a spatially varying electrostatic potential ψ(r)
and ionic concentrations. Such a potential solves Poisson’s
equation,

−ε0∇
2ψ = ρf + ρs + ρp, (7)

where ρ = ρf + ρs + ρp is the total charge density. The first
term, ρf , is the fixed charge density of any macromolecules
and surfaces, ρs is that of salt ions, and ρp is related to the
polarization field of the solvent and Bjerrum pairs. Note that
the vacuum permittivity ε0 is used, because the contribution
of the solvent dipolar molecules is taken into account explic-
itly via ρp. In thermal equilibrium, the densities ρs and ρp

are further related to the electrostatic potential by their cor-
responding Boltzmann factor (not shown here for simplicity).
Combining these terms in Poisson’s equation, Eq. (7), leads
to the modified dipolar PB (MDPB) equation.12,13,15–17 This
equation takes into account steric effects by relating a, the lat-
tice constant of Section II A, with a reference close-packing
density, a�3 [Eq. (3)].

Consider a planar surface with a fixed charge distribution,
ρf , homogeneous in the xy-plane. The corresponding MDPB
equation depends only on the distance z from the surface and

reads as (see the Appendix)

ε0ψ
′′(z) = −ρf (z) + 2ens

sinh
[
βeψ(z)

]
D(z)

− p np
d
dz

G
[
βpψ ′(z)

]
D(z)

− pw
(
a−3 − 2ns − np

) d
dz

G
[
βpwψ ′(z)

]
D(z)

, (8)

where ψ ′ = dψ/dz and the first two terms on the right-hand-
side are ρf and ρs, while the last two are the contributions
of dipolar Bjerrum pairs and solvent molecules to ρp, respec-
tively. Note that a−3−2ns−np is the density of solvent (water)
molecules [Eq. (3)]. In Eq. (8), G(u) = cosh u/u − sinh u/u2

is related to the Langevin function L(u) = coth u − 1/u by
G = (sinh u/u)L. This is the polarization density, written as a
product of the dipole density, sinh u/u, and the average dipole
moment, given on the MF level by the Langevin function, L.

The denominator in Eq. (8), D, is given by

D(z) = 2nsa
3 cosh (βeψ) + npa3g

(
βpψ ′

)
+

(
a−3 − 2ns − np

)
a3g

(
βpwψ

′) , (9)

where the function g(u) = sinh u/u satisfies g′(u) = G(u). The
denominator, D, leads to a saturation of the ionic and dipolar
concentrations, bounded from above by the close-packing den-
sity, a�3. This saturation feature is especially important near
highly charged surfaces that attract counterions and dipoles,
as is demonstrated in Section IV.

Equation (8), together with the relations among ns, np,
and nb, Eqs. (4) and (5), define our model for Bjerrum pairs
in ionic solutions. This model can be obtained formally by
employing a field-theoretical approach to a lattice-gas model
including electrostatic interactions, as is further explained in
the Appendix. Within this framework, Eq. (8) is the Euler-
Lagrange equation, derived from the variation of the free
energy.

Equation (8) can be simplified under several conditions.
For small electrostatic potentials and fields, it is possible to
linearize the equation, as is further discussed in Section III.
This is especially relevant in the bulk electrolyte, far from any
fixed charge density.

In addition, as opposed to the picture of Section II A,
where solvent molecules are considered explicitly, it is pos-
sible to treat the solvent implicitly as a homogeneous back-
ground with a dielectric constant ε of the solution, by inserting
pw = 0 and substituting ε0 → ε in Eq. (8). Hereafter, we dis-
tinguish between the explicit solvent model of Eq. (8) and the
implicit solvent model that is described here. Throughout this
work, we present results for both models and compare between
the two.

