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Abstract – We use the Poisson-Boltzmann theory to predict contact angle saturation of aque-
ous droplets in electrowetting. Our theory predicts that injection of ions from the droplet into
its surrounding medium is responsible for the deviation of the apparent contact angle from the
Young-Lippmann equation for large applied voltages. The ion injection substantially decreases
the Maxwell stress and increases the osmotic pressure at the interface between the two media,
leading to saturation of the apparent contact angle. Moreover, we find that the contact angle
does not saturate, but only has a broad minimum that increases again upon further increase of
the applied voltage, in agreement with experiments.

Copyright c© EPLA, 2015

Introduction. – Electrowetting is a process where the
wettability of droplets made of a conducting liquid on sur-
faces is controlled by an applied voltage [1,2], and is used
in applications such as variable focal lens [3], display de-
vices [4], and lab-on-chip devices [5].

In a typical experimental setup [6,7], a droplet of an
aqueous (electrolyte) solution is deposited on a thin dielec-
tric film that coats a metal electrode (see fig. 1), and the
space surrounding the droplet is filled with an immiscible
fluid (such as oil) or gas (such as air). When a voltage is
applied between a counter-electrode that is inserted into
the droplet and the metal electrode, charges carried by
ions are accumulated at the interface between the droplet
and the surrounding medium (as well as at the interface
between the droplet and the dielectric film). The result-
ing Maxwell stress arising from these accumulated charges
deforms the shape of the oil-water interface near the three-
phase contact line. In typical experiments, the deformed
region of the interface is much smaller than the droplet
size, and the deformation is observed as a decrease [8–10]
of the droplet apparent contact angle, θ̄w, although the
intrinsic contact angle, θw, remains constant [11–13].

For small applied voltages, the apparent contact angle,
θ̄w, decreases with increasing applied voltages, following
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the classical Young-Lippmann equation (see eq. (11)). As
the applied voltage becomes larger, θ̄w starts to deviate
from the Young-Lippmann equation [7,11,14] and eventu-
ally saturates —a phenomenon called contact angle satu-

ration (CAS). We note that in some experiments, θ̄w does
not fully saturate but rather shows a broad minimum, be-
yond which it starts increasing again upon further increase
of the applied voltage [14].

A number of models in the past two decades have been
proposed to elucidate the physical mechanism involved in
CAS [10,15–19]. Macroscopic electrostatic considerations
indicate that very large electric fields are generated near
the three-phase contact line (about ten times or larger
than the uniform field away from the contact line were
reported in ref. [17]), where the oil-water interface inter-
sects the substrate at a finite angle. Along these lines, Pa-
pathanasiou and coworkers [17,18] predicted that charges
are injected and trapped inside the dielectric film, and re-
late it to local dielectric breakdown due to large electric
fields near the contact line. The trapped charges decrease
the Maxwell stress that deforms the oil-water interface,
and eventually leads to saturation of the droplet contact
angle. This mechanism may operate in some experimental
conditions, but, in principle, one can suppress local dielec-
tric breakdown by using alternating voltages (AC) of high
enough frequency and/or dielectric films of high dielectric
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Fig. 1: (Colour online) (a) A typical experimental setup of electrowetting. A droplet of an aqueous (electrolyte) solution is
deposited on a thin dielectric film of thickness d, which coats a planar metal electrode. The space that surrounds the droplet is
filled with oil. A voltage V is applied between the bulk of the droplet and the metal electrode. Cylindrical coordinates (ρ, φ, z)
are used because of the axial symmetry of the droplet. (b) An enlarged view of the oil-water interface close to the three-phase
contact line, ρ = ρc. The shape of the oil-water interface is represented by the height function h(ρ). The intrinsic contact angle
between the oil-water and the planar oil-insulator interfaces is θo = π − θw, while the apparent (macroscopically measured)
contact angle is θ̄o = π − θ̄w.

strength [6,14]. Since CAS has been observed almost uni-
versally in electrowetting experiments, saturation should
be driven by a generic electrostatic mechanism that does
not depend on specific experimental setups or materials.
Moreover, many of the existing theories do not account for
the fact that the apparent contact angle exhibits, in some
cases, a minimum (as a function of the applied voltage),
instead of saturation.

