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Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase
separation of stacked multi-component lipid bilayers, we propose a model composed of stacked
two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo
simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show
that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a
continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase
separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior
is mainly due to an effective deeper temperature quench because of the larger value of the critical
temperature, T, for larger inter-layer interaction. When the temperature ratio, 7/Tc, is kept fixed, the
temporal growth exponent does not increase and even slightly decreases as a function of the increased
inter-layer interaction. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934984]

I. INTRODUCTION

Biological membranes are constructed out of two mono-
layers (leaflets) arranged in a back-to-back configuration.
They are mainly composed of phospholipids but contain also
other molecules such as cholesterol, glyco-sugars, and pro-
teins.! In living organisms, these membranes can form multi-
lamellar stacks known as lamellar bodies.> Examples of such
highly folded membranous structures are thylakoid mem-
branes of photosynthetic cyanobacteria or plant chloroplasts,
and stratum corneum of human skin. Since multilamellar struc-
tures can combine single membrane functions in series, they
offer possibilities for novel applications in photonics and as
bio-sensors.

Over the last decade, many studies have been performed
on artificial giant unilamellar vesicles (GUVs) composed of
ternary mixtures of saturated lipid such as sphingomyelin,
unsaturated lipid such as DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine), and cholesterol.>* By decreasing tempera-
ture, these ternary mixtures undergo a lateral phase separation,
where a liquid-disordered (Lg4) phase coexists with a liquid-
ordered (L,) one. It is known that the L, phase is rich in
saturated lipid and cholesterol, while the Ly phase is rich in
the unsaturated lipid.

In a recent experimental study, Tayebi et al.’ reported
that a stack (typically composed of several hundred layers) of
multicomponent lipid bilayers with phase-separated domains
exhibits inter-layer columnar ordering. Using ternary mixtures
of sphingomyelin, DOPC, and cholesterol, it was observed
that domains in stacked bilayers align one on top of the other,
thereby forming an uninterrupted columnar ordering across
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hundreds of bilayer membranes. Such a cooperative multi-
layer epitaxy was attributed to the interplay between intra-
layer domain growth and inter-layer coupling. The formation
of columnar structures in stacked bilayers is important because
it allows for electrical currents and transport processes to pass
through many transmembrane channels in a cooperative and
efficient manner. Other possible applications of the columnar
ordering can be as templates for membrane protein crystal-
lization, which is necessary for X-ray structural analysis of
membrane proteins incorporated in bilayers.

As far as the dynamics of phase separation in stacks
of membranes is concerned, the temporal evolution of the
average inplane domain size, R, was shown to obey a power-
law growth, R ~ t® with @ ~ 0.455.% This exponent is larger
than the value obtained using GUVs with a single bilayer, for
which the reported experimental value is @ ~ 0.28 + 0.05.°
Hence, Tayebi et al. concluded that the inplane domain growth
in each of the bilayers of the stack is faster, as compared to the
domain growth in GUVs.

In a subsequent paper,’ a model based on regular solution
theory, which takes into account the inter-lamellar coupling of
inplane phase-separated domains, was proposed. The calcu-
lated phase diagram was presented in terms of intra-layer and
inter-layer coupling parameters and contains three different
regions: (i) a “one-phase” region in which the system does not
exhibit phase separation; (ii) a “two-phase” region in which
two phases coexist and domains in different layers along the
normal z-direction are completely aligned and have the same
composition in the various layers, and (iii) a “multi-phase”
region in which there are unaligned inplane domains with
different compositions in the different layers. According to
Ref. 7, the transition line between the “two-phase” and “multi-
phase” regions strongly depends on the number of layers in the
stack which was varied up to ten layers.

©2015 AIP Publishing LLC
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Being motivated by these works,>’ we investigate the
correlation between lateral phase separation in a stack of multi-
layer membranes using a spin model called the stacked two-
dimensional (2d) Ising model. This is the simplest model
to describe a stack of binary membranes composed of two
types of lipids. The model is the same as the anisotropic
three-dimensional (3d) Ising model for a finite stack in the z-
direction. The important difference between the two models
is that in the former the order parameter (magnetization) in
each layer is conserved. This requirement is based on the
experimental fact that the A/B lipid composition in each layer
almost does not change during experimental times.

