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A B S T R A C T

In the study of colloidal, biological and electrochemical systems, it is customary to treat surfaces, macro-
molecules and electrodes as homogeneously charged. This simplified approach is proven successful in most
cases, but fails to describe a wide range of heterogeneously charged surfaces commonly used in experiments. For
example, recent experiments have revealed a long-range attraction between overall neutral surfaces, locally
charged in a mosaic-like structure of positively and negatively charged domains (“patches”). Here, we review
experimental and theoretical studies addressing the stability of heterogeneously charged surfaces, their effect on
ionic profiles in solution, and the interaction between two such surfaces. We focus on electrostatics, and
highlight the important new physical parameters appearing in the heterogeneous case, such as the largest patch
size and inter-surface charge correlations.

1. Introduction

Electrostatic interactions are paramount in the study of numerous
colloidal, biological, and electrochemical systems. In aqueous media,
some of the surface charges of macromolecules may dissociate whereas
ions from the solution can bind to the macromolecules [1,2]. Both
processes result in a net surface charge leading to a long-range Cou-
lombic interaction, mediated by ions in the solution. The interplay
between electrostatics and the ion entropy of mixing is described by the
Poisson-Boltzmann (PB) theory. Combining the universal van der Waals
(vdW) interaction with PB theory yields the well-known Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory [3,4].

Traditionally, DLVO theory is used to study the interaction between
homogeneously charged surfaces [5,6]. Homogeneity is an idealization,
as charges are distributed discretely on the molecular level, and sur-
faces can also be heterogeneously charged over mesoscopic length
scales (nanometers to micrometers), either spontaneously or by de-
sign [1,5]. The latter has stimulated many experimental and theoretical
works in the past few decades, addressing surface-charge heterogeneity
on microscopic and mesoscopic levels, under a wide range of physical
conditions. Different aspects of inhomogeneity have been investigated,
including the stability of surface-charge heterogeneities, counterion
distribution at the surface proximity, and interactions between two
such surfaces across an ionic solution.

The study of heterogeneously charged (“patchy”) surfaces has
gained a growing interest during the last decade due to novel experi-
ments, which measured a long-range attraction between hydrophobic

surfaces across an aqueous solution [7–12]. Although these neutral
surfaces were initially homogeneous during preparation, it was ob-
served that they transform into mosaic-like structures of positively and
negatively charged patches. These patchy surfaces remain stable during
experimental times, and it has been established [7-9,11,12] that the
measured long-range “hydrophobic” attraction was in fact of electro-
static origin.

In the present work, we review experimental and theoretical works
concerned with the electrostatic properties of patchy surfaces in an
ionic solution. We highlight the important features of surface-charge
heterogeneity, while describing some of the theoretical frameworks
related to surface-force experiments.

The outline of this paper is as follows. In the next section, we focus
on the experimental aspects of patchy surfaces, describing their pre-
paration and the forces measured between them. In Section 3, we dis-
cuss under what conditions finite-size charged patches are formed and
what their expected optimal size is in solution. In Section 4, we turn to
ionic profiles in the proximity of such patchy surfaces for different ionic
environments. Next, we discuss in Section 5 the osmotic pressure be-
tween two heterogeneously charged surfaces and relate it to the mea-
sured long-range attraction between patchy surfaces. Finally, in
Section 6, we compare this long-range attraction with the ever-present
van der Waals attraction.
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2. Patchy surfaces in experiments

2.1. Preparation of patchy surfaces

Patchy surfaces can be prepared by different methods. We focus
here on the methods used separately by the groups of
Israelachvili [7–9] and Klein [10–12], whose experiments inspired a
number of works, as discussed below. In these experiments, the patchy
surfaces consist of a positively charged bilayer of surfactants adsorbed
on a negatively charged mica surface. During preparation, the anionic
mica surface is first coated with a cationic surfactant monolayer by self-
assembly of cetyltrimethylammonium bromide or fluoride (CTAB or
CTAF, respectively) from the aqueous solution [8,10-12]. Another
technique is the Langmuir-Blodgett (LB) method [7,8], in which sur-
factants such as dimethyldioctadecylammonium bromide (DODAB) are
used. By adsorbing surfactants with hydrophobic tails, the mica surface
itself becomes hydrophobic, and such surfaces have been used over the
years in many experiments studying hydrophobic surfaces [13–19].

However, the monolayer structure is less favorable in solution than
that of a bilayer, for which the hydrophobic surfactant tails are con-
fined and only their cationic heads are in contact with the polar water
molecules. The inner surfactant monolayer then neutralizes the nega-
tive mica, while the outer monolayer makes the bilayer domains posi-
tive, as is illustrated in Fig. 1. We note that different methods have been
used to prepare patchy surfaces also for silica [20] and latex [21].

Three experimental findings indicate that the surfactant monolayer
structure indeed breaks into patches of bilayers over timescales of a few
hours. First, contact angle measurements show that the coated mica
surface becomes less hydrophobic within a few hours [10,11], implying
surfactant disassociation in solution. Second, the inter-surface separa-
tion at which the two mica sheets jump into contact, increases with
time from twice the thickness of a monolayer to four times that thick-
ness [11]. This indicates a transition from a monolayer-monolayer
contact to a bilayer–bilayer one. The third and most direct observation
comes from atomic force microscopy (AFM) images. The microscope
measures force curves that can be fitted to the DLVO predic-
tions [22–27]. By moving the probe across the substrate, it is then
possible to map the local electrostatic forces and charge density, cap-
turing the bilayer structure itself. AFM images of surfactant-coated mica
are shown in Fig. 1.

2.2. Measured long-range attraction between patchy surfaces

Force measurements between surfactant-coated mica surfaces were
performed [13–19] in order to investigate the hydrophobic interaction,
referring to the attraction between non-polar surfaces across water.
Measurements were conducted under a wide range of experimental
conditions, revealing long-range attractive forces at distances ranging
up to hundreds of nanometers [8]. These distances are much larger than
the typical range of vdW attraction, as is demonstrated in Fig. 2.

Several mechanisms have been suggested as an explanation for the
attraction. While the genuine hydrophobic interaction is considered to
occur only for separations smaller than 20 nm, the long-range attraction
is mainly attributed to Coulombic interactions [9]. For example, Pod-
gornik and Parsegian [28] related the attraction to an instability in the
amount of adsorbed surfactants, resulting from the changes in the inter-
surface separation.