When the medium surrounding the droplet is a gas
phase, experiments have shown an ionization of gas
molecules at the contact line for voltages corresponding
to the onset of CAS [7]. Moreover, molecular-dynamics
(MD) simulations have shown that when the total amount
of charges is fixed [20], the apparent contact angle of
nanoscopic droplets starts to deviate from the Young-
Lippmann equation when charges are injected from the
droplet into its surrounding medium.

Motivated by these results, we use the Poisson-
Boltzmann theory to predict a physical mechanism that
drives CAS. Our theory treats the statistical mechanics
involved in the ion injection and thus is very different from
theories that are solely based on macroscopic electrostat-
ics [10,15–19]. The theory relates the phenomenon of CAS
to the decrease of the Maxwell stress at the oil-water in-
terface due to the increase in injected ions. We find that
for large applied voltages, the apparent contact angle does
not show a real saturation. Instead, it shows a broad min-
imum, beyond which the apparent contact angle starts to
increase again with increasing applied voltages, in agree-
ment with previous experiments [14]. Finally, we note
that our model differs from the work of Monroe et al. [21],
where the Poisson-Boltzmann theory was used to predict
CAS, but in a very different system where ions do not
exchange across the interface between the droplet and its
surroundings.

Model. – We take into account the injection of ions
from a droplet into the surrounding medium in an exten-
sion of the electromechanical theory of electrowetting [8,9].

For convenience, we introduce the supplementary intrin-
sic contact angle, θo = π − θw, and the supplementary
apparent contact angle, θ̄o = π − θ̄w. These are the angles
that the oil-water interface makes with the dielectric film
from the oil side (see fig. 1). We consider a droplet of
an aqueous solution, placed on a thin dielectric film that
coats a planar metal electrode, see fig. 1. We treat cases,
in which the space that surrounds the droplet is filled with
oil, but our theory is applicable to cases, in which the sur-
rounding medium is another immiscible fluid.

The aqueous droplet is rather large and acts as a reser-
voir of monovalent ions of concentration nw. The ions in
the droplet are in thermodynamic equilibrium with ions
residing in the surrounding oil phase. Our theory is appli-
cable to a droplet surrounded by gas only when the ther-
modynamic equilibrium of ions is ensured (see also the
Discussion section below). Without an applied voltage,
the ionic concentration no in the oil phase has the form
no = nwexp[(μw − μo)/kBT ], where μw and μo are the
(standard) chemical potentials of ions in the droplet and
oil phase, respectively, kB is the Boltzmann constant and
T is the absolute temperature. Since ions are highly insol-
uble in the oil phase, μo ≫ μw, and the ionic concentration
is exponentially small in the oil phase, no ≪ nw. Finally,
as our theory treats droplet deformations on length scales
much smaller than the capillary length and, thus, gravity
plays no role.

The shape of the oil-water interface, which is axially
symmetric, is represented by the positional vector that
has the form r(ρ, φ) = (ρ cosφ, ρ sin φ, h(ρ)), where h(ρ) is
the height of the oil-water interface (along the z-direction)
measured from the oil-film interface, see fig. 1. This vector
describes the deformation of the oil-water interface in the
proximity region of the contact line (much smaller than
the droplet size). The surface of the dielectric film is hy-
drophobic and the contact angle, θo ≪ 1, is very small.
Thus, the gradient |h′(ρ)| ≪ 1 and, to the first approx-
imation, the electric field is normal with respect to the
dielectric film.
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With these assumptions, the free energy of the droplet
has the form

F =

∫

So

fsur dS +

∫

S

fele dS + ΔP

∫

Ω

dV. (1)

The first term is the surface free energy, the second term is
the free-energy contribution due to the electrostatics and
entropy of ions, and the third term ensures that the vol-
ume Ω of the aqueous droplet remains constant, by using
a Lagrange multiplier, ΔP , that is the pressure difference
between the droplet and oil phase. The area integral in
the first term of eq. (1) is limited to the planar section,
ρ > ρc, covered by the oil phase (So), while the area in-
tegral in the second term should be performed over the
entire surface (S) of the dielectric film (the z = 0 plane),
and Ω is the system volume.

The surface free energy, fsur, has the form

fsur(ρ) ≃ γos − γws + γ

(
1 +

1

2
h′2(ρ)

)
, (2)

where γos, γws, and γ are the surface tensions of the oil-
substrate, water-substrate, and oil-water interfaces, re-
spectively. We take the surface free energy of the droplet
at zero voltage as our reference state.