In our model, we study the thermodynamical equilib-
rium features using Monte Carlo (MC) simulations. The main
reason that we performed MC simulations rather than analyz-
ing the mean-field free energy describing phase separation
(as studied in Ref. 7) is to allow us to investigate the role of
thermal fluctuations on the inter-layer domain correlation in
stacked membranes. We show that the domains in each layer
are correlated along the vertical z-direction, for any finite value
of the inter-layer interaction is positive, i.e., J’ > 0. Hence, the
system is either in a one- or two-phase state in equilibrium,
and in our model the “multi-phase” state is not obtained in
the thermodynamic limit of infinite lateral size, as long as the
inter-layer coupling J’ > 0. As anticipated, it is found that the
phase-transition temperature, T.(J’), increases as a function of
the inter-layer interaction parameter.

We also investigate the dynamics of phase separation at
fixed temperature 7 in the two-phase coexistence region. We
show that the accelerated temporal behavior of the phase sepa-
ration for the stack is mainly driven by the increase of the
temperature quench, AT = T(J’) — T, because T,(J’) becomes
larger for larger J’. However, if the ratio 7/T.(J’) is kept fixed,
the dynamics of the phase separation is actually slower for
larger values of the inter-layer coupling, J'.

In Sec. II, we describe the stacked 2d Ising model and
review the MC simulation method. In Sec. III, we present the
equilibrium properties of the model and discuss the condi-
tion for domain columnar ordering. Section IV describes the
dynamics of domain growth for different values of the inter-
layer interaction, and it is compared with a previous theoretical
work.

Il. MODEL AND SIMULATION TECHNIQUE

In our simulations, we use the stacked 2d Ising model,
shown in Fig. 1(a). We consider a stack of two-component
lipid bilayer membranes composed of an A/B lipid mixture,
although the experimental systems often consist of ternary
lipid/cholesterol mixtures. This simplification does not affect
the essential feature of the lateral phase separation. Another
simplification is that we treat only symmetric bilayers where
the composition of the two leaflets is identical. Hence, each
lipid bilayer having a finite thickness can be mapped into
a 2d Ising model with conserved magnetization, expressing
the fact that no lipid is allowed to exchange across layers.
The 2d Ising layers are stacked in the z-direction, and they
interact with their two nearest-neighboring layers, as depicted
in Fig. 1(b).
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FIG. 1. (a) Schematic illustration of a stack of binary membranes, taken
here as a stack of three bilayers in the z-direction. Each bilayer is composed
of two identical leaflets containing saturated lipids (A, black) and unsatu-
rated lipids (B, white). Saturated and unsaturated lipids typically form L,
and Lg4 phases, respectively. As the lipid molecules are not allowed to ex-
change between different bilayers, their composition in each bilayer is fixed.
(b) The stacked two-dimensional (2d) Ising model. Here the bilayer structure
of each membrane is neglected. Lipids A and B correspond to spin up (black)
and spin down (white), respectively. J is the coupling parameter between
nearest-neighbor spins in the same layer, while J” is the coupling parameter
between spins belonging to two nearest-neighboring layers.

The Hamiltonian of this stacked and coupled 2d Ising
system can be written as

H==J 3 SipSip=J" SipSicip
i(p.p") i.p

= > HiSip, M
Lp

where up/down values of the spin, S; , = 1, at p = (x, y) in
the ith layer correspond to a lattice site occupied by an A or
B lipid, respectively. The coupling between nearest-neighbor
spins in the xy-plane (denoted by (p,p’)) is J, while the
coupling with the nearest-neighbor spins across layers in the z-
direction is J'. The physical origin of the inter-layer interaction
J’ is primarily attributed to direct van der Waals attractive
interactions acting between neighboring bilayers.® Other non-
specific interactions, such as electrostatic and/or hydration
interactions, can be taken into account through the second
virial coefficient and will affect the value of J’ as well.”!°
Throughout this paper, we shall use the dimensionless ratio
defined by A = J’/J as a measure of the inter-layer coupling
strength.