The understanding of the long-range force and its relation to the
hydrophobic nature of the surfaces has been advanced by Meyer
et al. [7,8] and Perkin et al. [10,11]. Using the surface force apparatus
(SFA), both groups demonstrated that the interaction is screened by
added salt, implying its electrostatic origin. Moreover, it was shown
that the surfactant monolayer coating the mica dissociates and forms
patchy bilayers, as is explained in Section 2.1. This indicates that the
long-range attraction is indeed electrostatic, and in one possible sce-
nario can be attributed to annealing of surface patches. Assuming re-
laxation times shorter than the measurement times, charged patches on
one surface are free to rearrange and position themselves against op-
positely charged patches on the other surface and vice versa. Conse-
quently, the surfaces are composed of correlated oppositely charged
patches, and the attraction can be understood by means of simple
electrostatics. This scenario is particularly important when the surfaces
are in close contact.

However, one can also consider another scenario of quenched sys-
tems, where the relaxation time is longer than experimental times, and
the patch arrangement is effectively frozen in time. The quenched
scenario was tested in the work of Silbert et al. [12], who applied an in-
plane velocity on one of the surfaces while measuring the inter-surface

Fig. 1. AFM images of a surfactant-coated mica surface. (a) In a monolayer structure,
immediately after deposition, and (b) in a bilayer structure after immersion time of 22 h
in pure water. The cartoons illustrate the breakup of the initially uniform monolayer into
positively charged bilayer domains on an otherwise negatively charged mica substrate.
Source: Reproduced with permission from Ref. [12].

Fig. 2. Measured attractive forces (in absolute value) between coated mica surfaces as a
function of the inter-surface distance. The force is rescaled by the surface radius of cur-
vature, R, and plotted on a logarithmic scale. The symbols correspond to different coating
materials and methods. Red squares correspond to LB-deposited DMDOA, green triangles
correspond to chemical-vapor-deposited OTE, and blue triangles and inverted triangles
correspond to LB-deposited OTE and DODA surfaces, respectively. The red squares and
green triangles were measured after deaeration. The shaded VDW force band corresponds
to Hamaker constant values between 3 and 10×10−21 J. The different experiments from
which the data points are taken are detailed in Ref. [9]. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of this
article.)
Source: Reproduced with permission from Ref. [9].
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force, frustrating any patch rearrangement on experimental time scales.
Remarkably, the attraction prevails and retains its magnitude. This
result is counter-intuitive because overall neutral surfaces without any
correlations are not expected to exhibit electrostatic interaction on
average, leaving a predominant entropic repulsion of the mobile ions.
The differences between the annealed and quenched scenarios are
further investigated in Section 5.

3. Modeling of patch formation and optimal patch size

The stability of patchy mica sheets described above depends on
several parameters, such as the immersion time of mica in the surfac-
tant solution during the initial coating process and surfactant compo-
sition [10], as well as pH [18] and the ionic strength of the solu-
tion [19]. Rather than further describe the experimental setup, we
present a simple model of mobile (annealed) positive and negative
charges on a neutral surface.

Generally, a binary mixture of oppositely charged species may not
always exhibit a stable structure of finite-size patches. While electro-
statics promotes charge mixing, short-range interactions can induce
phase separation into macroscopically large domains. The interplay
between the two mechanisms, therefore, determines whether patches
are stable and what their optimal size would be. An elucidating de-
scription of this interplay is given in the works of de la Cruz and co-
workers [29–33], and Pincus, Safran and co-workers [34–36]. In their
works, it was shown that charged surface domains are stable as long as
the Coulombic interaction is sufficiently strong. Once the interaction is
screened, the domain size increases and, finally, a first-order transition
takes place. This is illustrated in Fig. 3 and is described in more detail
below.

Consider two oppositely charged and mobile species, distributed
periodically on an infinitely rigid surface composed of unit cells of area
A= l2. The free energy per unit cell area, f=F/(NA)= fel+ fSR, where
N is the number of unit cells, consists of long-range electrostatics, fel,
and short-range interactions, fSR. The former scales as σ2l/ε, where |σ| is
the absolute value of the average surface-charge density, and ε is the
dielectric constant of the solution. The term fSR scales as τ/l, where τ is
the line tension (energy per unit length). Combining the two, we find
that [29]

= +f s τ
l

s σ l
ε

,1 2
2

(1)

where the dimensionless coefficient s1 is the ratio between the unit-cell

contour length and the cell size l, and s2 corresponds to the average
electrostatic free energy per unit cell. Ignoring numerical prefactors and
equating the two terms, one finds a characteristic length scale

=l τε σ/0
2 , which defines a characteristic energy (per unit area)

=f τσ ε/0
2 . Rescaling Eq. (1) yields

= +
f
f
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l
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.
0
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0
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For Coulombic interactions, as s2 is of order unity, minimization of
the free energy leads to a finite domain size, l*∼ l0 [29,34]. When salt is
added, the electrostatics becomes screened, and s2l/l0 becomes of order
unity. The free energy is then minimal for l*/l0 →∞, corresponding to a
phase separation. In the case of high salt concentrations, s2 can be
calculated using the linear Debye-Hückel (DH) framework, which is
applicable for small electrostatic potentials, ψ<25 mV [2]. Within the
DH framework, charges separated by a distance r interact via a Yukawa-
like potential ∼ exp (−κDr)/r, where =−κ λD D

1 is the Debye screening
length. For ions of valencies zi and bulk concentrations ni

0, κD is given
by

∑=κ πl z n4 ,
i

i iD B
2 0

(3)

and for monovalent salt (zi= ±1) of bulk concentration n0, it
simplifies to =κ πl n8D B 0 . The Bjerrum length, lB, is defined as
lB=e2/(εkBT) (Gaussian units). For water, ε≈78, and at room tem-
perature, lB ≈ 0.7 nm. Another important length scale is the Gouy-
Chapman length, lGC=e/ (2πlB|σ|), at which the Coulombic interaction
of a homogeneously charged surface of charge density σ with an ele-
mentary charge is equal to the thermal energy.

As an example for calculating s2 with DH theory, we consider a
stripe structure of 1D domains where the surface-charge density, σ, is
described by a single sinusoidal mode, σ(x)=σk sin(kx), where k=2π/l
is the modulation wavenumber. One finds [34] that ∝ +s k k κ/2

2
D
2 ,

and by minimizing the free energy, the optimal wavenumber, k*, is
obtained. Further analysis indicates that a first-order phase transition
between stable finite domains and a macroscopic phase separation oc-
curs for κDl0 ≈ 1 [34].

At intermediate salt concentrations, the calculation of s2 cannot be
done analytically, and often simulations are used [30–32]. The optimal
wavenumber, k*, is then defined as the value for which the 2D structure
factor is at its peak. Naydenov et al. [34] presented a variational
approach to this regime, minimizing the PB free energy with
respect to a variational ansatz for an electrostatic potential of the form

Fig. 3. Molecular dynamics (MD) snapshots of two mobile and oppositely charged species
(marked black and white) confined to a surface in contact with an aqueous solution. The
repulsive interaction between the two species increases from (a) to (c), resulting in larger
domains. In (d), salt has been added to the solution, screening the electrostatics and
leading to macroscopic phase separation.
Source: Reproduced with permission from Ref. [31].