The free-energy contribution, fele, has the form

e2fele(ρ)

(kBT )2
=

− ǫo

∫ h

0

dz

[
κ2

o(cosh ψo − 1) +
1

2

(
∂ψo

∂z

)2
]

− ǫw

∫
∞

h

dz

[
κ2

w(coshψw − 1) +
1

2

(
∂ψw

∂z

)2
]

− 1

2
ǫins

∫ 0

−d

dz

(
∂ψins

∂z

)2

− qele(ρ)U, (3)

where ψw(ρ, z), ψo(ρ, z), and ψins(ρ, z) are the dimen-
sionless local electrostatic potentials (rescaled by e/kBT ,
where e is the elementary charge). The subscripts “w”,
“o”, and “ins” indicate the aqueous droplet (z > h(ρ)),
the oil phase (0 < z < h(ρ)), and the dielectric film
(−d < z < 0), respectively, with the corresponding di-
electric constants: ǫw, ǫo, and ǫins. The inverse Debye
length in the droplet and oil phase is, respectively, κw ≡√

8πlwnw and κo ≡
√

8πlono, where lw ≡ e2/(4πǫwkBT )
and lo ≡ e2/(4πǫokBT ) are the Bjerrum lengths in the
corresponding regions. Finally, in the last term qele(ρ) =
−ǫins

∂
∂z ψins(ρ, z) |z=−d is the charge density (rescaled by

kBT/e) on the electrode at z = −d, and U ≡ eV/(kBT ) is
the dimensionless potential to be used hereafter, propor-
tional to V , the voltage applied between the droplet and
the metal electrode (see fig. 1).

Minimizing the free energy, eq. (1), with respect
to the three electrostatic potentials leads to a set of

Poisson-Boltzmann equations:

∂2ψw

∂z2
= κ2

w sinh ψw(ρ, z), (4)

∂2ψo

∂z2
= κ2

o sinh ψo(ρ, z), (5)

∂2ψins

∂z2
= 0. (6)

We treat the dielectric film as a perfect insulator, where
ions cannot penetrate. This is in contrast to the case
treated in refs. [17,18]. Equations (4)–(6) should be solved
with the following boundary conditions: i) the electro-
static potential is zero in the bulk z → ∞ of the droplet,
ii) the electrostatic potential is −U on the z = −d elec-
trode, and iii) the electrostatic potential and electric dis-
placement vector (in the z-direction) are continuous at
the oil-water interface, z = h(ρ), and at the oil-insulator
interface, z = 0. Equations (4) and (5), as well as the
boundary conditions at the oil-water interface, ensure the
continuity of electrochemical potential at the oil-water in-
terface for both cations and anions; our theory takes into
account explicitly the scenario that ions can be injected
from the droplet into the oil phase and vice versa, due to
the applied voltage.

Minimizing the free energy, eq. (1), with respect to the
position h(ρ) of the oil-water interface leads to a force
balance equation of the form

ΔP − γ
1

ρ

d

dρ

(
ρ

d

dρ
h(ρ)

)
− 2nokBT (Π̂o(h) − 1) = 0, (7)

where ΔP of the first term is the pressure difference, the
second term is the capillary force, and the third one is
related to the electro-osmotic pressure [22]. The dimen-

sionless electro-osmotic pressure, Π̂o(h), in the oil phase
has the form

Π̂o(h) = coshψo(ρ, z) − 1

2κ2
o

(
∂ψo

∂z

)2

, (8)

where the first term accounts for the osmotic pressure of
the ions and the second term for the electrostatic Maxwell
stress. It can be shown that Π̂o(h) is equal to the inte-
gration constant of the first integral of eq. (5). Thus, it
depends on ρ only via the position h(ρ) of the oil-water
interface. Note that the electro-osmotic pressure in the
aqueous droplet does not contribute to the force balance in
eq. (7), because its value at the oil-water interface is equal
to its bulk droplet value, 2nwkBT . We emphasize that the
osmotic pressure of the ions —the first term of eq. (8)— is
a new ingredient that has not been previously considered
in works that employed macroscopic electrostatics.