In the above Hamiltonian, y; is the external field (chem-
ical potential), which fixes the average magnetization (A/B
composition) in the ith layer. Although y; can, in general, take
different values for different layers, we consider here the case
where all of them are the same, y; = y, fixing the same value
of lipid composition in all layers. This assumption holds also
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for the dynamical states since we do not allow the lipids to be
exchanged across different layers. The average order parameter
(A/B composition) in the ith layer is denoted by Ei,p, and
throughout this paper (except in Fig. 5(b)) we choose Ei’ p=0,
which corresponds to a symmetric 1:1 A/B lipid mixture, i.e., at
the critical composition. This is equivalent to setting the value
of the chemical potential to zero, i.e., u = 0.

The present model is related to the anisotropic 3d Ising
model for a finite slab. The special case of 4 = 1 corresponds
to the isotropic 3d Ising model, whereas for 4 = O the stack
is composed of non-interacting 2d Ising layers. One interest-
ing issue related to the anisotropic model, 0 < A < 1, is the
crossover from 2d to 3d critical behavior!! that will be explored
below. We also note that the stacked 2d Ising model has been
studied a great deal in connection with multilayer adsorption
phenomena on attractive substrates,'>!'? but not in the context
of layers of binary mixtures with conserved magnetization
(order parameter) as studied in this paper.

We investigate both the statics and dynamics of a stack
of membranes based on the Hamiltonian presented in Eq. (1).
We employ MC simulations for classical Ising spins on a finite
L x L x L, lattice. Periodic boundary conditions are used in
all three directions. The spin configurations are updated us-
ing Kawasaki exchange dynamics'* in order to conserve the
magnetization in each layer. This is based on the experimental
fact that lipids almost do not exchange across different layers.
Hence, their A/B inplane composition is fixed during experi-
mental times.

The MC simulations presented here are performed in the
following way. At each MC trial step, a site on the 3d lat-
tice and one of its nearest neighbors in the same layer are
chosen at random. If the two spins are alike, a new site is
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again chosen at random. This process is repeated until two
unlike nearest neighbor spins are found. Then, the probability
of exchanging the two spins is determined by the standard
Metropolis algorithm. ' If the energy difference due to the spin
exchange becomes negative, i.e., AE < 0, we accept the ex-
change. Otherwise, we accept the exchange with a probability
exp(—AE/T), where T is the temperature and the Boltzmann
constant, kg, was set to unity.

In one Monte Carlo step (MCS), this procedure is repeated
Lx L x L, times. The MC simulations are carried out by
annealing the temperature gradually from an initial infinite
temperature for which the spin configurations are completely
disordered and uncorrelated. The first 10° (or in some cases
up to 10 MCS is discarded in order to reach thermal equil-
ibration. Furthermore, to avoid correlations between different
equilibrated configurations, measurements are taken every 20
MCS, and we averaged over 10° independent system configu-
rations, in order to obtain sufficient statistics.

In order to investigate the phase separation dynamics, we
monitor the domain coarsening as a function of time (MCS) at
a constant temperature below 7. An example of a typical time
evolution of phase separation is presented in Fig. 2 for 4 = 0.1,
T/J =1.63,and L = L, = 64, where six snap-shots are shown
from 10> MCS till 10’ MCS. For clarity purposes, only the
boundaries between domains of spin up (rich in lipid A) and
spin down (rich in lipid B) are shown. In the initial time steps,
the phase separation occurs inplane, and the domains coarsen
without much out-of-plane coupling (due to the rather small
value of 4 = 0.1). As time evolves, the inplane coarsening is
also followed by out-of-plane columnar ordering, where the
lipid A (and lipid B) rich domains are highly correlated along
the z-direction. This is clearly seen for the fully equilibrated