Fig. 4. Phase diagram of a surface composed of two oppositely charged species, either
forming finite domains (D) or undergoing macroscopic phase separation (M). The result
from a variational approach is plotted as a solid curve and the DH result as a dashed
horizontal line.
Source: Adapted from Ref. [34].
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ψ(x,z)=sin(kx)h(z). The phase diagram they obtained within this fra-
mework and within the DH approximation is presented in Fig. 4.

The phase transition between finite-size domains and macroscopic
phase separation has been studied in more general setups, e.g., for cy-
linders [29,30,33]. Furthermore, for two surfaces interacting across a
solution, it was shown that a phase transition occurs even without
salt [35]. Examining a two-surface system, the free energy is lowest
when the surfaces are oppositely charged, having opposite contribu-
tions to the electric field. As the inter-surface separation, d, becomes
smaller, these competing contributions result in a diminished electric
field. In this effective screening mechanism, d−1 plays the role of κD,
and the electrostatics becomes sufficiently weak for phase separation to
take place.

4. Ionic profiles near a single patchy surface

A heterogeneous fixed surface-charge density results in a hetero-
geneous charge density of mobile ions in solution. Although the charge
density can be determined by the electrostatic potential, ψ, via Poisson's
equation, finding the electrostatic potential proves to be a challenging
task. It is common to assume that the ions obey a Boltzmann distribu-
tion, determined by the average electrostatic potential induced by the
fixed charges and all other ions. Together with Poisson's equation, this
assumption leads to the mean field (MF) Poisson-Boltzmann (PB)
equation:

∑∇ = − ⎛

⎝
⎜ + ⎞

⎠
⎟

−ε ψ π ρ e z nr r( ) 4 ( ) e ,f
i

i i
ez ψ k Tr2 0 ( )/i B

(4)

where ρf is the charge density of fixed surfaces and macromolecules and
ni

0 is the reference ionic number density of the ith species, which co-
incides with the bulk value. The DH theory is then obtained by Taylor-
expanding the exponent in Eq. (4) up to first order in the potential.

The PB framework has its own limits. Due to a combination of large
fixed charge densities and high ionic valencies, strong electrostatic
correlations can become important, rendering the MF formulation in-
adequate. This regime is referred to as the strong coupling (SC) re-
gime [37–39]. In what follows, we discuss three different scenarios,
including the SC one: the added-salt and counterions only cases within
PB, and the SC case. The major differences between the three are
summarized in Table 1.

In order to investigate the ionic profiles near patchy surfaces, we
consider the following electrostatic setup, as is depicted in Fig. 5: a
planar surface at z=0 is charged heterogeneously with a surface-charge

density σ (x,y). The surface area, A, is taken to be macroscopic,
A →∞, and separates an ionic solution at z>0 from a homogenous
dielectric at z<0. The ionic solution has a dielectric constant ε and
a monovalent salt reservoir of concentration n0, while the medium at
z<0 has a dielectric constant ε′.

4.1. Added salt: DH theory

The nonlinear PB equation [Eq. (4)] cannot be solved analytically
for heterogeneously charged bounding surfaces, and some approxima-
tions are required. For added salt, the most straightforward approx-
imation is the linear DH theory, described in Section 3. Below, we
present the DH results for the ionic concentration near one hetero-
geneously charged surface. This case will serve as a basis for the re-
mainder of this section.

In the electrostatic setup of Fig. 5, the potential solves Laplace's
equation for z<0, while for z>0, it solves the DH linear differential
equation, i.e.,

∇ = ⎧
⎨⎩

<
>ψ

z
κ ψ z

0 0
0.

2

D
2

(5)

Here, κD is given by =κ πl n8D B 0 . The boundary condition for the
electrostatic potential at z=0 is given by the surface-charge density,

∂
∂

− ∂
∂

= −′
+ −

ε
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ψ ε
z

ψ πσ x y4 ( , ).
0 0 (6)

The excess number density of positive and negative ions,
Δn±(r)=n±(r)−n0, can be conveniently expressed via a Fourier
transform in the in-plane coordinates. Defining ρ=(x,y) and the 2D
Fourier transform in terms of the in-plane wavevector, k

∫
∫

=
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one finds for z>0

= ∓
+

±
−

′n z εκ σ
e qε kε

Δ ( ) 1
2

e ,
qz

k
k

D
2

(8)

where = +q κ kD
2 2 . In the homogeneous case, the ionic densities

decay as exp (−κDz). Here, each k-mode decays with a modified inverse
screening length, q, combining the contributions of salt (via κD) and the
k-mode of alternating positive and negative surface charges. Conse-
quently, higher modes (smaller wavelengths) decay faster. This implies
that at very large separations, the ionic profiles are determined solely
by the lowest k-mode, kmin. This mode decays as exp (−qminz), where

= +q κ κDmin
2 2

min
2 , and corresponds to the largest patch size on the sur-

face.
Hereafter, unless mentioned otherwise, we assume that the electric

field is confined to the aqueous solution (z ≥ 0), and is zero for z<0.
Given the high dielectric constant of water, ε≈80, many systems ex-
hibit a large dielectric mismatch, ε ≫ ε′, justifying this assumption.
Furthermore, interfaces of physical systems have a finite thickness,
along which the electric field diminishes. For example, the “oily” part of
a membrane has a dielectric constant ε′≈ 2, and the above assumption
is considered to hold for h/λD ≫ ε′/ε ≈ 1/40, where h is the membrane
thickness [40,41].

4.2. Counterion-only case

Within the DH framework, heterogeneously charged surfaces induce
spatially-dependent ionic concentrations, even when the surfaces are
overall neutral. In the counterion-only scenario, on the other hand,
there are no counterions in the absence of net charge. Screening still
occurs due to the surface-charge modulations, as is evident by solving
Laplace's equation.

In the case where there is a net surface-charge and no added

Table 1
Three electrostatic models as discussed in the paper. The counterion-only and added salt
cases are described within PB theory, while the SC regime corresponds to systems with
highly correlated counterions whose properties cannot be captured using MF theory. Co-
ions are present only in the added salt systems, for which the DH limit can be used for
small electrostatic potentials.