Finally, for small volume fractions of ions and Bjer-
rum pairs (φ� 1), it is possible to neglect steric effects.
Then, the denominator function, Eq. (9), simplifies to unity,
D ' 1,12,13,16 and the bulk concentrations of free ions and
Bjerrum pairs are given by Eq. (6).9

III. DIELECTRIC CONSTANT AND SCREENING
LENGTH

The association of Bjerrum pairs modifies the permittivity
of the solution and decreases the number of free ions responsi-
ble for screening. As both the dielectric constant and screening



194904-4 Adar, Markovich, and Andelman J. Chem. Phys. 146, 194904 (2017)

FIG. 2. (a) Effective dielectric constant, εeff, and (b) inverse screening length, κeff, as a function of the dimensionless bulk ionic concentration
φ = nba3 for p< pw . The results of Eqs. (11) and (12) are plotted as a solid black curve and are compared to the classical DH theory (a solid red line)
and to Eqs. (11) and (12) without Bjerrum pairs (np = 0, a dashed red curve). The curves are plotted for T = 298 K, J = 2kBT, a = 0.5 nm, and p = 4.8 D. We
also use pw = 9.8 D in order to fit the dielectric constant of water, ε = 78 ε0.

length characterize the bulk electrolyte, the above effects can
be captured by linearizing Eq. (8), leading to the general form

εeff ψ
′′ = 2βe2nsψ, (10)

where εeff is the effective dielectric constant, given by

εeff(φ) = ε0 +
1
3
β

[(
a−3 − 2ns(φ)

)
p2
w + np(φ)

(
p2 − p2

w

)]
.

(11)
This expression is typical of effective medium theory, where
the contribution of each species is proportional to its volume
fraction in the solution.

For pure solvent, Eq. (11) yields ε = ε0 + βa−3p2
w/3. This

is a known MF result for a dilute phase of dipoles and is not
expected to yield the correct dielectric constant of pure water.
For example, substituting a= 0.5 nm, the value ε = 78 corre-
sponds to pw ≈ 9.8 D, which is about five times larger than the
physical value pw = 1.85 D of water molecules. Therefore, in
addition to a, the dipole moment pw should be regarded as a
parameter of the model.

In the absence of pairs (np = 0), Eq. (11) describes a
dielectric decrement with increased ionic concentration that
is known for aqueous solutions.10,11 In Eq. (11), the decre-
ment originates from the condition of Eq. (3). An increased
ionic concentration results in a decreased solvent concentra-
tion, reducing the effective permittivity. Moreover, ions in
an aqueous solution are surrounded by a hydration shell of
water molecules that are not free to rearrange themselves
in response to an external field, thus lowering the dielectric
constant.18

Ion-pair association makes the above picture more com-
plex. Bjerrum pairs have a permanent dipole moment that
increases the dielectric constant. The relative contribution to
the dielectric constant of each pair is proportional to p2 − p2

w ,
and the behavior of εeff(φ), therefore, changes qualitatively
according to the sign of the difference p � pw . This statement
is further discussed below.

The effective screening length, λeff = 1/κeff, is obtained
from Eq. (10) by converting it to the form ψ ′′ = κ2

eff ψ. This

leads to

λeff(φ) =
1

κeff(φ)
=

√
εeff(φ)

2βe2ns(φ)
. (12)

While it is similar to the Debye screening length of Eq. (1),
Eq. (12) suggests a more intricate dependence on the con-
centration φ as both ns = ns(φ) and εeff = εeff(φ). In par-
ticular, the screening length does not necessarily decrease
monotonically with φ,9 as opposed to the classical DH
result.

In order to explore this possibility, we examine the
derivative of κ2

eff with respect to φ,

1

κ2
eff

∂κ2
eff

∂φ
=

1
ns

∂ns

∂φ
−

1
εeff

∂εeff

∂φ
. (13)

The first term on the right-hand-side of Eq. (13) describes
whether the free-ion concentration increases or reduces with φ.
According to Sec. II A, it is positive for φ < 1/2 and negative
for φ > 1/2. Hereafter, we do not address φ > 1/2 values
that go beyond the saturation limit. The second term of Eq.
(13), on the other hand, depends on whether ions induce a
dielectric decrement or increment. As described above, this
greatly depends on how large the ion-pair dipole ( p) is in
comparison to the solvent dipole ( pw).

Below, we distinguish between the two cases, p< pw and
p> pw , and examine the behavior of εeff(φ) and κeff(φ) for both
cases. For aqueous solutions, p< pw due to the high dielec-
tric constant of water. In order to examine the other scenario,
p> pw , we broaden the scope of our discussion to general
solvents rather than focusing exclusively on water.