FIG. 2. Time evolution of phase separated domains in the stacked 2d Ising model at different MC steps for 4 =0.1 and T'/J =1.63. The other parameters
are S; p=0and L = L, =64. For presentation purposes, only the interfaces of domain boundaries are shown, and the two different sides of the interfaces are
represented by green and brown. The system is fully equilibrated after about 10’ MCS.
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configuration occurring after about 107 MCS (last snap-shot).
Here, the two color boundaries represent the two sides of
the domain boundaries (while the inside of the domain is not
shown). The boundaries look like extended interfaces separat-
ing inplane domains that are vertically connected along the z-
direction, in agreement with experiment.’

lll. STATIC PROPERTIES OF THE STACKED DOMAINS

In order to determine the phase-transition temperature
and obtain the corresponding phase diagram, we compute the
specific heat per lattice site defined as

11
‘T
where H is given by Eq. (1) and (- - - ) indicates an ensemble
average. We note again that the above specific heat is calcu-
lated at constant magnetization (corresponding to constant
lipid concentration in our model) of each layer. In our simu-
lations, the ensemble average is taken by averaging over inde-
pendent equilibrium spin configurations as explained in Sec. 1.
For a given system size and dimensionless ratio 4, we calculate
c as function of the dimensionless temperature 7/J. Such a
dependence of ¢ on T/J is presented in Fig. 3(a) for several
lateral system-sizes, L, and for 4 = 0.1, L, = 8§, recalling that
L, is the number of layers of the 3d stack.

For each system size, we associate the peak position of the
specific heat with the apparent critical temperature, T.(L, 1),
for a system with a finite size, L. Finite-size scaling analysis is
then performed in order to determine the critical temperature
for a slab of a finite L, layers in the thermodynamic limit
(L — ©0). In Fig. 3(b), we plot Tc(L,A = 0.1) as a function of
1/L for the same parameters as in (a). The plotted data are fitted
with the following finite-size scaling assumption:

(¢H? = (HY), ©))

T.(L,2) =T(A) +alL™ ', (3)

where T¢(1) = T,(L — o0,1) is the infinite system critical
temperature for a given A, a is a non-universal prefactor, and
v is the 2d critical exponent for the correlation length in the
xy-plane. We set v = 1 in our analysis, following the work by
Pham Phu et al.,'® who performed extensive MC simulations
on magnetic Ising films (with A = 1).!7 We choose this 2d
critical exponent for the fitting because it was shown'¢ that
the 2d character of the film is dominant even for L, = 13. The
extrapolated critical temperature for L — oo obtained from
Fig. 3(b) is Te(A = 0.1)/J = 2.85. We repeat this procedure for
different values of the inter-layer interaction parameter in the
range of 0 < 1 < 1 and determine the corresponding critical
temperature, T¢(1). We note that the value v = 1 provides a
good fitting for all the A values examined.

Somewhat surprisingly, finite-size effects in the z-direc-
tion are much weaker as compared to those in the lateral
direction. This is shown in Fig. 4, where we plot ¢ as a func-
tion of T/J when (a) A =0.1, (b) 1 =0.5, and (¢c) A =1
for a different number of layers, L, = 4,8,12,16, while the
lateral size L = 48 is kept fixed. For all A values studied here
(0.1 £ A £ 1), the observed peak position, T'/J ~ 2.65 in (a),
3.30in (b), and 4.10 in (c), is almost independent of L., at least
for L, > 8. This means that, in our model with a fixed imposed
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FIG. 3. (a) Specific heat per lattice site, ¢, as function of the dimensionless
temperature 7'/ J, for different lateral system-sizes L = 16,24,32,40,48. The
other parameters are S; =0, 4=0.1, and L, =8. For each system size,
the peak position of ¢ is identified with an effective “phase transition” tem-
perature. (b) Finite-size scaling analysis of the phase-transition temperature,
Tc(L)/J for A =0.1. The apparent phase-transition temperature is plotted as a
function of 1/L. The solid line is the fit given by Eq. (3) with v =1 (see text).
The extrapolated value for the critical temperature is Te(21 =0.1)/J =2.85.

magnetization (A/B composition) in each layer, the correlation
in the z-direction is very strong due to the cooperative behavior
of domains in different layers.

