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ABSTRACT: We present numerical calculations of lamellar
phases of diblock copolymers (BCP) confined between two
surfaces, where the top surface is flat and the bottom one is
corrugated. The corrugated substrate is assumed to have a
single q-mode of lateral undulations with a wavenumber qs and
amplitude R. We focus on the effects of substrate roughness,
parametrized by the dimensionless quantity, qsR, on the
relative stability between parallel and perpendicular orienta-
tions of the lamellar phase. The competition between film
confinement, energy cost of elastic deformation, and gain in
surface energy induces a parallel-to-perpendicular transition of
the BCP lamellae. Employing self-consistent field theory (SCFT), we study the critical value, (qsR)*, corresponding to this
transition. The (qsR)* value increases as a function of the surface preference toward one of the two BCP components and as a
function of film thickness. But, (qsR)* decreases with increasing values of the Flory−Huggins parameter, NχAB. Our findings are
equivalent to stating that the critical (qsR)* value decreases as the BCP molecular weight or the natural BCP periodicity
increases. We further show that the rough substrate can overcome the formation of parallel lamellae in cases where the top
surface has a preference toward one of the two BCP components. Our results are in good agreement with previous experiments
and highlight the physical conditions behind the perpendicular orientation of lamellar phases, as is desired in nanolithography
and other industrial applications.

I. INTRODUCTION

Block copolymers (BCP) are polymer systems where each of
their chains is composed of two or more chemically distinct
homopolymer blocks, covalently tethered together. As a result,
BCP systems can spontaneously self-assemble at thermody-
namical equilibrium into exquisitely ordered nanostructures.1

The phase behavior of di-BCP melts, where each linear chain is
composed of two blocks (denoted hereafter as A and B), has
been studied extensively in recent decades and shows a rich
variety of three-dimensional morphologies including lamellae,
hexagonally close-packed cylinders, BCC packing of spheres,
and gyroid networks.2,3 The characteristic length scale in these
well-defined structural phases ranges from a few nanometers to
hundreds of nanometers and can offer an attractive alternative
to patterning technology.4,5 Besides applications in nano-
lithography, BCP films may offer novel opportunities in more
traditional applications such as adhesive, hydrophobic, and
antireflective surfaces as well as in the textile industry.6

Most of the BCP applications rely on casting them as thin
films since this is the most appropriate form to construct a

surface pattern that can later be transferred onto a substrate,
with potential applications as functional nanoscale devices.7 A
perpendicular orientation of BCP lamellae or cylinders, with
respect to the underlying substrate, is usually desirable for most
material and engineering applications.8 During recent decades,
various techniques have been developed to obtain such
perpendicular lamellae or cylinders, including nonpreferential
(neutral) interfaces,4,9 topographically varying substrates10 or
top surfaces,11,12 variations in polymeric block architecture,13,14

and film thickness as well as solvent annealing.6

It is also possible to use corrugated substrates to obtain
perpendicular BCP lamellae or cylinders. Sivaniah et al.15,16

reported the effect of substrate roughness on the orientation of
lamellae of symmetric poly(styrene)-block-poly(methyl meth-
acrylate) (PS-b-PMMA). They identified a critical substrate
roughness, (qsR)*, above which a perpendicular orientation was
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observed, where qs and R are the lateral wavenumber and its
amplitude, respectively. They also found that the value of
(qsR)* varies with BCP molecular weight (or the periodicity of
BCP lamellae). In a more recent study, Kulkarni et al.17

extended the results to include fractal substrate topography. A
high fractal dimension of the rough substrate, in conjunction
with an optimal surface energy of PS-b-PMMA in contact with
the substrate, results in a complete perpendicular orientation of
lamellar microdomains.
In a separate work, Kim et al.18 investigated a film of PS-b-

PMMA placed on an ordered nanoparticle (NP) monolayer.
The substrate roughness is described by the parameter qsubr,
where qsub and r are the wavenumber of substrate roughness
and the radius of NP, respectively. A transition from parallel to
perpendicular orientation of BCP lamellae or cylinders has
been found by increasing the value of qsubr. Furthermore, it was
shown that the orientation of thin films of BCP is strongly
influenced by the film thickness. This is due to the
commensurability matching between film thickness and domain
spacing.
In addition to the experimental situation, there are few

theoretical works addressing the self-assembly of BCP films on
corrugated surfaces. Turner and Joanny19 and Tsori et al.20,21

