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We study the surface tension of ionic solutions at air/water and oil/water interfaces by using field-
theoretical methods and including a finite proximal surface-region with ionic-specific interactions.
The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calcu-
late the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras
pioneering result (which does not agree with experimental data), with the ionic specificity of the
Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic
size, and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent
with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt
concentrations for different monovalent ions using one fit parameter per electrolyte and reproduces the
reverse Hofmeister series for anions at the air/water and oil/water interfaces. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4905954]

I. INTRODUCTION

Surface tension of ionic solutions strongly depends on
their salt composition and, in general, increases with ionic
strength for low salt concentrations.1,2 Wagner3 was the first
to connect this finding with the dielectric discontinuity at the
air/water interface, suggesting that dielectric image charge
interactions could explain the increase in surface tension.
This suggestion was implemented in the pioneering work of
Onsager and Samaras (OS), who used the Debye–Hückel (DH)
theory for electrolytes.4 The OS result presents a universal
limiting law for the excess surface tension. It depends on
the dielectric mismatch at the interface and on the bulk salt
concentration5 and implies that the increase in the surface
tension would be independent of the ion type. However, this
simplified observation turned out to be violated in many
experimental situations6 and led over the years to numerous
investigations of non-electrostatic, ion-specific interactions
between ions and surfaces,6,7 and their role in modifying the
surface tension of ionic solutions.2

In fact, ion-specific effects date back to the late 19th
century when Hofmeister8 measured the amount of protein
precipitation from solution in presence of various salts and
found a universal series of ionic activity. The same Hofmeister
series emerges in a large variety of experiments in chemical
and biological systems.9–11 Among others, they include forces
between mica and silica surfaces,12–14 osmotic pressure in the
presence of (bio)macromolecules,15,16 and, more specifically,
measurements of surface tension at the air/water and oil/water
interfaces.17,18 For simple monovalent salts, the surface tension
(in particular at the air/water interface) was experimentally
found19 to depend strongly on the type of anion, while the
dependence on the cation type is much weaker. This finding

is consistent with the fact that anion concentration at the
air/water interface exceeds that of cations. Furthermore, for
halides,6 the lighter ions lead to a larger excess in surface
tension in a sequence that precisely corresponds to the reverse
of the Hofmeister series.

Discrepancies between the OS predictions and the
observed ion-specific surface tension motivated numerous
attempts to modify the original OS model. Here, we limit
ourselves to briefly review some of the more recent works
on surface tension of ionic solutions,20–26 which are directly
related to the present study.

Dean and Horgan23 calculated the surface tension of ionic
solutions to first order in a systematic cumulant expansion,
where the zeroth order is equivalent to the DH linear theory.4

The specific ion-surface interactions are modeled via an
ionic exclusion (Stern) layer of finite thickness. Thus, the
interaction of ions with the interface contains only a length
scale without any energy scale. This model is solved via a
formal field-theoretic representation of the partition function.
The OS result is reproduced exactly, and ion-specific effects
are described in terms of the thickness of the salt-exclusion
layer. In, yet, a separate study by the same authors,22 a system
of two interacting surfaces including a cation-specific short-
range surface interaction was addressed. The consequences
of this cation-specific interaction on determining the effective
charge, as well as the disjoining pressure as a function of the
separation between the surfaces, were studied in detail.

In a series of papers, Levin and coworkers20,21,27

calculated the solvation free-energy of polarizable ions at
air/water and oil/water interfaces. Their mean-field theory
(MFT) modifies the Poisson-Boltzmann (PB) theory by adding
an ion-surface interaction potential. The modified potential is
based on several ion-surface interaction terms that are added
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in an ad hoc way to the PB equation. These interactions
include the image charge interaction, Stern exclusion layer,
ionic cavitation energy, and ionic polarizability. While the
additional interaction terms may represent some physical
mechanisms for ion-specific interaction with the surface, one
cannot, in general, simply add such terms to the MFT potential
in a self-consistent way. These terms, which are sometimes
mutually exclusive, are neither completely independent nor
can they be obtained from a MFT formulation.6,8

Computing numerically the surface tension for a
homologous series of sodium salts, Levin and co-workers
fitted their predictions to the Hofmeister series. They used
the hydrated size of the sodium ion as a single fit parameter.
Furthermore, the surface tension at the oil/water interface was
fitted for another series of potassium salts.27 In order to apply
their theory to the different interfaces, a second fit parameter
was used to account for the dispersion forces at the oil/water
interface.