PB Correlations Co-ions DH limit

Counterion-only ✓ ✗ ✗ ✗

Added salt ✓ ✗ ✓ ✓
SC ✗ ✓ ✗ ✗

Fig. 5. Schematic drawing of a flat surface at z=0, with charge density σ(x,y). The di-
electric constant in the upper and lower regions is ε and ε′, respectively. The aqueous
solution in the upper region is in contact with a monovalent salt reservoir of con-
centration n0.
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electrolyte, other approximations of the full PB equation [Eq. (4)] are in
order. One of them is to expand the dimensionless electrostatic poten-
tial, ϕ=eψ/kBT, in the PB equation perturbatively with respect to a
small parameter ϵ, which relates to the surface-charge inhomogeneity,
i.e., = + + +ϕ ϕ ϕ ϕϵ ϵ (ϵ )0 1

2
2

3O . The term ϕ0 is the potential for a
homogeneously charged surface bearing the same net charge. Higher-
order terms depend on lower ones and can be iteratively solved. This
scheme is sometimes referred to as partially/modified linearized
PB [42,43]. Note that ϕ0(z) solves the regular PB equation, while ϕ1(r)
and ϕ2(r), for example, solve the equations

∇ =

∇ = −

−

− ( )
ϕ πl n ϕ

ϕ πl n ϕ ϕ

4 e ,

4 e .

ϕ

ϕ

2
1 B 0 1

2
2 B 0 2

1
2 1

2

0

0
(9)

In the counterion-only scenario, there are no ions in the bulk, and the
reference number-density, n0, is determined by the electro-neutrality
condition (Gauss' law). This method can also be used to solve the po-
tential beyond the DH framework for the case of added salt.

As ϕ2 in Eq. (9) depends on ϕ1
2, the contributions coming from the

different k-modes of the surface-charge density [Eq. (7)] are coupled.
The same holds for higher orders, n>2. In particular, k>0 modes
affect the k=0 mode of the ionic density, thus modifying the area-
averaged ionic density, as was demonstrated by Lukatsky et al. [44,45].
By solving Eq. (9) and from Monte-Carlo (MC) simulations, it was
shown that for overall charged surfaces, surface-charge modulations
enhance the counterion contact density (at the surface proximity).
Namely, the counterion density satisfies

∫= +
ρn

n
k

π
w kl σ

σ
( , 0)

(0)
1 d

(2 )
( ) ,ρ

h

k
2

2 GC
0

2

(10)

where ⟨n(ρ,z)⟩ρ is the area-averaged counterion density and
nh(z)=1/[2πlB(z+ lGC)2] is the counterion density profile for a
homogeneously charged surface bearing the same net charge. The
weight function, w(x), is the contribution of the k-th mode to the
counterion density (not shown here). Note that lGC is defined with
respect to the average surface-charge density, lGC=e/ (2πlB|σ0|).

The function w(klGC) in Eq. (10) is positive and monotonically de-
creasing, satisfying w(0)=1. These properties convey the important
features of the calculation. As the function is positive, the increase in
counterion density at the surface is a global effect, independent of the
exact form of the surface-charge modulation. Because it is a mono-
tonically decreasing function, the effect of smaller modes is more evi-
dent, similar to the DH case. The value w(0)=1 implies that in the limit
of large wavelengths of the modulation and/or large net charge, the
magnitude of the effect is determined solely by the value of the integral

∫ ∫=− ρ ρπ k σ σ σ σ(2 ) d | / | d [ ( )/ ]k
2 2

0
2 2

0
2 (Parseval's identity).

The localization of counterions near an overall charged surface was
demonstrated in other setups. For surfaces with random discrete
charges, correlations beyond MF were shown to increase the counterion
concentration near the surface via a loop expansion of the system's free
energy [46]. In such a setup, a similar effect can be captured also in MF,
within a possible charge regulation process. Counterions can bind to the
surface in order to decrease its effective charge density in absolute
value, thus becoming localized in its vicinity [47].

Several studies have investigated the counterion distribution in the
presence of surface-charge inhomogeneities in both cylindrical [48] and
spherical [49–52] geometries.

4.3. Strong coupling (SC) regime

Within the SC framework, counterions strongly repel each other
and/or are strongly attracted to the surface, resulting in relatively se-
parated ions positioned close to the surface. Consequently, the system
properties can be determined to some extent by those of a system with a
single counterion [37–39]. It is possible to distinguish between this
framework and the PB one via the electrostatic coupling parameter,

Ξ=z3lB/lGC, where z is the ion valency. The PB regime is relevant for
Ξ≪1, while the SC regime for Ξ≫1.

The above picture holds only for mobile charges of the same sign,
and the following discussion is restricted to the infinite dilution limit,
where only counterions are present. In addition, the surface charges are
all of only one sign, exhibiting surface-charge inhomogeneity of the
form σ(ρ)=σ0+σ1(ρ), where σ0 is the average surface-charge density
and the modulation around it satisfies ⟨σ1(ρ)⟩ρ=0, such that both σ0
and σ0+σ1 are positive. Solutions containing both positive and nega-
tive ions require another framework, e.g., the dressed counterion
theory [53], and lie outside the scope of this paper.

The SC counterion concentration is given by the Boltzmann
distribution of a single counterion in an external potential, n(ρ,z)=
bexp(−u(ρ,z)) [37–39], where u is the dimensionless electrostatic inter-
action energy between the surface and a single counterion. The parameter
b is determined by the electro-neutrality condition,

∫ ∫ =
∞

ρ ρz en z σ Ad d ( , ) .2
0 0 (11)

As the interaction energy depends linearly on the surface-charge density, it
is possible to decompose it into two terms, u=u0+u1, stemming, re-
spectively, from σ0 and σ1. The counterion concentration,
n (ρ,z), can then be written as

= −ρn z n z( , ) Λ ( )e ,ρ
h

u z( , )1 (12)

where Λ is determined by the electro-neutrality condition and
nh(z)=bexp(−u0(ρ,z)) is the counterion concentration for the equivalent
homogeneous surface-charge density, ⟨σ(ρ)⟩ρ=σ0. For a continuous di-
electric (ε=ε′) across the z=0 boundary, the concentration is given by
nh(z)=(σ0/elGC) exp (−z/lGC). As is evident from Eq. (12), the effect of
heterogeneity is encapsulated in the heterogeneous Boltzmann factor
exp (−u1(ρ,z)) and in the prefactor Λ.