A. The pw > p case

For pw > p, ion pairs decrease the dielectric constant
and Eq. (11) captures the dielectric decrement described
after Eq. (11) for aqueous solutions. This is illustrated in
Fig. 2(a). At low φ values, np is still small, and the dielec-
tric constant decreases linearly with ns, similarly to substi-
tuting no pairs (np = 0 and nsa3 = φ) in Eq. (11), which is
drawn as the dashed red curve in Fig. 2(a). For higher ionic
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FIG. 3. (a) Effective dielectric constant, εeff, and (b) inverse screening length, κeff, as a function of the dimensionless bulk ionic concentration φ = nba3 for
p > pw . The results of Eqs. (11) and (12) are plotted as a solid black curve and are compared to the classical DH theory (a solid red line) and to Eqs. (11) and
(12) without Bjerrum pairs (np = 0, a dashed red curve). The curves are plotted for T = 298 K, J = 2kBT, a = 0.5 nm, and p = 14.4 D. The dipolar moment
pw = 4.9 D is used in order to fit the dielectric constant, ε = 20 ε0.

concentrations, Bjerrum-pair dipoles contribute to the per-
mittivity, resulting in a smaller decrease (a black curve in
Fig. 2(a)). The diminished decrement for high ionic con-
centrations is consistent with measurements and was previ-
ously accounted for theoretically by electrostatic correlations
beyond MF.12,13

The κeff(φ) behavior is illustrated in Fig. 2(b). As the
dielectric constant decreases in our model, κeff ∼ 1/εeff is
expected to be larger than in the classical DH theory. This is
indeed the case in the absence of pairs (red curves in Fig. 2(b)).
However, the shallow decrement in the presence of Bjerrum
pairs, alongside the smaller number of free ions, result in κeff

(a black curve) that is smaller than the DH result. Furthermore,
κeff increases monotonically, in accordance with Eq. (13).

B. The pw < p case

We consider a solvent such as alcohol with ε smaller than
that of water. For such relatively low ε values, consistent with
pw < p, we find that the dielectric constant is non-monotonic
with φ, as is illustrated in Fig. 3(a). While at low φ values,
εeff follows the linear decrement of the theory without pairs
(a dashed red curve), the Bjerrum-pair contribution at higher
concentrations leads to a dielectric increment (a black curve).
Such an increment can also be seen in the implicit solvent
model, where εeff = ε+ βnpp2/3, and ε is the dielectric constant
of the solution without the ionic pairs.

The κeff(φ) behavior in the pw < p case is smaller than
the result of classical DH theory as well as of Eq. (12) with-
out pairs. However, the screening length in Fig. 3(b) is non-
monotonic. We emphasize that this anomalous behavior of
κeff(ε) originates from the dielectric increment [Eq. (13)].

IV. IONIC PROFILES CLOSE TO A CHARGED PLATE

Beside exploring bulk properties of ionic solutions, we
also investigate how ion-pair formation influences the ionic
concentration near a charged surface. Consider the ionic solu-
tion of Section II confined to the z > 0 half-space by a charged
surface at z = 0. The surface is homogeneously charged with

a surface-charge density, σ, i.e., ρf (z) = σδ(z), where δ(z) is
the Dirac delta function.

The boundary condition at z = 0 is determined by Gauss’
law by integrating Eq. (8) over a small interval around z = 0.
We assume that the electric field is confined to the upper region
z > 0, leading to

−ε0ψ
′(0) = σ + pnp

G
[
βpψ ′(0)

]
D(0)

+ pw
(
a−3 − 2ns − np

) G
[
βpwψ ′(0)

]
D(0)

. (14)

This boundary condition is more complex than in the regular
PB model and includes the free surface-charge density, σ, as
well as the polarization-induced bound surface-charge density,
which lowers (in absolute value) the total surface charge.