A different line of reasoning was initiated by Netz
and coworkers,24–26 who calculated the surface tension
for both charged and neutral surfaces using a two-scale
(atomistic and continuum) modeling approach. Explicit
solvent-atomistic molecular-dynamics (MD) simulations
furnished non-electrostatic, ion-specific potentials of mean
force. These interaction potentials were then added to the PB
theory that provides the electrostatic part of the potential of
mean force. Within this framework, Netz and coworkers were
able to show that the polarity of the surface may reverse the
order of the Hofmeister series. The fitted results agree well
with experiments performed on hydrophobic and hydrophilic
surfaces.

Although many works20,21,23–30 tried to generalize the
seminal OS theory, it nevertheless remains largely misun-
derstood what is the accurate theoretical framework of the
OS theory. The OS theory makes use of the (linearized) PB
equation in the presence of a planar dielectric boundary to
obtain the one-dimensional image charge potential of mean
force [see Eq. (4) in Ref. 5]. It should be stated that the
latter is not a solution of the one-dimensional PB equation.
In fact, the PB solution cannot describe any image charge
effects on its own. This subtle, yet essential point, gets often
irreparably lost when generalizations of the OS theory are
attempted based on elaborate decorations of the PB equation
itself.

If the OS theory is not simply a redressed version of the
PB theory, then what exactly is the relation between them?
While the OS theory cannot be obtained from the mean-field
theory, it is deduced from the thermodynamic fluctuations of
the instantaneous electric fields around the PB solution.31 The
free energy is expanded in a loop expansion and only the
one-loop correction to the MFT result is retained.

While the detailed formal derivation (as shown below)
is complex, we believe that its physical basis is quite simple
and straightforward. The OS result does not generalize the
PB equation to include image charge effects at an interface
between two dielectric media, but rather it solves the problem
on a higher level of approximation by going beyond the MFT
level. We consider this conceptual clarification to have large
importance on generalizations of the OS theory itself.

In this paper, we introduce two important modifications,
relevant to the calculations of the surface tension of elec-
trolytes. First, we demonstrate that the OS contribution is
effectively fluctuational in nature and follows from the one-
loop expansion of the Coulomb partition function around the
mean-field solution. Second, we propose a phenomenological
approach that consistently describes ion-interface interactions
in the form of a coupling term in the free energy. This new
formulation allows us to obtain a simple analytical theory that
reunites the OS pioneering result, which does not agree with
experimental data, with the ionic specificity of the Hofmeister
series.

We take ionic specificity into account through the
ionic size and an ion-surface interaction. Each ionic
species is characterized by a phenomenological adhesivity
parameter.22,29,32 Specifically, short-range, non-electrostatic
effects such as the ion chemical nature, size, and polarizability,
as well as the preferential ion-solvent interaction,7,33–36 are
introduced by adding one phenomenological parameter to the
free energy. This allows us to obtain a modified PB mean-
field theory and to evaluate the contribution of fluctuations
(beyond mean-field) to the surface tension. The latter includes
the dielectric image charge effects (OS), as well as the
couplings between image charge effects and surface-specific
interactions. Our analytical surface tension prediction fits
well a variety of interfacial tension data at the air/water and
oil/water interfaces. Using one fit parameter per electrolyte, it
reproduces the reversed Hofmeister series for several types of
monovalent anions.

The outline of this paper is as follows. In Sec. II, we
present the model and a general derivation of the grand-
potential to the one-loop order. In Sec. III, we find the free
energy and treat the spurious divergencies of our model,
while in Sec. IV, we derive an analytical expression for the
surface tension. Finally, a comparison of our results with
experimental data (Sec. V) and some concluding remarks
(Sec. VI) are presented.