We consider a simple example of a single-mode charge modulation in
the x direction, σ1/σ0=Δcos(kx), with |Δ|< 1, and a continuous
dielectric (ε=ε′) across the z=0 boundary. The contribution to the in-
teraction potential, u1, is then given by u1=(Δ/klGC) cos(kx) exp (−kz).
By averaging over x, we obtain a zeroth-order modified Bessel function of
the first kind I0,

⎜ ⎟= ⎛
⎝

⎞
⎠

−
ρn z n z I

kl
( , ) Λ ( ) Δe .ρ h

kz
0

GC (13)

As ⟨n(ρ,z)⟩ρ decays to zero faster than nh(z) in the z-direction, more
counterions accumulate near the surface, as compared with the homo-
geneous case (σ=σ0). This result is similar to the counterion-only result
within PB theory, and it holds also when additional modulation modes
are taken into account [54].

Within the SC regime, counterion localization at the surface proxi-
mity has been demonstrated in several other classes of surface-charge
heterogeneity. Namely, the effect was studied for surfaces with random
and disordered surface charge [55] as well as discrete surface
charges [56,57].

In this section, we reviewed the ionic concentrations induced by
inhomogeneous surface-charge densities in three different electrostatic
models. Far from the surface, the main contribution stems from the
lower k-modes of the surface-charge modulation. Moreover, surface-
charge heterogeneity leads to an enhanced localization of counterions
at the surface proximity. The effect originates from the nonlinear cou-
pling of different k-modes in the full nonlinear PB theory, and is not
captured within the linear DH theory.

Within the SC regime, appropriate for Ξ≫ 1, the localization of
counterions at the surface is related to the properties of the exponential
function; due to surface-charge modulation, there are regions across the
surface to which the counterions are less attracted and those to which
they are more attracted. The counterion contact density, given by a
Boltzmann factor of a single counterion, decreases in those former re-
gions and increases in the latter. Because the exponential function is
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convex, the excess contribution of those latter regions results in an
overall increase in the area-averaged contact density.

5. Interaction between heterogeneously charged surfaces

The effects of surface-charge heterogeneity on the interaction be-
tween a pair of charged surfaces in solution have been investigated in
several theoretical works [58–67]. The general approach is to find the
electrostatic potential and relate it to the osmotic pressure between the
surfaces, Π. The pressure is the difference between the inner pressure
and the outer one that is exerted by the bulk of the solution.

In order to study the osmotic pressure between heterogeneously
charged surfaces, consider the following electrostatic setup, as is de-
picted in Fig. 6: two parallel and heterogeneously charged planar sur-
faces are separated along the z-axis by a distance d. We denote the
bottom surface-charge density as σ(x,y) and the top one as η(x,y). The
surfaces are of area A and separate an inner ionic solution of dielectric
constant ε and bulk ionic concentration n0, from an outer medium of
dielectric constant ε′, as in Section 4.1.

Once the electrostatic potential in the inner region between the
surfaces is calculated, the osmotic pressure can be derived from the
Maxwell stress tensor. Including contributions from the z−z component
of the Maxwell stress tensor and the ideal gas pressure of mobile ions
yields

= + − + ++ −ε
π

E E E k T n nΠ
8

( ) (Δ Δ ),x y z
2 2 2

B (14)

where Δn± =n±(r)−n0 is the difference in the ionic concentration of
the positive/negative ions from that in the bulk, and E=(Ex, Ey, Ez) is
the electric field. For homogeneously charged surfaces, the electrostatic
potential varies only along the z-axis, leading to an attractive term
∼ −Ez

2. In the heterogeneous case, on the other hand, the variation of
the potential in the (x,y) plane leads to the repulsive terms ∼ +E E( )x y

2 2 .
As the osmotic pressure in thermodynamic equilibrium is constant
throughout the system, it is possible to evaluate Eq. (14) at arbitrary
positions, such as at the midplane, z=0.

The osmotic pressure can also be derived from the free energy via
the thermodynamic identity p=−(∂F/∂d)/A. This identity yields the
inner pressure and the outer one is obtained by taking the limit d →∞,
leading to

= − ⎛
⎝

∂
∂

− ∂
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d
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d

Π 1 lim .
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Many of the important features of the osmotic pressure are captured
within the DH framework, for which the electrostatic potential solves
the following linear differential equation:

∇ = ⎧
⎨⎩

− ≤ ≤
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The boundary conditions for the potential are defined by the sur-
face-charge densities according to
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The DH equation can be readily solved and the osmotic pressure can
then be derived. The DH osmotic pressure is most conveniently ex-
pressed via the Fourier transform in the in-plane (x,y) coordinates, as
was introduced in Section 4.1. One finds [58–61] that
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where Γk=q(1+Δk)/(qε+kε′), k=|k|, and = +q κ κD
2 2 2 . In Eq. (18), a

new k-dependent quantity has been introduced: Δk=(qε−kε′)/
(qε+kε′). This parameter corresponds to image interactions induced by
the discontinuity of the dielectric constant and ionic concentration at
z= ± d/2. Given a large dielectric mismatch, ε′≪ ε, it is customary to
approximate Δk=1 and Γk=2/ε. Similar calculations were performed
in spherical geometry for charged colloidal particles (see, for example,
Refs. [62–64]).

Note the difference between the two terms of Eq. (18). The first term
accounts for the self-energies of the two bounding surfaces in presence
of the discontinuity of the dielectric constant and the ionic concentra-
tion. Therefore, this term has the same sign as Δk, regardless of the
surface-charge densities. In particular, it is repulsive for ε> ε′. The
second term accounts for the interaction between the two bounding
surfaces and its sign depends on the surface-charge densities.

Below, we distinguish between three possible electrostatic setups.
For overall charged surfaces, the effect of heterogeneity is smeared out at
large inter-surface separations, and the leading contribution stems from
the net charge. However, in the case of overall neutral surfaces, this net
contribution vanishes and the leading contribution depends on the
inter-surface charge correlations and the largest patch size. Finally,
when the surface-charge densities are random and quenched, an average
over different surface-charge density configurations must be performed.
Then, in the absence of correlations, an important role is attributed to
the asymmetry between repulsion and attraction in PB theory. This
scenario is highly relevant to the experimentally observed attraction
between overall neutral patchy surfaces, described in Section 2.2.

5.1. Overall charged surfaces

In the case of overall charged surfaces, the effect of any in-
homogeneities is smeared out at large separations and the interaction
depends solely on the net charge. For example, from the DH result of Eq.
(18), the pressure satisfies Π ∼ σ0η0 exp (−κDd) for κDd ≫ 1. This
asymptotic behavior holds also beyond the DH framework [42,45] and is
the main justification in describing surfaces as homogeneously charged.

It is possible, however, to discuss corrections to this homogeneous
result. In the linear DH framework, the correction is a simple additive
term, because each surface-charge mode induces an independent os-
motic pressure term. The question remains: what is the effect of het-
erogeneity in the presence of a net surface charge, beyond DH?