used the analogy between smectic liquid crystals and lamellar
BCP and compared the phenomenological free energy of
parallel and perpendicular lamellae on corrugated substrates. In
refs 20 and 21 it was shown that for a fixed corrugation
periodicity the perpendicular orientation is preferred for large
corrugation amplitude and/or large lamellae periodicity.
Moreover, for a fixed BCP natural periodicity, the perpendic-
ular orientation is preferred for surfaces having large
corrugation amplitude at short wavelengths.
Motivated by previous experimental works,17 Ranjan et al.22

conducted a scaling analysis of a single BCP lamella on fractal
surfaces, which gives additional evidence that the substrate
fractal dimension is an important factor in directing the
orientation of BCP lamellae. Even more recently, Ye et al.23

studied morphological properties of lamellae-forming di-BCPs
on substrates with square-wave grating patterns by using self-
consistent field theory (SCFT). They found three possible
lamellar orientations with respect to the substrate and trench
direction, but without addressing the key factors that determine
the critical substrate roughness at the parallel-to-perpendicular
phase transition of BCP microdomains.
We note that these previous studies have provided insight

into how substrate roughness affects the relative stability of
parallel and perpendicular BCP microdomains on nonflat
surfaces. However, to date, systematic studies addressing the
combined effect of substrate corrugation amplitude and lateral
wavenumber, film thickness, and BCP periodicity on the
domain orientation of BCP films are still missing. In this paper,
we present a comprehensive and detailed SCFT study of di-
BCP films constrained between a top flat surface and a bottom
corrugated substrate. Our aim is to investigate the role played
by substrate geometry, relative surface preference of the two
BCP components, and BCP film properties, including film
thickness, the Flory−Huggins parameter, NχAB, between the
two monomers, and the lamellar periodicity, on the parallel-to-
perpendicular phase transition.
In the next section, we introduced the SCFT formalism and

our numerical scheme. In section III, the corrugated surface and
BCP film design are presented, while in section IV, we show the
calculated phase diagrams of BCP lamellae on corrugated

substrates. Discussion of our results and comparison with
previous models and experiments are presented in section V,
followed by a summary and conclusions.

II. THEORETICAL FRAMEWORK
A. SCFT Scheme. We use self-consistent field theory

(SCFT) to investigate the lamellar phase of A/B di-BCP
confined between two surfaces, where the top surface is flat and
the bottom one is corrugated. We consider a melt of nc chains,
each composed of N = NA + NB monomers. For simplicity, the
Kuhn length, b, is assumed to be the same for the A and B
monomers, yielding an equality between the molar fraction and
the volume one. The A-component molar fraction is f = NA/N,
and that of the B-component is 1 − f. The BCP film has a total
volume Ω, lateral area , and thickness = ΩL / . Hereafter,
we concentrate on symmetric di-BCP, i.e., f = 0.5.
In order to facilitate the numerical convergence, it is

convenient to replace the sharp interface between the BCP
film and the hard bounding surfaces by a “softer” wall with a
smeared interface having a small width. This is done by
introducing an artificial third (wall) component.1,24,25 The local
incompressibility condition is ϕA(r) + ϕB(r) + ϕw(r) = 1,
where ϕA, ϕB, and ϕw are the A, B, and wall volume fractions
within our simulation box, respectively. This condition is
replaced with a compressible one, by adding an energetic
penalty cost for local density deviations from the incompres-
sibility condition. The penalty term is written as

ζ ϕ ϕ ϕ+ + −r r r( ( ) ( ) ( ) 1)A B w
2

(1)

and has a magnitude controlled by an “energy” parameter ζ (in
units of kBT, where kB is the Boltzmann constant and T is the
temperature).
The direction parallel to the substrate is chosen to be along

the x-direction, and the perpendicular one is in the y-direction.
The system is assumed to be translational invariant in the third
z-direction, which means that the numerical calculations are
performed in a two-dimensional (2d) box. Hence, Ω→Lx × Ly
and → Lx. All lengths, hereafter, are rescaled with the chain
radius of gyration, Rg = (Nb2/6)1/2. With these conventions, the
Hamiltonian of the BCP film confined between two surfaces
can be expressed as a functional of two local fields1: a pressure
field W+(r) and an exchange potential field W−(r)
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where C = ρ0Rg
3/N is a normalization factor, ρ0 = (Nnc + Nw) /