II. THE MODEL

We consider an ionic solution as in Fig. 1, which contains
monovalent symmetric (1:1) salt of charge ±e and of bulk
concentration nb. The aqueous phase (water) volume V = AL
has a cross-section A and an arbitrary large length, L→ ∞.
The surface between the aqueous and air phases is chosen
at z = 0. The two phases are taken as two continuum media
with uniform dielectric constants εw and εa, respectively, such
that

ε(r)=



εa z < 0
εw z ≥ 0

. (1)

Note that we can equally model the water/oil interface. By
assuming no ions penetrate the oil phase, we model the
oil/water system by taking εa as the dielectric constant of the
oil phase (Fig. 1).

The ion self-energy will not be considered explicitly
because it is well known that this self-energy is extremely
large (∼100kBT) in the air phase. It will only be taken into
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FIG. 1. Schematic image of the system. The water and air phases have the
same length L, where L → ∞. In the water phase, there is a proximal region,
0 ≤ z ≤ d where the anions and cations interact with a surface interaction,
modeled by an external potential V±(z).

account implicitly by confining the ions into the water phase.
We also assume a proximal region inside the water phase
where there are ion-specific interactions of the ions with the
interface. The width of this region is denoted by d, and the
interactions are modeled by a potential V±(z) for anions and
cations, respectively. We also assume that these interactions
depend only on the z coordinate, which is a reasonable
assumption if the surface is rather uniform and flat.

The model Hamiltonian is

H =
1
2


i, j

qiqju(ri, r j)+


i ϵ anions

V−(zi)[θ(zi)−θ(zi−d)]

+


i ϵ cations

V+(zi)[θ(zi)−θ(zi−d)], (2)

where qi =±e is the charge of monovalent anions and cations,
respectively, and we use the Heaviside function

θ(z)=



0 z < 0
1 z ≥ 0

. (3)

The first term is the usual Coulombic interaction, which
satisfies ∇· [ε(r)∇u(r, r′)]=−4πδ(r−r′), where the diverging
self-energy of point-like ions is subtracted. The second and
third terms are the ion-surface specific interaction for anions
and cations, respectively.

The thermodynamical grand-partition function can be
written as

Ξ =

∞
N−=0

∞
N+=0

λ
N−
−

N−!
λ
N+
+

N+!

 N−
i=1

d3ri
N+
j=1

d3r j

× exp *.
,
− β

2


i, j

qiqju(ri, r j)

− β

i

V−(zi)[θ(zi)−θ(zi−d)]

− β

j

V+(z j)�θ(z j)−θ(z j−d)�+/
-
, (4)

where β = 1/kBT , kB is the Boltzmann constant, T is the
temperature, and N± are, respectively, the number of cations
and anions. Note that the sum is over all i and j. The fugacities

λ± are defined via the (intrinsic) chemical potentials, µ±, as

λ± = a−3 exp[βµtot
± ],

µtot
± = µ±(r)+ 1

2
e2uself(r, r),

(5)

where the (diverging) self-energy, uself(r, r), of the 1:1
monovalent ions is subtracted, and µtot

± is the total chemical
potential. The length scale a is a microscopic length
corresponding to the ionic size and is assumed to be equal for
anions and cations.

We can then write the charge density operator, ρ̂, as

ρ̂(r)=

j

qj δ(r−r j), (6)

and in order to proceed, we introduce the functional Dirac
delta function,

δ[ρ(r)− ρ̂(r)]=
(
β

2π

)N
Dφ(r)

× exp

i β


d3r φ(r)(ρ(r)− ρ̂(r))


, (7)

with φ being an auxiliary field and N = N++N−. The functional
integral representation is a functional integral over all values
of {φ(r)} at all space points r. It can be thought of as the
continuum limit of multiple integrals over values of φ(r)
at different points in space,

 N
i=1dφ(ri)→


Dφ(r), for

N → ∞. Rewriting the grand-partition function using Eqs. (6)
and (7) and the Hubbard-Stratonovich transformation31 yields