To answer this question, one can, in general, expand the potential
according to the partially linearized framework, as is described in
Section 4.2. In the case of added salt, this framework was employed by
Miklavcic [42] to study how the contribution of a homogeneous surface-
charge density affects the contribution of k>0 modulations. By solving
the leading correction, ϕ1, and varying the net charge (k=0 mode),
it was found that the k>0 modulations have a smaller contribution to
the osmotic pressure for surfaces with a net charge, as compared to
overall neutral ones. Note the difference from the DH result in which all
terms are independent and add up by the principle of superposition. This
finding implies that the influence of surface-charge inhomogeneity is
restricted to surfaces that have a zero net charge or close to it.

Fig. 6. Schematic drawing of two aligned planar surfaces separated by a distance d along
the z-axis. The charge distribution on the top surface is η(x,y) and on the bottom surface is
σ(x,y). The dielectric constant and salt concentration in the inner region are ε and n0,
respectively. In the outer region, the dielectric constant is ε′ and there are no ions.
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Alternatively, by varying the k>0 modes for a given net charge, it
is possible to examine how surface-charge modulations modify the os-
motic pressure, as compared to the homogeneous case. Lukatsky
et al. [45] addressed this problem in the counterions-only case. They
considered periodic surface-charge densities at small and large se-
parations for in-phase and out-of-phase configurations (σ=η and
σ=−η, respectively).

The effect of surface-charge modulation on the osmotic pressure is
two-fold. This can be understood from Eq. (14), by examining both the
Maxwell stress tensor and counterion concentration at the midplane.
For all separations and displacements, the x and y components of the
electric field increase the osmotic pressure, while the z component re-
duces it. Due to symmetry, the reduction is largest in the out-of-phase
configuration (σ=−η), and vanishes in the in-phase one (σ=η). The
midplane counterion concentration, on the other hand, is always re-
duced. An explanation can be found in Section 4.2; the counterion
concentration is increased at the surfaces, z= ± d/2, and reduces at
the midplane due to conservation of counterions. Similar arguments can
be used also for the SC result [54].

At large separations, these contributions lead to a reduction in the
osmotic pressure, independent of the inter-surface displacement,
scaling as d−3, reminiscent of Casimir-type forces. At small separations,
the osmotic pressure is always reduced in the out-of-phase configura-
tion, while in the in-phase one, it is reduced for large modulation wa-
velengths but increases for small ones. Note that in both limits, the
pressure is reduced for large modulation wavelengths.

5.2. Correlations between overall neutral surfaces

In the absence of a net charge, other properties of the surface-charge
densities, σ and η, come into play. At large inter-surface separations, as
mentioned above, the leading contribution to the osmotic pressure stems
from the minimal mode kmin, corresponding to the largest patch size. If
both σ and η contain this mode, the inter-surface term∼ exp (−qmind) is
the dominant one. Otherwise, the dominant contribution comes from the
self-energy term ∼ exp (−2qmind) that decays twice as fast.

The previous paragraph demonstrates the importance of another
feature of the surface charge densities, i.e., the surface-charge correla-
tions. The significance of correlations is evident in the DH result of Eq.
(18), written in terms of these products: σkσ−k, ηkη−k, σkη−k, and
ηkσ−k. These are the Fourier transforms of the two-point auto-corre-
lation and cross-correlation functions, respectively, where the two-
point correlation function of σ and η is defined as

∫= +′ ′ ′ρ ρ ρ ρ ρG σ η( ) d ( ) ( ).σ η,
2

(19)

We further discuss the role of correlations by considering only a
single mode of surface-charge modulation in the x-direction, σ(ρ)=
Cσ cos(kx) and η(ρ)=Cη cos(kx+δ), for a large dielectric mismatch
(ε ≫ ε′). The relative phase, 0≤δ< π, determines the inter-surface
correlation, and Eq. (18) reduces to [61]
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For phases in the range δ< π/2, the correlation term adds to the self-
energy repulsion. In the range π/2< δ< π, on the other hand, the
correlation term is negative. It competes with the self-energy repulsion
and becomes dominant at large separations. In this case, the osmotic
pressure turns over from repulsive to attractive with increasing se-
parations, and the crossover separation, d*, is given by
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Pressure profiles for different values of the phase δ are illustrated in
Fig. 7.

In the special case of δ=π/2, the correlation term, ∼ cos δ, in
Eq. (20) vanishes. At large separations, the osmotic pressure decays
as ∼ exp(−2qd), which is a general feature of the DH result between
surfaces with no correlation. As the pressure decays twice as fast than it
does with correlations, the corrections to the DH calculation become
important in this case even for small potentials [65]. This fact is de-
monstrated in Section 5.3, where the pressure is calculated between
surfaces with random patch arrangements and inter-surface correla-
tions that vanish on average.

5.3. Overall neutral and randomly charged surfaces

In many experimental setups, the heterogeneous surface-charge
densities cannot be determined exactly. For example, two surfaces that
are charged using the same experimental procedure, may exhibit some
unknown relative displacement, η(ρ)=σ(ρ+ρ′). Furthermore, the
charging process itself may be partially random in nature. This is the
case with the preparation process of patchy surfaces, as is described in
Section 2.1, where patches of positive surfactant bilayers form on ne-
gative mica surfaces in an uncontrolled arrangement. For such random
surface-charge densities, the nature of the interaction depends greatly
on whether the system is annealed or quenched. In the former, the
random surface-charge density is in thermodynamic equilibrium, while
in the latter case it is “frozen” in time.

Correlations are omnipresent in annealed systems, where the sur-
face charges are mobile and can lock into thermodynamically favorable
configurations. In the case of overall neutral systems, for example,
surface charges rearrange themselves such that the two surfaces are
oppositely charged (η=−σ), resulting in a lower free energy. The
surface-charge density (σ or η) can then be determined by the interplay
between electrostatics and other short-range interactions [35,36], as is
described in Section 3. An interesting role was suggested for salt in this
situation; for higher salt concentrations, the suppressed electrostatics
allow line tension to induce larger surface-patches, possibly resulting in
a stronger electrostatic attraction [35]. MC simulations, however,
support the traditional role of salt [36]. Although the patch size in-
creases for higher ionic concentrations, the screened electrostatics re-
sults in an overall weaker attraction.

In the second scenario, random and quenched systems exhibit no
inter-surface correlations on average. The correlation term of the DH
osmotic pressure ∼σkηk vanishes, yielding an overall repulsion.
Furthermore, for “molecular-size patches”, Podgornik and Naji [60]
have shown that DH theory predicts a repulsive interaction even when

0 1 2 3

3

0

3

6

qd

C
2

Fig. 7. Dimensionless pressure profiles, (ε/C2) Π, for a single mode surface-charge
modulation with Cσ=Cη=C. Profiles are plotted for three phases: δ=0 (solid),
δ=0.85π (long-dashed) and δ=π (short-dashed). As the phase increases, the inter-sur-
face term becomes attractive until the entire pressure profile becomes negative.