Once Eq. (8) is solved and the electrostatic potential is
found, the ionic profiles n±(z) as a function of the distance from
the surface, z, are evaluated from the corresponding Boltzmann
factor,

n±(z) = ns
e∓βeψ(z)

D(z)
. (15)

As the boundary condition of Eq. (14) is too complex to be
solved analytically, we present in Fig. 4 numerical results for
the counterion profile, n+(z). For simplicity, we treat the sol-
vent implicitly as a homogeneous dielectric background with
a dielectric constant ε, as opposed to dipoles in vacuum. This
is equivalent to substituting pw → 0 and ε0 → ε in Eqs. (11)
and (14), as well as in Eqs. (8) and (9) in Section II B, and is
applicable at low φ values.

Counterion profiles of positive ions next to a negatively
charged surface are illustrated in Fig. 4 for two J values. The
effect of ion association is evident from the inset, where the
relative difference, as compared to the theory without ion pairs,
is presented. We find that the counterion concentration is over-
all smaller due to the lower bulk value, ns, that decreases as a
function of J (Section II A).

Furthermore, both free ions and ion pairs accumulate next
to the charged surface, where the electrostatic potential and
field are the strongest. Although free ions are attracted more
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FIG. 4. Counterion concentration profiles, n+(z), for J = 2kBT (solid) and
J = 6kBT (dashed). All the profiles are plotted for the implicit solvent model
with lB = 0.7 nm, a = b = 0.5 nm, |σ | = e/ nm2, and φ = 0.05. These values
correspond to nb = 0.66M, ns = 0.51M for J = 2kBT, and ns = 0.13M for
J = 6kBT. The inset shows the relative difference as compared to the n0

+
profiles of the theory without pairs. The lattice size, a, is marked in the inset
by a dotted red vertical line.

strongly to the surface, pairs are also present at the surface
proximity due to mixing entropy. As a result of this accumula-
tion, steric effects are pronounced up to a distance a from the
surface, as is illustrated in Fig. 4. Far away from the surface,
the counterion concentration reaches its bulk value, ns.

V. OSMOTIC PRESSURE BETWEEN TWO
CHARGED PLATES

We consider two charged surfaces at z = ±d/2, bound-
ing an ionic solution. The top surface has a surface-charge
density σ1 and the lower σ2. We focus on the scenario of
oppositely charged surfaces, σ1 = −σ2 = σ, where the ion-
pair formation is expected to have the most evident effect on
the osmotic pressure. The electric field is larger between oppo-
sitely charged surfaces, as compared to equally charged ones,
leading to a higher dipolar concentration and a larger deviation
from the standard PB theory. As in Section IV, we assume that
the electric field is confined to the aqueous solution region,
−d/2 < z < d/2.

The osmotic pressure, Π = pin − pout, is defined as the
difference between the pressure inside the solution and the
one exerted by the bulk electrolyte reservoir. The inner pres-
sure, constant throughout the system, is equal to the first inte-
gral19,20 of the differential equation, Eq. (8). The outer pressure
is obtained by setting the electrostatic potential and electric
field to zero. Taking the first integral of the MDPB equation,
Eq. (8), and subtracting the outer pressure lead to an exact
expression,

Π = −
1
2
ψ ′

[
ε0ψ

′ + 2pnp
G(βpψ ′)

D

+ 2pw
(
a−3 − 2ns − np

) G(βpwψ ′)
D

]
+ kBTa−3 lnD.

(16)

FIG. 5. Osmotic pressure profile between oppositely charged surfaces for
J = 2kBT, lB = 0.7 nm, a = b = 0.5 nm, |σ | = e/ nm2, and φ = 0.05. These
values correspond to nb = 0.66 M and ns = 0.51 M. The inset shows the relative
difference with respect to theΠ0 pressure (no pairs). For simplicity, the solvent
is treated implicitly.

In the above equation, the attractive (negative) term originates
from the electrostatic energy density ∼E · D, with E = −ψ ′ẑ
being the electric field, and D = Dẑ the displacement field.
The repulsive (positive) terms, on the other hand, originate
from the mixing entropy of ions and of dipoles as well as the
rotational entropy of dipoles ∼ lnD.