Ξ=
(2π)−N/2

det[β−1u(r, r′)]
×

Dφ exp


− β

2


d3rd3r ′φ(r)u−1(r, r′)φ(r′)

+


d2r

 d

0
dz

(
λ+e−iβeφ(r)−βV+(z)

+ λ−eiβeφ(r)−βV−(z)
)

+


d2r

 L

d

dz
(
λ+e−iβeφ(r)+λ−eiβeφ(r)

)
. (8)

The grand-partition function can be written in the form

Ξ≡ (2π)−N/2
det[β−1u(r, r′)]


Dφ e−S[φ(r)], (9)

where S[φ(r)] plays the role of a field action,

S[φ(r)]=


d3r
βε(r)
8π

[∇φ(r)]2

−


d2r

λ

 d

0
dz

(
e−iβeφ(r)−βV+(z)

+ eiβeφ(r)−βV−(z)
)

+ 2λ
 L

d

dz cos[βeφ(r)]

, (10)

with ε(r) is the dielectric function defined in Eq. (1).
In the above equation, we have also used the in-
verse Coulomb potential u−1(r, r′) = − 1

4π∇ · [ε(r)∇δ(r− r′)]
that obeys


d3r ′′u(r, r′′)u−1(r′′, r′) = δ(r− r′). The electro-

neutrality condition e(λ+−λ−)= 0 imposes λ+= λ−≡ λ.
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For slowly varying potentials, V± within the proximal
region, one can write, d

0
dz f (z) e−βV±(z)≃


e−βV±(z)


z

 d

0
dz f (z), (11)

where ⟨O⟩z = 1
d

 d

0 dz O(z) denotes the spatial average in the
[0, d] interval. Indeed, if V± vary slowly in the 0 ≤ z ≤ d region,
we can write the field action using Eq. (11) as

S[φ(r)]=


d3r
βε(r)
8π

[∇φ(r)]2

−


d2r
(
λ

 d

0
dz

(
e−iβeφ(r)−βα+

+ eiβeφ(r)−βα−
)

+ 2λ
 L

d

dz cos[βeφ(r)]
)
, (12)

where e−βα± ≡


e−βV±(z)

�
z
, or to first-order in a cumulant

expansion, α±= ⟨V±⟩z. This approximation is also valid for a
thin layer, in which one does not consider the layer details,
but only its average effect.

The above equation represents the full grand-partition
function of our electrolyte system as represented by a field
theory. Because of the existence of specific ion-surface
interactions, it contains additional length scales besides the
electrostatic ones. These additional length scales depend on
α± and do not allow to introduce a single electrostatic coupling
parameter, which leads to the weak- and strong-coupling
limits.37 Nevertheless, we can still introduce the weak-
coupling limit as it corresponds to a saddle-point configuration
with Gaussian fluctuations. This is consistent not only with
weak electrostatic interactions but also with weak specific
surface-ion interactions. Up to first-order in a loop expansion,
the field action, Eq. (10), can be written as

S[φ(r)]≃S[φ0(r)]
+

1
2


δ2S[φ(r)]
δφ(r)δφ(r′)

�����0
δφ(r)δφ(r′) d3rd3r ′. (13)

It is useful to define the Hessian of S as

H2(r, r′)= δ2S
δφ(r′)δφ(r′′)

�����0
. (14)

The subscript “0” stands for the value of the field action at
its stationary point defined as δS/δφ(r)|0= 0, and φ0(r) is the
value of φ(r) at this point. The functional integral in Eq. (13)
is Gaussian and can be evaluated explicitly giving the grand
potential, Ω=−kBT ln Ξ, in the form

Ω≃Ω0+Ω1

= kBT S0+
1
2

kBT Tr ln (H2(r, r′)), (15)

where we have dropped irrelevant constant terms and used the
matrix identity, ln det(A)=Tr ln (A).