R.M. Adar et al. Advances in Colloid and Interface Science 247 (2017) 198–207

204



incorporating fluctuation effects beyond MF in a loop expansion of the
free energy. In light of this result, the long-range attraction between
quenched patchy surfaces, as measured by Silbert et al. [12], is sur-
prising and must originate from another source.

One possible explanation lies in the nonlinear corrections appearing
in the full nonlinear PB theory for finite size patches. Together with the
experimental evidence of attraction, Silbert et al. [12] have also sug-
gested such an explanation for attraction using a simple averaging ar-
gument. The osmotic pressure between randomly arranged patches is
approximated by an average over two situations of interaction between
two infinite and homogeneously charged surfaces. In the first, the
surfaces are equally charged, while in the second, the surfaces are op-
positely charged. Thus, each charged patch, considered to be very large,
faces with equal probability either an equally charged patch or an op-
positely charged one, as is illustrated in Fig. 8. Their numerical calcu-
lation of Π=(Π+/++Π+/−)/2, where Π+/+ is the osmotic pressure
between equally charged surfaces and Π+/− between oppositely
charged ones, shows that the attraction in the latter case (Π+/− ) ex-
ceeds the repulsion in the former one (Π+/+), yielding an overall at-
traction within the nonlinear PB theory.

The difference between repulsion and attraction can be captured
analytically by examining the full nonlinear PB equation [Eq. (4)] for
homogeneously charged surfaces. The first to investigate the osmotic
pressure between asymmetrically charged surfaces were Parsegian and
Gingell [68], who addressed the scenario of added electrolyte and ob-
tained the criteria for repulsion and attraction within the DH frame-
work. Such criteria were later extended for the counterions-only
case [69] and for the general nonlinear PB framework [70]. In parti-
cular, two studies were dedicated to the interaction between oppositely
charged surfaces [71,72], demonstrating the significance of counterion
release. It was shown that for large surface-charge densities and small
salt concentrations, counterions between oppositely charged surfaces
are released into the bulk due to entropic gain, enhancing the electro-
static attraction. Explicitly, under these conditions and at separations
lGC ≪ d ≪ λD, the attraction between oppositely charged surfaces scales
as Π+/− ∼−d−2 ln2(d/8λD) [72], as opposed to the repulsion between
equally charged surfaces that scales as Π+/+ ∼ d−2. Therefore, the
ratio between the two satisfies

∼+ −

+ +
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2
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The forces between patchy surfaces were recently tested in MC si-
mulations [67] for strongly charged patches and weak ionic strength. In
the simulations, surfaces of area ∼1500 nm2 were divided into two or
four patches, charged alternatively with positive or negative charges.
Similarly to the averaging framework described above, the net

interaction between the surfaces in the simulation was evaluated as the
average over the different configurations of two or four patches. An
attraction was found in both cases and was stronger for the larger
patches [67]. Moreover, the attraction was weaker than the one pre-
dicted by an average over two homogeneous systems as is described
above.

For an arbitrary patch size and weak electrostatic interaction, an
analytic expression can be derived for the osmotic pressure between
patchy surfaces [65], as is reviewed next. Consider the electrostatic
setup of Section 5. For simplicity assume that the electric field is con-
fined within the inner medium (ε′=0) and that the surface-charge
densities have a form σ=σkcos(kx) and η=σkcos(kx+δ), corre-
sponding to patchy stripes of width, w=π/k, common to both surfaces.
The relative phase, δ, is arbitrary and depends on the specific experi-
mental setup. Assuming that the surfaces are sufficiently large, every
possible value of δ should be manifested. Therefore, the calculation of
physical quantities requires an average over the phase, δ. Given that the
surfaces were prepared separately, δ is likely to be distributed uni-
formly in the range 0 ≤ δ ≤ π.

In this electrostatic setup, within the DH framework, the screening
length is given by = +−q k κ1/1 2

D
2 as is explained in Section 4.1. The

dimensionless factor (qlGC)−1 can be used to characterize the strength
of the electrostatic interaction, and it diminishes for a combination
of small surface charge and screening-length. For qlGC>1, it is
possible to expand the dimensionless electrostatic potential, ϕ, in
powers of the small parameter (qlGC)−1, according to =ϕ

+ +− − −ql ϕ ql ϕ ql( ) ( ) [( ) ]GC
1

1 GC
3

3 GC
5O . The expansion contains only odd

powers as the potential is odd in the surface-charge density, ∼ −σ lGC
1. In

particular, the DH potential is obtained as the first-order term in the
expansion. In Ref. [65], for qlGC>1, the electrostatic potential was
approximated by the first two terms, by applying a variational principle
to the PB free energy. The resulting osmotic pressure was averaged over
a uniform distribution of the phase, 0 ≤ δ ≤ π. At large inter-surface
separations (qd ≫ 1), the osmotic pressure is given by:
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where d*=4q3(λDlGC)2 is the crossover separation, at which the pres-
sure crosses over from repulsive to attractive. Results for the osmotic
pressure are depicted in Fig. 9.

As is evident from the expression for d*, a crossover occurs for all
possible values of q, λD and lGC, i.e., attraction always prevails at large
separations. The first correction to the DH potential, as small as
(qlGC)−3, suffices to yield an overall attraction. An explanation is found
in Section 5.2. For a given phase, δ, the correction to DH at large se-
parations is negligible as compared to the leading correlation term
∼exp(−qd). However, as the average over the phase δ cancels out
these terms, only the self-surface terms ∼exp(−2qd) are left and the
correction becomes important. This is an example of the limitation of
the DH theory to describe the forces between overall neutral surfaces
with no inter-surface correlations, even for large inter-surface separa-
tions.

We note that the three frameworks above provide insight into the
attraction between two overall neutral patchy surfaces, but a limited
one. The averaging scheme of Ref. [12] conveys the asymmetry be-
tween repulsion and attraction within PB theory, but it is valid only for
lGC ≪ d ≪ λD ≪ w, and yields an osmotic pressure that is insensitive to
lGC and w. The MC simulations of Ref. [67] enable a study within sev-
eral physical conditions, but only a few of them have been tested. In
particular, it would be interesting to perform such simulations for more
random surface-charge densities. Finally, the framework of Ref. [65]
describes the dependence of the osmotic pressure on all the system
length scales, but it does so only for weak interactions.