Ω is the total number density, Ω is the entire volume (including
the walls) of the simulation box, Nw is the total number of “wall
monomers”, and ϕ(r) = ϕA(r) + ϕB(r) is the dimensionless
volume fraction of the polymer. The Flory−Huggins parameter
between the A and B monomers is χAB, and u = χwA − χwB is the
relative interaction between the wall and the A/B components,
where χwA and χwB are the interaction parameters between the
wall (as a third component) and the A or B components,
respectively. For example, a positive u > 0 means that the
surface prefers the A component. For simplicity, hereafter we
absorb the factor of N into the definition of ζ and u: Nζ → ζ
and Nu → u.
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The functional Q[WA,WB] = Ω−1∫ d2r q(r, s = 1) is the
single-chain partition function in the presence of the two
conjugate fields, WA(r) = iW+(r) − W−(r) and WB(r) =
iW+(r) + W−(r), where the propagator q(r, s) is the solution of
the modified diffusion equation

∂
∂

= ∇ −
q s

s
q s W s q s

r
r r r

( , )
( , ) ( , ) ( , )2

(3)

satisfying the initial condition q(r, s = 0) = 1. W(r) = WA(r) for
0 ≤ s < f and W(r) = WB(r) for f ≤ s ≤ 1, where s is the
curvilinear coordinate along the A/B chain contour. Finally,
ϕ = Ω−1∫ d2r ϕ(r) is the polymer volume fraction averaged
over Ω.
Within the mean-field approximation, we can obtain the

thermodynamic properties of the confined BCP film from a
variational principle of the Hamiltonian in eq 2
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Equation 4 can be solved numerically by solving the modified
diffusion equation (eq 3) with spatially periodic boundary
conditions and the following temporal relaxation equations:
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We use the well-documented pseudospectral method with
FFTW to solve the modified diffusion equation and an explicit
Euler scheme (first order in the iteration time) to update the
field configurations to their saddle points. A detailed
formulation of the numerical procedures for the SCFT model
and their implementation to BCP systems can be found
elsewhere.25−27

B. Corrugated Substrate Design. Our simulation setup is
shown schematically in Figure 1, where the 2d simulation box
of size Lx × Ly includes the BCP film and the solid boundaries,
and the average wall thickness is Lw. Hence, the average BCP
film thickness L is given by L = Ly − 2Lw. The top surface is flat,
while the bottom surface is corrugated, and is described by a
height function

=h r R q r( ) cos( )x xs (7)

having a single q-mode with wavenumber qs and amplitude R.
The wall density, ϕw(r), has a preassigned shape that is fixed

(frozen) during the iterations. The top flat wall is modeled as a
rectangle of size Lx × Lw (Figure 1) and characterized by a
smoothly varying wall function:
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where δ parametrizes the interface width and ry is the distance
from the bottom box boundary. For the bottom corrugated
surface, we impose a similar smoothly varying wall function
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where rx is the distance to the left box boundary. Such a
definition means that ϕw(r) = 1 inside the wall region of the
rectangular box and ϕw(r) = 0 inside the BCP film. However, it
generates a “soft” interface that is characterized by a narrow and
smooth transition region of thickness δ. Hereafter, we set δ =
0.1 and ζ = 1000 for all simulations, following previous
simulation work.27 Our results are not sensitive for values of
δ ≤ 0.1, and consequently δ = 0.1 is chosen for convergence
purposes. The value ζ = 1000 is large enough to model an
incompressible system yet facilitate numerical converge.

III. RESULTS
A. Parallel and Perpendicular Lamellar Orientations.

Symmetric BCPs yield thermodynamically stable lamellar
phases with a bulk periodicity, L0. The immediate effect of
the corrugation can be seen in Figure 2. When the substrate
roughness is large enough, qsR ≃ 0.44 (Figure 2a), the surface-
induce distortion only propagates up to the second layer and all
other lamellae are unperturbed. However, for small substrate
roughness, qsR ≃ 0.09 as in Figure 2b, the lamellae follow the
surface contour, and the distortions are longer range. It is
important to note that the results are obtained for a finite film
thickness where the top surface is flat and neutral (utop = 0).
These results have smaller penetration length as compared with
previous scaling19−21 for infinite stacks of lamellae, where the
penetration length scales as ∼q0/qs2 ∼ Ls

2/L0.
Figure 3 shows examples of parallel and perpendicular

lamellar phases in contact with a corrugated substrate in the
strong segregation regime, NχAB = 25. The bottom substrate in
(a) and (b), having a moderate roughness, qsR ≃ 0.25, is
attractive to the A component (marked in red) with u = 3.05,