The boundary condition used to solve eq. (7) is that the
oil-water interface intersects the surface of the dielectric
film at the contact line, h(ρc) = 0, with an angle θo =
h′(ρc). Finally, by minimizing eq. (1) with respect to the
position ρ = ρc of the contact line, we obtain the intrinsic
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contact angle, θo ≃
√

2(γos − γws + γ)/γ [22]. Our theory
thus predicts that the angle θo does not depend on the
applied voltage, in agreement with refs. [11–13].

Without loss of generality, we assume that the curvature
h′(ρ)/ρ of the oil-water interface in the radial direction is
quite small (see also the second term of eq. (7)). The first
integral of eq. (7) is obtained by multiplying both sides
of this equation by h′(ρ), and then integrating it with re-
spect to ρ with the boundary condition, h′(ρc) = θo. Note
that the oil-water interface is deformed by the applied elec-
tric field in a region that is much smaller than the radius
γ/(2ΔP ) of the droplet, h ≪ γ/(2ΔP ) [11–13]. In length
scales comparable to the droplet radius, the deformation
of the oil-water interface is observed as a decrease of the
contact angle, and the limit θ̄o ≡ limρ→∞ h′(ρ), is defined
as the apparent contact angle. Then, the first integral of
eq. (7) yields the form

cos θ̄o = cos θo +
2nokBT

γ

∫
∞

0

dh
[
Π̂o(h) − 1

]
, (9)

where cosx ≃ 1 − x2/2 is used for both the intrinsic and
apparent contact angles, θo and θ̄o.

The electro-osmotic pressure, Π̂o(h) in eq. (9), is de-
rived by using eq. (8), where the electrostatic potential
ψo(ρ, z) is obtained from eqs. (4)–(6) with the correspond-
ing boundary conditions (shown below these equations).
Considering the high salt limit inside the droplet, the ions
strongly screen the electric field and the use of Debye-
Hückel approximation, sinhψw ≃ ψw in eq. (4), is justi-
fied. The electrostatic potential and electric field in the
droplet thus have the approximate form

ψw(ρ, z) = ψw(h)e−κw(z−h),

Ew(ρ, z) = κwψw(h)e−κw(z−h),
(10)

where ψw and Ew = −∂ψw/∂z depend on the radial coor-
dinate ρ only via the height h(ρ) of the oil-water interface.

In contrast, the ionic concentration in the oil phase is
very small, unless ions are injected from the droplet into
the oil phase by the applied voltage. With positive ap-
plied voltages, U > 0, cations are injected from the droplet
into the oil phase, and likewise, anions are injected from
the oil phase into the droplet. When the applied volt-
age is large enough, most of the ions in the oil phase are
cations, sinh ψo ≃ − 1

2exp(−ψo). In this case, the Poisson-
Boltzmann equation in the oil phase, eq. (5), is non-linear
and its non-linearity plays a crucial role in driving CAS.

Results. – We calculate the angle θ̄o(V ) that is supple-
mentary to the apparent contact angle, θ̄w, as a function of
the applied voltage, V , by using eq. (9) (see the solid lines
in fig. 2). By changing the integration variable in eq. (9)

from h to the electro-osmotic pressure, Π̂o (employing the

fact that h = 0 at one boundary and Π̂o = 1 at the other
boundary) and expressing the height h as a function of Π̂o

from eq. (8), one can perform analytically the integration
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Fig. 2: (Colour online) The difference cos θ̄o − cos θo of ap-
parent and intrinsic contact angles (rescaled by 2nwkBT/γκw)
is plotted as a function of the applied voltage V (in volts)
(solid lines). The region of small applied voltages is shown
in the inset. The rescaled thickness of the dielectric films
d(ǫoκo/ǫins) is 0.5 × 10−2 (blue solid line), 1.0 × 10−2 (black
solid line), and 1.5×10−2 (red solid line). The ratio ǫoκo/ǫwκw

is fixed to 1.0×10−4 . The predictions of the Young-Lippmann
equation (11) are shown for comparison as dotted lines, and
the asymptotic predictions of eq. (12) for large V are shown
as dashed lines. The rescaling factor 2nwkBT/γκw is about
6.8 × 10−3 for ionic concentration of 0.1 M in the droplet.