For fully equilibrated configurations, as shown in Fig. 2
after 107 MCS, the domains are highly connected vertically
along the z-direction, from the bottom layer to the top one.
This is also shown in Fig. 5 in which the columnar structure of
domains in different layers is clearly shown. Hence, the corre-
lation length in this direction exceeds L., and the constraint of
fixed magnetization (A/B composition) in each layer induces
a strong structural correlation in the z-direction even though
the inter-layer interaction J’ is smaller than the intra-layer
interaction J (4 < 1). A more quantitative argument for the
domain connectivity will be given later. Because the number of
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FIG. 4. Specific heat per lattice site, ¢, as | function of the dimensionless temperature 7'/ J, for different systems sizes L, =4,8,12,16 for (a) 1 =0.1,(b) 1 =0.5,
and (c) A = 1. The other parameters are S; , =0 and L =48. The observed peak position, 7'/J ~2.65 in (a), 3.30 in (b), and 4.10 in (c), is almost independent

of L_, atleast for L, > 8.

layers, L., barely affects the MC results as shown in Fig. 4 for
A =0.1, 0.5, and 1, most of the simulations were done using
L, = 8, which is sufficiently large in our case to observe the
asymptotic behavior of L, — oo. For the anisotropic 3d Ising
model without any constraint of conserved magnetization,
as previously studied in Ref. 11, a very weak system-size
dependence of the apparent critical temperature was observed
by measuring the planar susceptibility.

The results of finite-size scaling analysis are shown in
Fig. 6, where we plot 7. as a function of A. The critical
temperature interpolates between the 2d and 3d Ising results,
T2 < T(A) < T34 the exact value in 2d (corresponding to
A=0) is known to be T29/J =2/In(1 + V2) ~ 2.269 for
square lattices,'® and the numerical estimate in 3d (correspond-
ingto A = 1)is T2¢/J ~ 4.511 for cubic lattices.!” These two
limits are recovered in our simulations and are seen in Fig. 6
for 4 =0 and 1, respectively. Although a more detailed
A-dependent scaling behavior of T.(1) was previously dis-
cussed in the limit of very small 2,'":?° we shall generalize the
argument for the anisotropic case of finite 4,0 < A < 1. When
T < T.(1), the stack undergoes a phase separation, and the
inplane domains rich in lipid A (spin up) are interconnected
along the z-direction, bridging between adjacent layers and
forming large connected domains of the same average compo-
sition. The same feature also occurs for the B-rich domains.
Such a behavior can be clearly observed in Fig. 5.

(a)

In order to monitor quantitatively the degree of inter-
connectivity of domains in different layers, we define the
following quantity:

2
YIS
p ©d

where the average is taken over equilibrated MC configurations
as explained above. This quantity can be cast also as

L21L2 Z Z <(Si»P = Sip)(S)p — EJkp)) s, )
Z p ij

and represents a special “magnetic susceptibility,” where the
correlations are taken only along the z-direction and then
averaged laterally in each of the planes. When the domains
are connected along the z-direction, the summation over
different i-layers will produce a large value of &, while &
is small if the domains are uncorrelated across the layers even
for T < T,(1). In Fig. 7, we plot 6% as a function of T/J
for different values of A, while fixing L =16 and L, = 8.
Notice that even for A as small as 0.05 (blue diamonds), 5>
tends to increase as the temperature decreases below T.(1).
This means that the domains are connected in the z-direction
once the phase separation takes place. On the other hand,
domains are independent and uncorrelated only when the inter-
layer interaction is extremely small, i.e., 4 < 0.001 in Fig. 7.

6=

FIG. 5. Time evolution of phase-separated domains in a stacked 2d Ising model of eight layers, L, =8, at different MC steps for (a) gi, p=0and (b) Ei, p=0.4.

The other parameters are A =0.1, 7 /J =2.0, and L = 256.
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2

<

N’

~° o+ 2-phase i
1 - -

1 1 1 1
0.0 0.2 04 0.6 0.8 10

A

FIG. 6. The phase-separation temperature, 7(1)/J, at the critical composi-
tion, as a function of the interaction parameter A for symmetric A/B mixtures,
§,3 p =0. The system is in a phase-separated state below the solid line and in
a one-phase state above the line.