Figure 1. Schematic illustration of a BCP film confined between two
surfaces. The two-dimensional calculation box has the size Lx × Ly,
where L = Ly − 2Lw is the averaged BCP film thickness, and Lw is the
wall thickness (see text). The corrugated substrate is described by a
height function: h(x) = R cos(qsrx), with lateral wavenumber qs and
amplitude R. Any point residing inside the film, r = (rx, ry), is
parametrized by its x-axis and y-axis coordinates. The coordinate origin
is taken at the bottom left corner of the simulation box. All lengths are
rescaled by the chain radius of gyration, Rg.
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while the top surface is neutral (utop = 0). Clearly, the
perpendicular lamellar phase (L⊥) in (a) is almost unperturbed,
as compared to its bulk phase. However, the parallel one (L∥)
in (b) adjusts its shape due to the surface corrugation. This is a
result of the competition between the cost of BCP elastic
deformation close to the corrugated surface and the gain in its

surface energy. The results both in (a) and (b) agree well with
previous analytical results carried out by Tsori et al.20,21

For the case of large substrate roughness, qsR ≥ 1, the
lamellae are strongly deformed, and it is hard to recognize
whether their equilibrium structure is an L⊥ or L∥ phase. Such
pronounced deformations are shown in Figure 3c,d, where the
bottom substrate roughness is qsR ≃ 1.23, while all other
conditions are the same as in (a) and (b). To be able to have
meaningful predictions, we hereafter consider only substrates
that have moderate roughness, qsR < 1, and surface preference u
that is less than the interaction between the A and B
components, u < NχAB.
When the BCP film thickness, L, differs from an integer

multiple of L0, the BCP chains have to stretched or
compressed, as the total film volume is incompressible and
space-filling (in our formalism, ζ = 1000 is large enough and
models an incompressible system). In order to minimize such a
confinement effect and focus mainly on how surface roughness
affects the lamellar orientation, we adjust the box size such that
the film thickness L corresponds to a local minimum of the L∥
free energy. This is done by investigating the free energy
difference between parallel and perpendicular lamellae, ΔF =
F∥ − F⊥, where F∥ and F⊥ are respectively the lamellar free
energies of the two orientations.
Figure 4 shows the dependence of ΔF on L with NχAB = 25.

We repeat the calculation of ΔF for various lamellar layers,
n = 1, 2, ..., 6, between two flat and neutral surfaces. Clearly, the
rescaled ΔF has always a local minimum when L equals to an
integer number times the natural periodicity, L = nL0, in accord
with previous SCFT calculations of Takahashi et al.27 It is
known that L0 depends on the value of NχAB. Therefore, for
different values of NχAB we have to repeat this calculation and
obtain the free energy in order to find the appropriate local
minima, as in Figure 4.
It is important to note that when a thin BCP film is confined

between two surfaces, L0 is also a function of the film thickness,
L, and differs from its bulk value.27 Moreover, the free energy of

Figure 2. Parallel lamellar phase on a corrugated substrate. (a) The
lateral wavelength qs = 5(2π/Lx) and amplitude R = 0.6, resulting in a
surface roughness, qsR ≃ 0.44. In this case, the surface-induced
distortion penetrates only through the second layer. (b) A much
smaller qsR ≃ 0.09, resulting from qs = 2π/Lx and R = 0.6. Here the
lamellar first four layers follow the surface topography. The color code
corresponds to five discrete intervals of local monomer density 0 ≤
ϕA(r) ≤ 1, as is depicted in (a). Other parameters are Lx = 42.5, L =
21.25, R = 0.6, u = 3.3, utop = 0, and NχAB = 25.

Figure 3. SCFT calculation of BCP lamellae in contact with a moderate corrugated substrate in (a) and (b), qsR ≃ 0.25, and with a pronounced
corrugated substrate in (c) and (d), qsR ≃ 1.23. For (a) and (b), the corrugation wavenumber is qs = 2(2π/Lx) and its amplitude R = 0.85. The
perpendicular lamellar phase (L⊥) in (a) is almost unperturbed compared to its bulk phase, while the parallel one (L∥) in (b) closely follows the
surface contour. For (c) and (d), qs = 3(2π/Lx) and R = 2.76. Both L⊥ in (c) and L∥ in (d) are strongly deformed. In all figure parts, calculations are
done in the strong segregation limit, NχAB = 25, resulting in a natural lamellar periodicity, L0 = 4.25. The surface preference is u = 3.05 for the
bottom substrate and utop = 0 for the top surface. The color code are the same as those in Figure 2. The lateral box size is Lx = 42.5, and the average
film thickness L = 12.75. All lengths are rescaled by Rg in all figures.
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confined BCP films also depends on the surface preference
field, u.24,28−30 Therefore, the parameters NχAB, L, and u play
an important role in determining whether the equilibrium
orientation will be parallel (L∥) or perpendicular (L⊥), as will
be further presented below.
We first compute the perp-to-para (L⊥−L∥) phase diagram