(a)

(b)

Fig. 8. Two patchy surfaces in (a) fully commensurate and (b) fully incommensurate
configurations. In Ref. [12], the random patch arrangement is considered as an idealized
combination of these two configurations. The osmotic pressure in both configurations is
approximated as the pressure between two infinitely large and homogeneously charged
surfaces, either equally or oppositely charged, respectively. The total osmotic pressure is
the average between the two.
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6. Comparison to van der Waals attraction

It is instructive to compare the electrostatic interaction between
overall neutral quenched patchy surfaces with the ever-present van der
Waals (vdW) attraction between uncharged surfaces. While the first
originates from the averaged electrostatics between surface-charge
patches and depends on the specific form of the surface-charge density,
the latter stems from correlated dipole fluctuations, existing between
any two surfaces. Despite their different origins, the two interactions
have comparable magnitudes at large inter-surface separations.

In the presence of salt, the zero-frequency vdW attraction decays
exponentially rather than algebraically [73–75]. In the limit of large
separations (κDd ≫ 1), the vdW force per unit area, fvdW, is given
by [74]

= −
−

f
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π κ d4
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B D

3 2

D
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independent of any surface properties. We emphasize that fvdW accounts
for the correlated dipolar fluctuations and not for possible monopolar
charge fluctuations that can also be considered beyond MF [76,77].

Within the DH framework for molecular-size patches, the repulsive
electrostatic interaction is proportional to the above expression and
effectively renormalizes the vdW force [60]. This result can be obtained
by averaging Eq. (18) over surface-charge densities with no inter-sur-
face correlations. The surface-charge densities are taken to be randomly
distributed according to a Gaussian distribution ⟨σ(ρ)σ(ρ′)⟩σ=
⟨η(ρ)η(ρ′)⟩η=γ2a2δ(ρ−ρ′), where γ is the root-mean-square surface-
charge density, and a is a conveniently defined microscopic
length [60,61]. Then, assuming no ions in the outer region, the osmotic
pressure at large inter-surface separations is given by
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Going beyond DH, as is described in Section 5.3, the vdW and
electrostatic interactions can be comparable at large separations only if
they have comparable screening lengths, q−1 ≈ λD, corresponding to
very large patches (w ≫ λD). Comparing Eqs. (23) and (24) for such
large patches, one finds that the electrostatic attraction is dominant for
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where u ≡ d λD/w2 is a dimensionless parameter. The ratio on the left-
hand side is inversely proportional to the total patch charge, while the
ratio on the right-hand side depends solely on bulk properties and in-
creases with the salt concentration. The function f(u)=u2e−u is
bounded from above by about 0.5, implying that the long-range elec-
trostatics are comparable with vdW only for (πlGC/w)4< λD/lB. Under
reasonable physical conditions, the electrostatic term is dominant over
a wide range of separations. For example, for T=300 K, n0=2 mM,
e/(|σ|w)=3 nm, and w=100 nm, the electrostatic term is dominant for
separations up to d=650 nm [65].

Unlike the zero-frequency vdW attraction, higher frequency terms
are not affected by the presence of salt ions [74,75]. It is possible to
incorporate these contributions in the Hamaker constant as in
fvdW∼−ℋd−3, and the Hamaker constant, ℋ, can be calculated using
Lifshitz theory [6,68]. The exponentially decaying electrostatic attrac-
tion of Eq. (23) is thus weaker than the vdW term unless

≫k Tλ l/( ) 1B D BH , corresponding to a combination of small ionic con-
centrations and small Hamaker constant. Note that the Hamaker con-
stant does not contain the zero-frequency contribution.

7. Summary and outlook

In this paper, we reviewed experimental and theoretical studies of
surface-charge inhomogeneity across aqueous ionic solutions.
Motivated by recent SFA experiments on thin mica sheets coated with
surfactants, we focused on modeling planar surfaces with charge
modulations over mesoscopic length scales. Note that several works
have been devoted in recent years also to the study of heterogeneously
charged cylindrical and spherical colloids, as well as to randomly
charged surfaces, manifesting heterogeneity on the microscopic level.

We have discussed under what conditions charged surface patches
of finite size can form spontaneously and remain stable on surfaces
immersed in an aqueous solution. The surface-charge heterogeneity
then results in a universal increment in the counterion concentration at
the surface proximity, which can consequently lead to a reduction in
the osmotic pressure between two surfaces.

Fig. 9. Osmotic pressure profiles in units of 10−9kBTq2/ (2πlB) as function of qd, between patchy surfaces according to the expansion in powers of (qlGC)−1. For T=298 K, ε=80, and
q−1=1 nm, the osmotic pressure is in units of mPa. The DH result (1st-order term) is plotted as dashed curves and the next order (sum of 1st-order and 3rd-order terms) is plotted as solid
ones, demonstrating the limitation of the DH approximation for uncorrelated surfaces. (a) Pressure profiles between surfaces with infinitely large charged patches for three patch-charge
densities. (b) Pressure profiles between surfaces with a fixed patch charge-density for three patch width values. In both (a) and (b), the intermediate profile (blue) crosses over from
repulsion to attraction at smaller pressure values, as is shown in the corresponding insets. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Source: Adapted from Ref. [65].
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We have demonstrated that the interaction between overall charged
surfaces is mostly determined by their net charge. For overall neutral
surfaces, the interaction strength depends on the minimal wavenumber
(largest wavelength) of the surface-charge modulation and on inter-
surface correlations. The sign of the interaction (attractive/repulsive)
depends mostly on inter-surface correlations and on the dielectric dis-
continuity at the bounding surfaces.

In the scenario of overall neutral patchy surfaces with random patch
arrangement, we have discussed the differences between the attraction
of annealed surfaces and quenched ones. While annealed surfaces can
rearrange their charge distributions and exhibit a clearly understood
electrostatic attraction between oppositely charged surfaces, quenched
surfaces can attract one another because of nonlinear terms in the PB
theory, which favor attraction over repulsion.

The asymmetry between repulsion and attraction is currently at-
tributed to counterion release into the bulk. This mechanism is made
possible by the overall neutrality of the surfaces even for homogeneous
surfaces. As heterogeneous patchy surfaces are more complex, a more
elaborate mechanism may play a leading role in the attraction. In future
works, it will be worthwhile to explore in more detail how the surface
heterogeneity propagates into the ionic solution bounded by the sur-
faces. In other words, one should ask not only how many counterions
there are, but also how they are distributed in between the surfaces.

The current understanding of long-range attraction between quen-
ched patchy surfaces is rather incomplete. The theoretical frameworks
reviewed in this paper account for the phenomenon only in the com-
plementary limits of weak or strong interactions. A thorough descrip-
tion of the system at hand over a complete set of physical parameters,
including different possible manifestations of heterogeneity, remains to
be established.
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