The situation is found to be marginal when A = 0.01 (red
triangles) because 62 then slightly deviates from zero at low
temperatures.

Based on our MC results, we conclude that in the ther-
modynamic limit, L — co, domains will always be connected
for any finite inter-layer interaction, J’ > 0. We give now a
simple argument supporting this conclusion and show that
in the limit L — oo but with a finite number of layers, L.,
the domains in different layers are uncorrelated only when
J" =0 (A = 0) is strictly obeyed. For the symmetric A/B case
(S, p = 0), each layer will eventually phase separate into two

T/J

FIG. 7. The out-of-plane domain connectivity, 62, defined in Eq. (4), as a
function of the dimensionless temperature 7"/ J, for different values of 1 =0,
0.001, 0.01, 0.05, 0.1, 0.5, 1.0. The other parameters are §,-,p =0, L=16,
and L, =8. The transition temperatures for different A values are indicated
by arrows. The value of 62 becomes larger when domains are correlated along
the z-direction between different layers. This increase in &2 is observed for
lower temperatures and larger A.
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(a) (b)

FIG. 8. Schematic representation of phase separated domains in a stack of
membranes. Black and white domains are rich in A and B lipids, respec-
tively. Two extreme cases are shown; (a) domains are fully connected in the
z-direction, (b) domains are arranged at random and are disconnected.

semi-infinite domains: one composed by the A lipid (spin up)
and the other by the B lipid (spin down), as shown schemat-
ically in Fig. 8. When the domains are fully correlated in the
z-direction, as in Fig. 8(a), the total free energy of the stack
consists of the contributions

Feon = _J’LzL2 + Fintras (6)

where Fjn, accounts for the intra-layer interactions. On the
other hand, when the inplane domains are completely random
and disconnected, as sketched in Fig. 8(b), the total free energy
is dominated by an entropy contribution of arranging a random
stack of A and B domains along the z-direction,

Fyis = _TLz In2 + Fyyra, (7)

with the same Fj,, as before because this term is common for
both free energies. By comparing Eqs. (6) and (7), the threshold
inter-layer interaction, (J')*, separating the two states, is given
by

(J) = . 8)

Notice that (J’)* depends on L but not on L,. For finite temper-
atures, it vanishes in the thermodynamic limit of L — oo.
Hence, this simple scaling argument suggests that domains are
always connected in the z-direction for any finite value of J'.
Therefore, for all 1 > 0, in the phase-separated region (below
the critical temperature) presented in Fig. 6, domains should
always form interconnected structures along the z-direction.
As shown in Egs. (6) and (7), the internal energy scales with
L?, while the entropy due to the random stacking of domains
does not depend on L. Hence, the entropic effect can never
overcome the internal energy in the thermodynamic limit and
leads to the stability of the columnar structure. This conclusion
is not in agreement to that of Tayebi et al.,” who claimed that
there is a “multi-phase” state in which domains are not aligned
and have different compositions even in thermodynamical
equilibrium.

In the simulations, (J’)* can be finite due to finite-size ef-
fects. For instance, if the temperature is chosen to be
T/J =1 in Fig. 7, the threshold value for L = 16 can be
estimated as A* = (J')*/J ~ 2.7 x 1073, Since A = 1072 (red
triangles in Fig. 7) exceeds this threshold, the corresponding
62 takes larger values at low temperatures. Moreover, the very
weak finite-size effects along the z-direction are consistent
with the lack of L,-dependence of (J’)* in Eq. (8).
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IV. DYNAMICS OF PHASE SEPARATION

We address now the effects of inter-layer interaction on
the dynamics of phase separation as the system converges
towards its thermal equilibrium state. Under the assumption
that scaling laws can be applied, the average domain size R
increases according to a temporal power-law: R(t) ~ t.* For
2d systems for which the total domain area is conserved, the
average domain size R is inversely proportional to the total
interface length ¢, i.e., R ~ 712122 Thig can easily be seen
because R and ¢ are related by £ = 2rnR ~ nR, where n is
the number of domains, and the total area of all domains,
A = mnR* ~ nR?, is a conserved quantity. Hence, within the
scaling hypothesis, the total interface length (in 2d) should
behave as

(@) ~ 177, 9)

In our stacked Ising model, we calculate the interface length
in each of the layers and average it over different layers. Note
that the total interface length is proportional to the first term of
the Hamiltonian in Eq. (1), which enumerates the number of
bonds across the inplane A/B interface.