(shown in Figure 5) in terms of the film rescaled thickness,

L/L0, and bottom surface preference, u, for a corrugated
substrate. For comparison, the calculation is then repeated for
another system having a flat bottom surface, with the same
parameters: Lx = 42.5, utop = 0, and NχAB = 25. The film
thickness varies around 5L0: 4.7 ≤ L/L0 ≤ 5.4. The
wavenumber of the corrugated substrate is qs = 9(2π/Lx),
while the corrugation magnitude is fixed, R = 0.45, resulting a
substrate roughness qsR ≃ 0.60. The phase diagram is obtained

by starting with an initial condition of either an L⊥ phase of ten
periods or an L∥ of five periods. After numerical convergence,
the corresponding free energies are compared. The results
show that the rough substrate greatly affects the phase diagram
as compared with flat substrate. The L⊥−L∥ phase-transition
line for the corrugated case is shifted upward, which means that
the L⊥ phase has a larger stability range for rough substrates
than for flat ones. This conclusion qualitatively agrees with
previous analytical and experimental studies.16,18,21 It shows
that rough substrates, just like chemical-patterned substrates
and nano-imprint surfaces,29 can enhance the stability of the L⊥
phase as compared with a flat substrate with the same surface
preference field, u.

B. Substrate Effect on Para-to-Perp Transition. We
proceed by studying quantitatively the effect of substrate
roughness on the relative stability of the L⊥ and L∥ phases. We
focus on the role played by (i) the substrate geometry,
including lateral wavenumber, qs = 2π/Ls, and roughness
amplitude, R, (ii) the relative surface preference toward the two
BCP components, u, and (iii) BCP film properties, including
film thickness, L, the Flory−Huggins parameter, NχAB, and the
BCP natural periodicity, on the L∥−L⊥ phase transition.
Figure 6 shows the L∥−L⊥ phase diagram in terms of the

corrugation parameters, R and qs, for a fixed bottom substrate

preference (u = 3.05) and a flat neutral top surface (utop = 0).
For fixed qs, while increasing R, an L∥-to-L⊥ phase transition is
reached because the elastic deformation of the L∥ lamellae
along the corrugated surface becomes bigger, favoring the L⊥
orientation. For fixed value of R, an increase of qs also induces
an L∥-to-L⊥ phase-transition. This can be understood as smaller
qs (while keeping R constant) means that the substrate
effectively is flatter, and the L∥ lamellae are losing less elastic
deformation energy. In the limit of qs → 0 (corresponding to an
unrealizable large simulation box), the substrate approaches to
a flat substrate. Then, the L∥ phase will be more stable than L⊥
because of the substrate preference toward one of the two BCP
components.
As discussed in section III.A, the surface preference, u, is an

important factor in determining the final lamellar orientation.
Moreover, qsR is usually used to parametrize the substrate
roughness in experiments. We investigate the effects of the
substrate u on the critical value, (qsR)*, corresponding to the
L∥−L⊥ phase transition, while keeping the top surface neutral

Figure 4. Free energy difference between parallel and perpendicular
BCP lamellar orientations, ΔF = F∥ − F⊥, in units of nckBT/L, as a
function of the film thickness, L, where nc is the number of chains and
kBT is the thermal energy. The parallel free energy, F∥, is calculated
separately for n = 1, 2, ..., 6 parallel lamellae confined between two flat
neutral surfaces. The perpendicular free energy, F⊥, corresponds to
three periods of perfect perpendicular lamellae. The other parameters
are Lx = 12.75 and L0 = 4.25 (or, equivalently, NχAB = 25).

Figure 5. L⊥−L∥ phase diagram in terms of the rescaled film thickness
L/L0 and substrate preference u, for a corrugated substrate (solid line),
and for a flat substrate (dashed line). The top surface is flat and neutral
(utop = 0). The lines separate between a stable L⊥ (perp) phase below
and L∥ (para) phase above. The corrugated substrate is characterized
by qs = 9(2π/Lx) ≃ 1.33 and R = 0.45, yielding a roughness parameter,
qsR ≃ 0.6. Other parameters are Lx = 42.5 and L0 = 4.25 (or,
equivalently, NχAB = 25).