A. Mean field theory

The MFT equation corresponds to the saddle-point of S
and can be written for the mean-field electrostatic potential

ψ(r) by identifying ψ(r) = iφ0(r). The stationary point of
Eq. (12) then implies

∇2ψ1= 0 z < 0,

∇2ψ2=
4πenb

εw

�
e−βα− eβeψ2−e−βα+ e−βeψ2

�
0 ≤ z ≤ d, (16)

∇2ψ3=
8πenb

εw
sinh(βeψ3) z > d

and is equal to the standard PB equation in the z > d region.
The three spatial regions are denoted by “1” for z < 0 (air),
“2” for 0 ≤ z ≤ d (proximal layer), and “3” for z > d (distal
region). Note that on the mean-field level, the fugacity λ can be
replaced by the bulk salt concentration, nb (see Appendix C).

Because of the (x, y) in-plane translation symmetry, the
MFT potential varies only in the perpendicular z-direction,
ψ(r)=ψ(z). We simplify the treatment by linearizing the MFT
equations (the DH limit), and obtain

ψ ′′1 =0,

ψ ′′2 =
1
βe

κ2
D

2
�
e−βα−−e−βα+

�
+ ξ2ψ2, (17)

ψ ′′3 = κ
2
Dψ3,

with

ξ2≡
κ2

D

2
�
e−βα−+e−βα+

�
, (18)

and the inverse Debye length defined as

κD=


8π βe2nb/εw. (19)

The linearization is valid for a surface potential that is rather
small, |βeψ |≪ 1, and corresponds to α−≃ α+.

Using the continuity of the electrostatic potential and its
derivative at z = 0 and z = d, with vanishing electrostatic field
in the bulk (z→ L) and in the air phase (z < 0), we obtain the
linear MFT solution

ψ1=
κD(cosh ξd−1)+ ξ sinh ξd
κD cosh ξd+ ξ sinh ξd

χ,

ψ2=
κD(cosh ξd−cosh ξz)+ ξ sinh ξd

κD cosh ξd+ ξ sinh ξd
χ, (20)

ψ3=
ξ sinh ξd

κD cosh ξd+ ξ sinh ξd
e−κD(z−d)χ,

with the parameter χ defined as

βeχ ≡ e−βα+−e−βα−

e−βα++e−βα−
. (21)

Notice that for α± = 0, the parameter χ = 0, the surface at
z = d is a phantom surface, and ψ(z) vanishes everywhere.
Another limit where ψ = 0 everywhere is obtained for d→ 0
(no proximal region).

Keeping only linear terms in d, the electrostatic potential
is

βeψ1= κDd
�
e−βα+−e−βα−

�
,

ψ2=ψ1, (22)
ψ3=ψ1e−κDz.

By taking α+= 0, while keeping α−, 0 in the above equation,
the result of Ref. 38 is recovered for a single type of adsorbing
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ion subjected to a surface interaction. This is equivalent to the
limit of a proximal layer of zero width.

The approximation for the field action is then

Ω0=−


d3r
βε(r)
8π

[∇ψ(r)]2

− kBTnb


d2r

 d

0
dz

�
e−βeψe−βα++eβeψe−βα−

�

− 2kBTnb


d2r

 L

d

dzcosh(βeψ), (23)

where the MFT potential is obtained from Eq. (20) and
ψ(r)= iφ0(r).

B. One-loop correction

In order to obtain the one-loop correction, one should
first calculate the trace of the logarithm of the Hessian (see
Eq. (15)). To do so, we start by considering the eigenvalue
equation of the Hessian

d3r ′H2(r, r′)uν(r′)= νuν(r). (24)

Because of the planar symmetry of our system, r = (ρ, z),
where ρ is the inplane vector, it is convenient to write down
the eigenvalue problem in the transverse Fourier space, where
k is coupled to ρ and Uν(k, z) is the transverse Fourier
transform of uν(ρ, z),

uν(ρ, z)= A
4π2


d2k Uν(k, z)eik·ρ. (25)

In Fourier space, the eigenvalue equation is(
−εwκ2

D cosh(βeψ)[θ(z−d)−θ(z−L)]