In Fig. 9(a), we plot the temporal evolution of the to-
tal interface length in 2d, £(r) (and averaged along the
z-direction), as a function of time measured in MC steps.
The temperature quench into the two-phase region is done
for a fixed temperature, 7/J = 2.0 < T¢(1), in order to mimic
the experiment that is conducted at fixed room temperature.
Several values of A are studied, and the other parameters are
L =256 and L, = 8, with averages taken over three indepen-
dent MC runs. For each A value, the scaling behavior of Eq. (9)
is analyzed, and we extract the growth exponent @ from the
late stage kinetics. We find that for 4 = 0 (2d case), the growth
exponent has the smallest value of @ ~ 0.07, while for 4 > 0,
it is a function of A and increases up to @ ~ 0.28, as shown in
Fig. 9(b).

Although this result may explain the fact that the phase
separation has an accelerated dynamics in stacked membranes
as compared to GUVs (isolated single membranes), we should
keep in mind that T¢(1) increases as function of the inter-layer
coupling A > 0, as shown in Fig. 6. As long as the final quench
temperature is fixed to 7/J = 2.0, the temperature quench
depth defined by AT = T.(1) — T becomes larger as the value
of A is increased. This may explain why the growth exponent
a becomes larger with increasing A, for a fixed 7-quench.

In order to have a better comparison between different
A values, we evaluate in Fig. 10 the growth exponent in a
different way. We now keep a constant quench ratio
T/T.(A) = 0.6, where T is the final quench temperature, and
the critical temperature 7.(1) depends on 4, as shown in Fig. 6.
For these deeper temperature quenches (farther from 7¢(4)),
the estimated growth exponent is @ = 0.24 for A = 0 (pure 2d
case), and 0.13 < a < 0.16 for 0.2 < 1 < 1.0. Note that the
a-values are only weakly dependent on 4 > 0.

Finally, we elaborate on the decreasing A-dependence of
the growth exponent & and show that this behavior is consistent
with the change in the dimensionality of the stack from 2d
to 3d. In general, the growth exponent associated with phase
separation depends on the dimensionality.? In this context, we

J. Chem. Phys. 143, 243124 (2015)

mention the scaling argument of Binder and Stauffer on phase-
separation dynamics of particles that undergo cluster reaction
and diffusion processes.?*>” Under the assumption that most
particles that leave a cluster reimpinge on the same cluster at
later times, the diffusion coeflicient D of a cluster of size R was
shown to scale as D ~ R~*9 where d is the embedded space
dimension. If we further assume that the domain size R is the
only length scale in the system, the scaling relation for a simple
diffusion process is given by R> ~ Dt. This argument yields
the growth exponent to be @ = 1/(3 + d). Hence, the predicted
values from this scaling conjecture are @ = 1/5 for d = 2 and
a=1/6ford = 3.

Our simulation results, namely, @ = 0.24 for 4 = 0 and
a = 0.14 for 4 > 0.2 compare favorably with this prediction.

o=0.07

-~ -

10 F

L]
>

I
cwoakrivo

3 MEPETETTT BN T |

s o aanul MR TTTT
10
10* 10° 10° 10’