Figure 6. L⊥−L∥ phase diagram in terms of R and qs. The parameters
used are L = 21.25, Lx = 2L = 42.5, L0 = 4.25 (or, equivalently, NχAB =
25), u = 3.05, and utop = 0.
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(utop = 0) and flat (see Figure 7). Our results show that (qsR)*
increases as a function of u. This means that for larger u, larger

substrate roughness is needed to induce an L∥-to-L⊥ phase
transition. This is due to the competition between the energy
cost of elastic deformation and gain in surface energy.
Increasing qsR leads to more elastic deformation in the L∥
phase as compared with L⊥, resulting in a phase transition from
an L∥ to an L⊥ phase. Oppositely, increasing u makes the L∥
phase more stable because of the gain in surface energy, leading
to a phase transition from L⊥ to L∥.
We present in Figure 7 two ways to change the values of qsR.

First, we fix the corrugation amplitude, R = 0.35, and change
the wavenumber discretely by taking these values as qs =
ns(2π/Lx), where ns = 1, 2, ..., 9 is the number of lateral periods
of the substrate. Next, we fix qs = 6(2π/Lx) and change R from
0.1 to 0.5. The simulation box size is set to Lx = 42.5, L = 21.25,
and NχAB = 25. For the calculations, L⊥ has ten BCP lamellar
periods as its initial condition while L∥ has five. After
convergence, the L⊥ and L∥ free energies are compared, and
clearly, for both phases, (qsR)* is an increasing function of u.
However, for the same value of u, the value of (qsR)* is
different for constant R and constant qs, with a (qsR)*
difference of the order of 10−2. This indicates that qsR is not
exactly a scaling field for the L∥−L⊥ phase-transition. The
reason is that the contour length of the substrate has a small
difference (also on the order of 10−2) for different
combinations of qs and R, while keeping their product qsR
the same. Such differences will further result in a different
elastic deformation and surface energies of the film.
C. Film Effect on the Para-to-Perp Phase Transition.

Another important parameter that affects (qsR)* is the BCP
film thickness, L. Table 1 presents the dependence of (qsR)* on

L, obtained with fixed preference of the bottom and top
surfaces, u = 3.05 and utop = 0.15, respectively. We add a small
top surface preference, utop > 0, to mimic the experiments,
where BCPs usually have nonzero preference in their surface
interaction with the air. More discussion about the top surface
preference effects on the L∥−L⊥ phase transition will be
addressed in section IV. As mentioned in Figure 4, we choose
the film thickness L to be an integer multiple of the L∥
periodicity, i.e., L = nL0, where n = 2, 3, ..., 6, in order to
minimize the film confinement effects. The L∥ free energy is
compared with the L⊥ one with Lx = 2L0, while all other
parameters are kept the same. The numerical results indicate
that (qsR)* increases for thicker BCP film. This is under-
standable because the elastic deformation induced by the
corrugated substrate is a surface effect with limited penetration
into the BCP film. Therefore, larger qsR values are needed to
induce the L∥-to-L⊥ phase transition for thicker films.
Finally, we examine the effect of NχAB (or L0) on the L∥−L⊥

phase transition in Figure 8. As mentioned above, varying NχAB
will also change the BCP lamellar periodicity, L0. In order to
stay in the minimal confinement free energy, we set L = nL0,
where L0 varies for different NχAB. Because the minimum in F⊥
corresponds to Lx = nL0, we obtain the value of L0 for different
NχAB by examining the dependence of F⊥ on Lx, while keeping
L fixed. After determining the values of L0, we can adjust our
simulation box accordingly. The L0 values for different NχAB are
shown in Table 2, where it can be seen that L0 is an increasing
function of NχAB.

36 For all calculations in Figure 8, the
parameters are Lx = 2L0, u = 3.05, and utop = 0.15. The L values
for different NχAB are set to fulfill L = 3L0 (see Table 2).
From Figure 8a, one sees that (qsR)* decreases as NχAB

increases. This can be understood because when NχAB
increases, the lamellar periodicity, L0, also increases, and the
local deformation of BCP lamellae becomes larger. For
example, in the limit of qs/q0 → 0, the corrugated substrate
is equivalent to a flat one, and the BCP lamellae will not be
deformed anymore, resulting in no elastic deformation. In other
words, the energy cost of the elastic deformation increases as
qs/q0 increases. Then, smaller values of (qsR)* are needed to
induce the L∥-to-L⊥ phase transition. The tendency of (qsR)*
to decrease when L0 increases is shown in Figure 8b and is
consistent with the results in Table 1. When L0 increases, it
means that the value of L/L0 in Table 1 decreases, and the same
tendency of (qsR)* on L0 is obtained.