The electrostatic potential can be solved numerically from
Eq. (8), with the boundary conditions that are obtained in
Section IV [Eq. (14)], and applied to the two surfaces at
z = ±d/2. The osmotic pressure is then found via Eq. (16).
A characteristic pressure profile between oppositely charged
surfaces is illustrated in Fig. 5.

The pressure in Fig. 5 is negative due to the electro-
static attraction between oppositely charged surfaces. It is
enhanced by the Bjerrum pairs, as is evident from the rela-
tive difference with respect to the theory without pairs, illus-
trated in the inset. This difference becomes large by an order
of magnitude at large separations, where the electrostatic
potential and field become small and the linear approxima-
tion of Section III is valid. The linearized form leads to an
exponentially decaying osmotic pressure, Π ∼−exp (−κeffd),
with a screening length that decreases due to ion association
(Section III). The relative difference, therefore, is expected to
increase exponentially.

We note that for sufficiently small inter-surface separa-
tions, the two surfaces effectively neutralize each other, and
free ions are expected to be released to the bulk21,22 for entropic
gain. In such a case, screening effects are negligible, and the
above reduction in the pressure should not necessarily hold.

VI. DISCUSSION

The present work addresses the effect of Bjerrum pairs
on the properties of ionic solutions in the bulk and near
charged surfaces. The main result of our model is the MDPB
equation in presence of the Bjerrum pairs, Eq. (8). This MF
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equation is written in terms of the free-ion and pair densities,
ns and np, respectively, determined by the lattice-gas model of
Section II A. As pairs are predicted to form at relatively high
ionic concentrations, the theory accounts for steric effects and
the dielectric decrement of ionic solutions, which are important
under such physical conditions.

The ionic mixture considered in our model is symmet-
ric, composed of anions and cations of the same valency and
comparable size. However, asymmetric mixtures can also be
studied in a similar fashion. For ions and dipoles of differ-
ent sizes, it is possible to employ an asymmetric lattice-gas
model (see, e.g., Ref. 23). Furthermore, for anions and cations
of different valencies, one can consider the association into a
charged anion-cation pair.24

The model includes four physical parameters: the associ-
ation energy J, lattice size a, the Bjerrum dipolar moment p,
and the water dipolar moment pw . These parameters can be
evaluated from measurements of several physical quantities,
such as the dielectric constant. While we treat these param-
eters as independent, they are in fact coupled. Namely, the
values of the J, p, and pw parameters depend on the lattice
size, a. Furthermore, the quantities are coupled via the effective
solvent permittivity that decreases the association energy and
increases the hydration shell. Such mutual dependence can be
taken into account to some extent via the Bjerrum postulate,5

according to which the kinetic constant K of pair association,
K = [ns]2/[np], is proportional to the inverse of the integral
∫v dr exp (lB/r). The integration volume, v , is the region within
which the ions are considered associated, related to the ionic
diameter and Bjerrum length.5–7,9

Recent surface-force experiments14 suggest a non-
monotonic dependence of the screening length on the bulk
ionic concentration for ionic concentrations corresponding
to a range of φ values as low as 0.1. This behavior was
recently attributed to solvent molecules acting as defects in
an ionic crystal.25 Our prediction for the effective screening
length [Eq. (12)] deviates from the usual PB result. We obtain
different results, depending on the relative dipolar moment
p � pw . While for p < pw , the screening length is monotoni-
cally decreasing, it can increase with ionic concentration for
p > pw . For aqueous solutions and simple salt, the p > pw
scenario is not appropriate, and expected for lower dielectrics
(e.g., alcohol) and/or polarizable ions. We demonstrate in
Eq. (13) that in light of the dielectric decrement of ionic
solutions, the screening length can increase with the ionic
concentration only due to a reduction in the amount of free
ions.