− 1
2
εwκ

2
D

�
e−βα−eβeψ+e−βα+e−βeψ

�[θ(z)−θ(z−d)]

+ ∂zε(z)∂z−ε(z)k2
)
Uν(k, z)= νUν(k, z), (26)

where ε(r) = ε(z) as in Eq. (1), and the corresponding
boundary condition at z = 0 is

εw∂zU
(2)
ν

����0+
−εa∂zU (1)

ν

����0−
= 0, (27)

where ψ is the MFT solution for the electrostatic potential
obtained in Eq. (20), and the notations u(i)

ν (ρ, z) and
U (i)
ν (k, z), i = 1, 2, 3, correspond, respectively, to the solutions

in the three regions: z < 0 (air, i = 1), 0 ≤ z ≤ d (proximal
layer, i = 2), and z > d (distal region, i = 3). For simplicity, the
explicit dependence on k is suppressed hereafter. A second
boundary condition is given in terms of the macroscopic
system size L and is written as ∂zuν(±L)→ 0. Note that in
the air, the solution can be obtained by simply taking κD= 0
in Eq. (26). This leads to an exponentially decaying solution
in the air ∼exp(√k2+ νz), ∂zU (1)

ν =
√

k2+ νU (1)
ν at the z→ 0−

boundary, and k ≡ |k|.
The boundary conditions can then be written in a matrix

form

AV���z=0
+BV���z=d+CV���z=L = 0, (28)

where the four vector V=
(
U (2)
ν , ∂zU

(2)
ν ,U (3)

ν , ∂zU
(3)
ν

)
and the

4 × 4 coefficient matrices A, B, and C are detailed in
Appendix A.

The boundary conditions are satisfied when the
determinant of the coefficient matrix of Eq. (28) vanishes.
This determinant, Dν(k), is called the secular determinant
and can be written as39

Dν(k)= det[A+B Γν(a)+C Γν(L)], (29)

where the 4×4 matrix Γν(z) is also detailed in Appendix A
in terms of the two independent solutions of the eigenvalue
equation (Eq. (26)). These two independent solutions are
denoted by h(i)

ν (z) and g
(i)
ν (z) with i = 2, 3 for regions “2”

(proximal) and “3” (distal), respectively.
As was mentioned above, the one-loop fluctuation

contribution requires to calculate Tr ln H2. We rely on previous
results28,39 where it has been shown that only the ν = 0 value
of the secular determinant, D ≡ Dν=0, needs to be evaluated.
This represents an enormous simplification as there is no need
to find the entire eigenvalues spectrum of the Hessian. Let us
stress that ν = 0 is not an eigenvalue of the Hessian.

The fluctuation contribution Ω1 around the MFT can then
be written as28,40

Ω1=
1
2

kBT Trln(H2(r, r′))

=
AkBT
8π2


d2k ln

(
D(k)

Dfree(k)
)
, (30)

where the integrand depends on the ratio D(k)/Dfree(k), and
Dfree is the reference secular determinant for a “free” system
without ions.

The next step is to calculate D(k). We return to Eq. (26)
to find the solution for ν = 0, U0(z)≡Uν=0(k, z), dropping for
convenience the k-dependence. Using βeψ≪ 1 and keeping
only terms of order O

�
e−βα−−e−βα+

�
, Eq. (26) yields(

∂

∂z
ε(z) ∂

∂z
−ε(z)k2−εwκ2

D[θ(z−d)−θ(z−L)]

− 1
2
εwξ

2[θ(z)−θ(z−d)]
)
U0(z)= 0. (31)

The four independent solutions of Eq. (31), hi(z)≡ h(i)
ν=0(z)

and gi(z)≡ g(i)ν=0(z), i = 2, 3, can be written as

h2= cosh qz; g2=
sinh qz

q
,

h3= cosh pz; g3=
sinh pz

p
,

(32)

where p2= k2+κ2
D, q2= k2+ξ2, and U (i)

0 is a linear combination
of hi and gi.