IV. DISCUSSION
A. Comparison with Experiments. Our study has been

motivated by the experimental works of Sivaniah et al.16 and
Char’s group.18 In ref 16, PS-b-PMMA films are casted onto an
array of polyimide (PIM) substrates having different roughness.
The study found the critical roughness of the PIM substrate,
(qsR)*, separating the stable L⊥ lamellae for qsR > (qsR)* from
the region where the L∥ lamellae are more stable, qsR < (qsR)*.
In a more recent work by Char’s group,18 both lamellar and
cylindrical phases of PS-b-PMMA were spin-coated onto two
different substrates covered with an ordered nanoparticle (NP)
monolayer. In the first setup, the NP size is R = 6 nm and its
repeat period is qs ≃ 0.75 nm−1, resulting in qsR ≃ 4.5. For the
second setup, the NP size is R = 22 nm and the repeat period is
qs ≃ 0.26 nm−1, which leads to qsR ≃ 5.72. For both lamellae
and cylinders, L∥ orientation was obtained in the first case
(qsR ≃ 4.5), and L⊥ orientation was obtained for the second
one (qsR ≃ 5.72). The conclusion from these experiments is

Figure 7. Comparison between two ways (solid and dashed lines) to
obtain the L∥-to-L⊥ phase-transition plotted in the (qsR, u) plane. The
solid line is calculated for constant R = 0.35. The roughness
wavenumber qs = ns(2π/Lx) is varied discretely, where ns = 1, 2, 3, ..., 9
is the number of periods within the lateral box width. The dashed line
corresponds to constant qs = 6(2π/Lx), while R varies from 0.1 to 0.5.
The results show that (qsR)* at the phase transition increases faster by
varying qs than by varying R. All other parameters are the same as in
Figure 6.

Table 1. Critical Substrate Roughness for Various Rescaled
BCP Film Thicknesses

L/L0 2 3 4 5 6
(qsR)* 0.15 0.17 0.18 0.21 0.26
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that increasing the substrate roughness can induce an L∥-to-L⊥
phase transition. All of our results nicely support these findings,
although we can justify less our SCFT results in a quantitative
manner for qsR > 1.
Sivaniah et al.16 have also shown that the value of (qsR)*

varies with the BCP molecular weight. Keeping all experimental
conditions the same, the value of (qsR)* for 38K-38K PS-b-
PMMA was found to be 0.37 ± 0.02, and for 18K-18K it is
0.41 ± 0.02. Furthermore, the natural periodicity for the 38K-
38K system is L0 = 36.7 nm, and for 18K-18K it is L0 = 28.6
nm. Because the experiments were conducted for only two BCP
chain lengths, it was not possible to infer any trend of lower
(qsR)* values for higher molecular weights. However, our
results indicate such a trend, where the values of L0 increase
from 3.90 to 4.35, and corresponds to a decrease of (qsR)*.
B. Comparison with Previous Models. In a closely

related analytical study, Tsori et al.20,21 used the analogy
between smectic liquid crystals and lamellar BCP, compared
the phenomenological free energies of L∥ and L⊥ phases on
corrugated substrate, and studied their relative stability. Their
results can be summarized by the following three findings.
While keeping all other parameters fixed, these authors found
that (i) increasing R induces an L∥-to-L⊥ phase transition,
(ii) increasing qs results in an L⊥-to-L∥ phase-transition, and
(iii) increasing q0 leads to an L∥-to-L⊥ phase transition. Our
findings agree with the first finding of Tsori et al. as well as with
the experimental findings discussed in section IV.A. Increasing
the value of R (while all other parameters are fixed) means
larger substrate roughness, and therefore it induces an L∥−L⊥
phase transition. However, the second and third findings of
Tsori et al. are contrary to experimental trends16 as well as to
our SCFT calculations.
One of the results of Tsori et al.20,21 is that F∥ is an increasing

function of the lateral wavelength, F∥ ∼ (R/qs)
2 ∼ qs

−2, while F⊥
scales as (qsR)

2. However, our SCFT results show an opposite
trend for F∥ ∼ (qsR)

2 ∼ qs
2, while the same scaling for F⊥∼

(qsR)
2. This behavior of the two free energies is shown in

Figure 9, and in the inset the scaling with (qsR)
2 can be clearly

seen. We note that in an even earlier work by Turner and

Joanny19 the free energies of both F∥ and F⊥ stack on a
corrugated substrate were found to scale as (qsR)

2 (while all
other parameters are fixed). We conjecture that the discrepancy
between our SCFT and the previous analytical results19−21 is
due mainly to two reasons. One is the fact that our stack has a
finite width and the top surface is affecting the penetration
length and hence the delicate balance between the two
orientations. The second reason is related to local deformations
of BCP chains close to the corrugated substrate. These
deformations are not well described within models that draw
on the analogy with a continuum theory of smectic liquid
crystals, and which assumes small and gradual deformations.