in eq. (9). For small V (< kBT/e), eq. (9) returns to the
classical Young-Lippmann form

cos θ̄o ≃ cos θo − 1

2

ǫins

γd
V 2, (11)

where V is the applied voltage in volts (see the dotted
lines in fig. 2). This is because the applied voltage is not
large enough to drive the ion injection from the droplet
into the oil phase. It can also be understood since the
combined capacitance of the oil phase and the dielectric
film, (h/ǫo +d/ǫins)

−1, accounts for the density of charges
that are accumulated at the oil-water interface (see the
dashed and light green lines in fig. 3); the oil phase mostly
acts as a perfect insulator. In our theory, the chemi-
cal potential difference, which suppresses the ion injec-
tion, is taken into account in the ratio ǫoκo/(ǫwκw) =√

ǫo/ǫw exp[(μw−μo)/(2kBT )] between the Debye lengths
of the two media.

For larger (and positive) values of U = eV/(kBT ), θ̄o

starts to deviate from the Young-Lippmann equation (11)
(see fig. 2). This is because cations are injected from the
droplet into the oil phase and change the electric field.
The charge density is thus smaller than the prediction
made using the combined capacitance (h/ǫo + d/ǫins)

−1

and the deviation increases with increasing the applied
voltage (see fig. 3); the oil phase no longer acts as a perfect
insulator.

The function of cos θ̄o shows a broad minimum at a
threshold voltage U∗, which depends on the (rescaled)
thickness d(ǫoκo/ǫins) of the dielectric film. For U > U∗,
cos θ̄o increases slowly. When the peak of cos θ̄o is broad
enough, it can be experimentally observed as a “satura-
tion”. Hence, our model predicts that CAS is not a real
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Fig. 3: (Colour online) The area density σw (= ǫwκwψw(h))
of electric charges that are accumulated at the oil-water in-
terface (rescaled by 2enwU/κw) is shown as a function of
the rescaled height κoh of the interface, for several values
of the applied voltage: V = 5 (V) (light green line), 20 (V)
(magenta line), 40 (V) (blue line), 60 (V) (black line), and
80 (V) (orange line). Other parameters are ǫoκod/ǫins = 0.01
and ǫoκo/ǫwκw = 1.0 × 10−4. For comparison, the (black line)
dashed line shows the prediction derived by using the com-
binded capacitance (h/ǫo + d/ǫins)

−1. It corresponds to the
case in which no ions are injected into the oil phase.

saturation of θ̄o, but rather a broad minimum as a function
of the applied voltage. This finding is in agreement with
recent experiments that show that the apparent contact
angle starts to increase again for U > U∗ [14].

Another result obtained for the large-U limit is an
asymptotic form of cos θ̄o,

cos θ̄o − cos θo ≃

2nokBT

κoγ

[
−2ǫinsU

ǫoκod

{
ln

(
ǫinsU

ǫoκod

)
− 1

}

+
1

2

ǫoκo

ǫwκw

(
ǫinsU

ǫoκod

)2
]

, (12)

where the limit ǫins/d ≪ ǫwκw is used (see the dashed
lines in fig. 2). Note that the parameter ǫoκo/(ǫwκw) =√

ǫo/ǫw exp[(μw − μo)/(2kBT )] depends only on the spe-
cific material parameters of added salt and oil. The
asymptotic expression, eq. (12), predicts that the value

of cos θ̄o at U = U∗ depends on n
1/2
o γ−1, but not on

the thickness d or the film dielectric constant, ǫins (see
fig. 2). Moreover, it can be shown that at U = U∗,
cos θ̄o − cos θo ∼ −2nwkBT (γκw)−1 log(ǫwκw/(κoǫo)), and
U∗ ∼ ǫwκwd/ǫins for small values of ǫwκw/(κoǫo).