MCS

03H(b) -

1 1 1 1 1
0.0 0.2 04 0.6 0.8 1.0

A

FIG. 9. (a) The temporal evolution of the total interface length € as a function
of time (MCS) for different values of 1 =0, 0.2, 0.4, 0.6, 0.8, 1.0, and for
a temperature quench from the one-phase state (7' — oo) into the two-phase
state at 7 /J =2.0. The A/B mixture is symmetric, §i,p =0, L =256, and
L_=8. The average over three independent MC runs is taken for each A
value. The two dashed lines represent a power-law behavior with exponent
a =0.07 and 0.28, which roughly bound the two limiting behaviors of the
A-dependent exponent, . (b) The domain growth exponent « as a function
of A, as obtained from (a).
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FIG. 10. The temporal evolution of the total interface length £ as a function
of time (MCS) for different values of 2 =0, 0.2, 0.4, 0.6, 0.8, 1.0, and for a
temperature quench from the one-phase state into the two-phase one, with
final temperature satisfying 7'=0.6T(1). The A/B mixture is symmetric,
Ei,p =0, L =256, and L =8. The average over three independent MC runs
is taken for each A value. The two dashed lines represent a power-law
behavior with exponents @ =0.14 and @ =0.24. (b) The domain growth
exponent « as a function of A, as obtained from (a).

The growth exponent decreases for finite A because the system
crosses over from 2d to 3d. This is due to the fact that the
growing phase-separated domains are inter-connected along
the z-direction for A > 0. It should be noted, however, that
the absolute value of @ obtained from the simulation is not
universal but strongly depends on the quench depth as shown
in Fig. 9. This explains why the above exponents are not
in complete agreement with the simple scaling argument of
Binder and Stauffer.

V. CONCLUDING REMARKS

Motivated by recent works of Tayebi et al.,>’ who studied

experimentally and theoretically the phase separation in stacks
of multi-component lipid bilayers, we have investigated the
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stacked 2d Ising model given in Eq. (1). We use a Monte
Carlo simulation scheme with Kawasaki exchange dynamics
that conserves the order parameter in each layer, in order to
investigate both equilibrium and dynamical features. Perform-
ing finite-size scaling analysis only in the lateral direction,
while keeping the stack thickness fixed (mimicking the exper-
iment), we determine the phase-transition temperature, T.(1),
by changing the inter-layer interaction parameter A = J'/J. As
shown in Fig. 6, the phase-transition temperature interpolates
between that of the 2d and 3d Ising models.

One of our main conclusions is that domains in each one
of the layers are always interconnected along the z-direction,
forming a continuous columnar structure for any finite inter-
layer interaction J’ > 0, as shown in Fig. 5. This domain
structure is in accord with the experimental findings for stacks
of few dozen to few hundred layers.5 However, the “multi-
phase” region in which there are unaligned inplane domains
with different compositions, as was predicted in Ref. 7, is
not found in our study at thermal equilibrium. On the other
hand, such a “multi-phase” state can be transiently observed
before the system reaches its fully equilibrated state, as can be
observed in Figs. 2 and 5.

We have also investigated the temporal evolution of
domain formation in the stacked 2d Ising model. When
the inter-layer interaction A increases, the phase separation
appears to have an accelerated dynamics as can be seen by the
larger values of the growth exponent, @, shown in Fig. 9(b).
However, these larger a values are mainly due to an increase
in the phase-transition temperature, T.(1), as function of A;
thus, a larger effective temperature quench, AT =T (1) - T,
for fixed 7. When the final temperature quench 7T is fixed
relative to the phase-transition temperature as shown in Fig. 10
for T = 0.6T.(1), the growth exponent even decreases as the
A value is increased. Our numerical findings for the growth
exponent a are different than the value of a = 0.455, as
found in the experiment.’ One possible explanation for this
discrepancy can be the lack of hydrodynamic interactions in
our MC simulations.®

In this work, we have mainly discussed the case of
Ei, p = 0, corresponding to the critical composition of the A/B
lipid mixture. Currently, we are investigating the dynamics
of phase separation for off-critical compositions, E,-,p #0
[see Fig. 5(b)]. For such compositions, the phase-transition
temperature is smaller than the critical temperature. In the
present simulations, the average A/B lipid composition (order
parameter of the Ising model) in each bilayer is restricted
to stay the same. In the future, we plan to study membrane
stacks where each layer has a different but fixed composition.?®
Furthermore, since it is known from simulations that the
presence of a supporting solid substrate affects the dynamics of
membrane domain growth,? it will be of interest to incorporate
this substrate effect in future studies.
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