C. Non-Neutral Air/Polymer Interface. It is known that
when the top surface (polymer film/air) has a preference
toward one of the two BCP blocks, it can induce an L∥
orientation inside the film. In many applications (e.g., in
nanolithography), it is highly desired to circumvent the L∥
phase by using the so-called “top coats”.33−35 Moreover,
Khanna et al.13 in experiments and Matsen14 in theory have
shown that the BCP architecture can also affect the polymer/air
surface tension and facilitates the formation of L⊥ lamellae.
Figure 10 shows a comparison of the L∥−L⊥ phase diagram

in terms of R and qs between a system with a top surface field,
utop = 0.15, and a second system with a neutral top surface,
utop = 0 (same as in Figure 5). From Figure 10 it can be seen to
what degree the nonzero top surface affects the relatively

Figure 8. (a) L⊥−L∥ phase diagram in terms of qsR and the interaction between A and B blocks, NχAB. The box size is adjusted to have two periods
of L⊥ and three periods of L∥ for various values of NχAB. (b) Equivalent L⊥−L∥ phase diagram expressed in terms of L0 and qsR. Other parameters are
u = 3.05, utop = 0.15, and qs = 2π/Lx.

Table 2. Lamellar Periodicity, L0, and Average Film
Thickness, L = 3L0, for Various NχAB Values

NχAB 18 20 22 25 28
L0 3.90 4.00 4.10 4.25 4.35
L 11.7 12.00 12.30 12.75 13.05

Figure 9. Dependence of F∥ and F⊥ on the lateral wavelength,
Ls = 2π/qs. The value of Ls varies from 1.5L0 to 10L0 with L0 = 4.25. In
the inset, the two free energies are shown to scale, within a good
approximation, with (qsR)

2. Other parameters are Lx = 42.5, L = 21.25,
R = 0.6, u = 3.3, utop = 0, and NχAB = 25.
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stability of the L⊥ and L∥ phases. When a small surface
preference is added to the top surface, the L∥−L⊥ phase-
transition line shifts to the right (the red dashed line); namely,
the transition value (qsR)* increases. Our study is instrumental
as it shows a possible solution utilizing a rough substrate to
overcome the parallel orientation induced by the commonly
found air/film preference, utop ≠ 0. Therefore, combining the
“top coats”, varying BCP architecture, as well as employing
rough substrates may offer an effective way to obtain
perpendicular orientation of BCP nanostructures, even in
cases where BCPs have significant different surface tension
between the air and the two blocks of the BCP.

V. CONCLUSIONS
In this article, we address the influence of a nonflat substrate on
the relative stability between the two orientations, L∥ and L⊥, of
lamellar BCP phases. The thin lamellar film is confined
between a top flat surface and bottom corrugated substrate of a
shape, R cos(qsx), with a single q-mode of lateral undulations.
The competition between the energy cost of elastic
deformation and gain in surface energy of BCP lamellae results
in an L∥−L⊥ phase transition.
We comprehensively and systematically studied the

combined effect of the rough substrate with lateral wave-
number, qs, and magnitude R, as well as the interface energy
between the BCP and the surface, film thickness, and the Flory
parameter on the L∥-to-L⊥ phase transition. Our results show
that increasing the substrate roughness, qsR, induces an L∥-to-
L⊥ phase transition. Moreover, the critical value of the substrate
roughness, (qsR)*, corresponding to the L∥−L⊥ phase
transition, increases as the surface preference toward one of
the two blocks, u, increases, or as the film thickness becomes
thicker. On the other hand, it decreases when the Flory
parameter, NχAB, or the natural periodicity, L0, increases.
We focused in this study on a few key factors that enhance or

induce the phase transition from L∥ into the L⊥ phase, as is
desired in applications. As detailed in the section IV, our
predictions are consistent with several experimental findings.
Furthermore, as our study is systematic, its predictions can be
further tested experimentally by using di-BCP with different
chain lengths and periodicities, and by changing in a tunable
fashion the corrugated substrate, the top surface preference as

well as the film thickness, in order to determine the optimal
condition for the enhance stability of the L⊥ phase.
In addition to the effect of substrate roughness on the

parallel-to-perpendicular orientation transition, corrugated
substrates have been shown to improve in-plane ordering of
thin BCP films.10,31,32 We hope that in the future more detailed
3d calculations will shed more light on various possibilities that
nonflat substrates may improve the in-plane ordering and
defect annihilation of BCP lamellar phases.
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