For small applied voltages, the Maxwell stress aris-
ing from charges accumulated at the oil-water interface
dominates the osmotic pressure arising from the injected
ions (see the magenta and cyan lines in fig. 4). The
Maxwell stress that is applied to the interface decreases
with increasing injected charges (see also fig. 3), because
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Fig. 4: (Colour online) The two forces per unit length acting
on the three-phase contact line (rescaled by 4nwkBT/κw) are
shown as a function of the applied voltage, V (in volts). These
forces are calculated from the integral of the Maxwell stress
(magenta line) and osmotic pressure (cyan line) along the oil-
water interface (the second term of eq. (9)). The sum of these
forces is proportional to cos θ̄o − cos θo (black dashed line).
The parameters used are ǫoκod/ǫins = 0.01 and ǫoκo/ǫwκw =
1.0 × 10−4.

the Maxwell stress scales as σ2
w/(2ǫo) with the area den-

sity σw (≡ ǫwκwψw(h)) of charges at the interface (see
eq. (8)). The deviation of the Maxwell stress from the pre-
diction of the classical Young-Lippmann theory increases
with increasing applied voltage U , and eventually, the
Maxwell stress saturates (see the magenta line in fig. 4).
The difference cos θ̄o−cos θo is proportional to the electro-
osmotic pressure applied to the oil-water interface (see
eq. (9)); without the osmotic pressure of the injected ions,
the apparent contact angle indeed saturates.

Discussion. – We find that injection of ions from an
aqueous droplet into its surrounding oil phase offers a
physical mechanism that drives the contact angle satura-
tion (CAS). The Maxwell stress at the oil-water interface
decreases with increasing injected charges. Furthermore,
cos θ̄o does not saturate, but rather shows a broad mini-
mum, followed by an increase of cos θ̄o for larger applied
voltages, in agreement with experiments [14]. The increase
of cos θ̄o is driven by the osmotic pressure generated by the
injected ions. The osmotic pressure is suppressed when the
injected ions are adsorbed onto the dielectric interface [20].
This implies that whether cos θ̄o saturates or shows a local
minimum depends on the chemistry of injected ions and
dielectric surface.

Our theory treats the dielectric film, which is used to
insulate the droplet from the substrate electrode, as a per-
fect insulator. This has to be compared with the theories
of Papathanasiou and coworkers [17–19], which predicted
that CAS is driven by a local dielectric breakdown of the
dielectric film. The breakdown mechanism may apply to
experiments that use dielectric films of relatively small di-
electric strength. When CAS is driven by such a dielectric
breakdown, the apparent contact angle shows a hystere-
sis because dielectric breakdown is an irreversible process.
Furthermore, cos θ̄o will not show an increase for applied
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voltages that are larger than the CAS threshold U∗. On
the other hand, the mechanism proposed in this letter is
generic and valid even for dielectric films of larger dielec-
tric strength. In addition, our predicted cos θ̄o is reversible
and shows a minimum, beyond which its value increases
with the applied voltage.

An important underlying assumption is that the droplet
and the surrounding medium are in thermodynamic equi-
librium. However, this may not be the case in some ex-
periments because of the time scale associated with ion
injection from the droplet into the surrounding medium
and the further diffusion in the latter medium. In par-
ticular, the slower ion dynamics may be important when
the droplet is surrounded by a gas phase where molecules
are very dilute. We note that in some experiments [14],
the apparent contact angle is not very sensitive to the ionic
concentration in the droplet. This may be understood in
terms of a non-equilibrated situation for which our theory
would not be applicable.

Experiments by Chevalliot and coworkers [14] suggest
that for AC voltages with moderate frequency, CAS is
driven by a process that is faster than the local dielectric
breakdown, where this fast process may be driven by the
injection of ions from the droplet into the oil phase. In
the future, it will be of interest to capture the ionic mo-
tion, e.g., by impedance spectroscopy that measures ca-
pacitive (displacement) currents between the droplet and
the metal electrode. Such experiments can be comple-
mented by extending our theory to systems where elec-
trowetting is driven by applied AC voltages.

For small applied voltages, cos θ̄o reduces to the Young-
Lippmann equation, as in eq. (11), whereas for large
applied voltages, cos θ̄o has an asymptotic form, as in
eq. (12). Equation (12) also predicts that κwγ(cos θ̄o −
cos θo)/(2nwkBT ) scales with the rescaled applied voltage,
ǫinsU/(ǫoκod). This implies that plots of different experi-
mental conditions should collapse into one curve, provided
that the specific combination of material parameters of the
ions and oil, as in ǫoκo/(ǫwκw), remains fixed. Moreover,
we also predict that the apparent contact angle at satu-
ration depends on parameters that characterize the ionic
solvation in the surrounding oil phase.

We hope that future experiments will test the predic-
tions presented in the letter, and, in general, will advance
the understanding of the principle mechanism underlying
contact angle saturation in electrowetting.
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