The reduction of free-ion concentration at low φ values
can have two origins. Steric effects can be more important
than what the lattice-gas framework conveys. For example, it
is possible to take steric effects into account by using a virial
expansion of hard spheres, where the maximal value of the
free ionic concentration, ns, is calculated at φ ≈ 0.1.26 In addi-
tion, correlations beyond MF between ions and dipoles have
a crucial role in highly concentrated ionic solutions and ionic
liquids and may promote the reduction of ns. This possibility
will be explored in the future by employing a loop expansion
of the system free-energy, leading to predictions beyond the
MF theory.
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APPENDIX: FIELD-THEORETICAL APPROACH

Consider the aqueous solution of Section II modeled via a
cubic lattice with cells of size a. Each cell is occupied either by
a solvent molecule with dipole moment pw , a cation of charge
e, an anion of charge �e, or a Bjerrum pair with dipole moment
p. The association energy of pairs is �J, where J is a positive
energy parameter.

The partition function can be written in terms of spin-like
variables assigned to each cell, accounting for its occupation.
Each cell j, located at rj, is described by a pair of variables,(
s+

j , s−j
)

, counting the cations and anions in the cell, respec-
tively, where s±j = 0 or 1. With these variables, the charge
density operator is given by

ρ̂(r) = ρf (r) + e
∑

j

[(
s+

j − s−j
)
δ
(
r − rj

)
−

[
s+

j s−j p +
(
1 − s+

j

) (
1 − s−j

)
pw

]
n̂j · ∇δ

(
r − rj

)]
,

(A1)

where ρf (r) (the first term) describes any possible fixed charge
density, the 2nd term corresponds to the cations and anions,
and the 3rd term accounts either for the presence of a water
dipole or a Bjerrum-pair dipole in the j-cell, pointing in the
direction of the unit vector, n̂j.

Incorporating the Coulombic energy and the ion-
association energy yields the following grand-partition func-
tion:

Z =
∑

sj

∏
j

exp
[
β

(
µ+s+

j + µ−s−j + s+
j s−j

)]

×

∫
dΩj

4π
exp

[
−
β

2

∫
d r d r′ ρ̂ (r) vc

(
|r − r′ |

)
ρ̂
(
r′
)]

,

(A2)

where µ± is the chemical potential of the positive and neg-
ative ions, respectively, β = (kBT )−1 is the inverse thermal
energy, Ωj is the solid angle of n̂j, and vc (r) = 1/ (4πε0 |r |)
is the Coulomb interaction. For sake of convenience, we have
set the chemical potential of solvent molecules to be zero. The
Coulombic self-energy can be formally absorbed in the chem-
ical potentials and J, overcoming the problematic divergence
of vc (0) .

We replace the occupation degrees of freedom, {sj}, with
a spatially fluctuating field by introducing a density field ρ (r)
and its conjugate field, ϕ (r) , via the functional identity,
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1 =
∫

Dρ δ
[
ρ (r) − ρ̂ (r)

]
=

∫
DρDϕ exp

(
iβ

∫
drϕ (r)

[
ρ (r) − ρ̂ (r)

] )
. (A3)

Substituting Eq. (A3) in Eq. (A2) and after further manipula-
tions (for more details, see Ref. 15), the partition function can
be written as

Z =
∫

Dϕ e−βS[ϕ], (A4)

with the field action

S
[
ϕ
]
=

∫
dr

[
ε0

2
(∇ϕ(r))2 + iρf (r)ϕ(r)

−
kBT

a3
ln

(
sinc (βpw |∇ϕ(r)|)

+Λ+Λ−eβJsinc (βp |∇ϕ(r)|)

+ Λ+e−iβeϕ(r) + Λ−eiβeϕ(r)
) ]

. (A5)

In the mean field (MF) approximation, the partition func-
tion is approximated by its value at the saddle point, ϕ = ϕ0.
We denote iϕ0 = ψ, and by using the relation F = −kBT ln Z ,
we obtain the free energy

F[ψ] = S[−iψ]. (A6)

By examining Eqs. (A5) and (A6) with Λ± = 0 and pw = 0,
it can be seen that ψ is the electrostatic potential. Further-
more, the fugacities are constant throughout the system and are
related to the total number densities of positive and negative
ions, as is described in Section II A.

The potential ψ solves the Euler-Lagrange equation
obtained from the variation δF/δψ = 0. Assuming that ρf

depends only on the z-coordinate, the Euler-Lagrange equa-
tion for the free energy, Eq. (A6), coincides with Eq. (8) and
is a more formal way to obtain the MDPB equation.
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