By substituting Eq. (32) into Eq. (29), it is straightforward
to compute the secular determinant which gives, in the
thermodynamical limit, L≫ d,

D(k)≃

εak

( p
q

sinh qd+cosh qd
)

+ εwp
(
cosh qd+

q
p

sinh qd
)

ep (L−d). (33)
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The secular determinant can be written in a more familiar
way as41

D(k)≃epLe(q−p)d
(
εwq+εak

q

)
×

q
(
1−∆(q, k)e−2qd

)
+ p

(
1+∆(q, k)e−2qd

)
,

(34)

with ∆(q, k) defined as

∆(q, k)≡ εwq−εak
εwq+εak

. (35)

Keeping linear terms in d, the secular determinant from
Eq. (34) yields

D(k)≃ �εak+εwp+εwd
�
ξ2− κ2

D

��
epL. (36)

Note that the DH result, as obtained in Ref. 38, is recovered
in the above equation for d = a.

III. FREE ENERGIES

The grand potential Ω can be calculated to the one-loop
order by inserting D obtained in Eq. (33) into Eq. (30) and
expressing κD of Eq. (19) in terms of the fugacities instead of
the bulk densities

Ω=Ω0+
V kBT
12π

�
Λ

2+ κ2
D

�3/2− κ3
D−Λ

3


+
AdkBT

12π

�
Λ

2+ ξ2�3/2−
�
Λ

2+ κ2
D

�3/2− ξ3+ κ3
D



+
AkBT

4π

 Λ

0
dk k

(
ln

εwq+εak

2(εw+εa)kq



+ ln

q
�
1−∆(q, k)e−2qd�+

�
1+∆(q, k)e−2qd�

)
, (37)

where q2 = k2+ ξ2 and Λ is the ultraviolet (UV) cutoff.
As shown in Appendix C, for symmetric electrolytes,
λ± = n(±)

b
= nb. This simplification is exact for the one-loop

order of the free energy, F, but not for the grand potential, Ω.
In order to find the one-loop grand potential, one has to find
consistently the one-loop correction to the fugacities.

Note that the integral in Eq. (37) has an UV divergency
from the upper bound of the k-integral, as Λ→ ∞. Although
Coulombic interactions between point-like ions diverge at
zero distance, such a divergence is avoided because of steric
repulsion for ions of finite size. A common way in field theory
to avoid this issue without introducing explicitly yet another
steric repulsive interactions is to employ a short length cutoff.
For isotropic two-dimensional integrals, as in Eq. (37), the
UV cutoff is taken to be Λ= 2

√
π/a, where a is the average

minimal distance of approach between ions. This distance can
be approximated by a ≃ 2r , with r being the ionic radius.
An alternative way of avoiding the divergence is to use the
self-energy regulating technique as in Ref. 42. However, for
simplicity we will employ only to the UV cutoff hereafter.

In order to calculate the surface tension, we now calculate
the free-energy,43 which is related to the grand-potential by,

F =Ω+

i = ±


d3r µi(r)ni(r). (38)

It is instructive for the surface tension calculation to separate
the volume and surface contributions of the free energy,
F = FV +FA. Taking the Λ→ ∞ limit in the volume term of
Eq. (37), and using Eq. (5) for µi, yields an expression for FV
to the one-loop order

FV
V
≃Ω0

V
+2kBTnb ln(nba3)− kBT

12π
κ3

D

− d
L

kBT
12π

�
ξ3− κ3

D

�
+

kBT
8π
Λ


κ2

D+
d
L
�
ξ2− κ2

D

�

− e2nbuself(r, r)*
,
1+

d
L
ξ2− κ2

D

κ2
D

+
-
. (39)

Note that in the above equation, we neglect all terms of order
O(Λ−1). The first term is the MFT grand potential, Ω0, the
second one is the usual entropy contribution, and the third
one is the well-known volume fluctuation term, as in the DH
theory.4 The fourth and fifth terms are the bulk self-energies
of the ions (diverging with the UV cutoff) and will be shown
to cancel each other exactly.

The surface free-energy FA to one-loop order is

FA
A
=

kBT
4π

 Λ

0
dk k

(
ln

εwq+εak

2(εw+εa)kq



+ ln

q
�
1−∆(q, k)e−2qd�+ p

�
1+∆(q, k)e−2qd�

)
. (40)

We now treat the spurious divergencies that originate
from the bulk self-energies of the ions. The Coulomb potential
obeys

∇2u(r, r′)=−4π
εw
δ(r−r′) for z ≥ 0

∇2u(r, r′)= 0 for z < 0.
(41)

As our system exhibits translational invariance in the
transverse (x,y) directions, we can simplify the transverse
Fourier transform as in Eq. (25) into the Fourier-Bessel
representation

u(r, r′)= 1
4π2


d2k U0(k;z, z′)eik·ρ

=


dk k U0(k;z, z′)J0(k |ρ−ρ′|), (42)

where J0(z) is the zeroth-order Bessel function of the 1st kind,
and ρ = (x,y) is the in-plane radial vector. The solution of
Eq. (41) is

U0(k; z, z′)= 2π
εwk

(
e−k |z−z

′|+
εw−εa
εw+εa

e−k(z+z
′)) , (43)

for z ≥ 0, and

U0(k; z, z′)= 2π
εwk

(
1+

εw−εa
εw+εa

)
ek(z−z

′) (44)

for z < 0. The self-energy of an ion in the bulk is obtained by
setting r= r′ and z→ ∞,

uself(r,r)= 1
εw

 Λ

0
dk

(
1+

εw−εa
εw+εa

e−2kz
)
≃Λ/εw. (45)

The integral over k for the self-energy, Eq. (45), has an UV
cutoff that was replaced by its most divergent term, which is
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linear in Λ. Finally, by substituting Eq. (45) into Eq. (39), the
two diverging terms in FV cancels each other.

To summarize, we have shown that within our approach,
the self-energy diverging terms cancel out and, as anticipated,
they do not affect the free energy.

IV. SURFACE TENSION

We are interested in calculating the surface tension of an
aqueous ionic solution. The excess surface tension, ∆γ, can be
obtained from the Gibbs adsorption isotherm or, equivalently,
by taking the difference between the free-energy of the two-
phase system and the sum of the free energies of the two
semi-infinite systems of the air and the bulk ionic solution

∆γ=

F (2L)−F (air)(L)−F (B)(L) /A. (46)

Here, ∆γ = γ−γA/W is the excess ionic contribution to the
surface tension with respect to the surface tension between
pure water and air, γA/W.

The bulk electrolyte free energy, F (B)(2L), is obtained
from Eqs. (39) and (40) by considering the entire [−L, L]
interval as a uniform dielectric medium with εw, α± = 0,
and mobile ions. This implies εa→ εw and q→ p. Then,
D(k)/Dfree(k) = p/k, while Ω0 = −2nbV is obtained for the
MFT solution of ψ = 0 (bulk electrolyte phase). Applying
these limiting values gives the free-energy of a system of
width 2L. This system includes two boundaries at the two
extremities, ±L. Thus, one needs to divide the free energy by
two in order to get the bulk free-energy of a slab of width, L,
with one interface at infinity,

F (B)(L)= kBTV

2nb ln

�
nba3�−2nb−

κ3
D

12π



+
AkBT

8π

 Λ

0
dk k ln

( p
k

)
, (47)

where p2= k2+ κ2
D as defined before. The free-energy of the

air phase is equal to zero, F (air)(L)= 0, as there are no ions in
the air phase. For calculating the interfacial tension between
water and oil, for typical oil with dielectric constant εa ≃ 2,
the assumption that no ions penetrate into the oil phase will
be maintained, and the free energy of the oil phase will be
taken as zero.

We calculate in Subsections IV A and IV B the excess
surface tension to one-loop order, ∆γ=∆γ0+∆γ1, where ∆γ0
is the MFT contribution to the surface tension, while ∆γ1 is
its one-loop correction.

A. Mean-field surface tension

Using the mean-field ψ(z) from Eq. (20), the MFT surface
tension is

∆γ0=−
 ∞

−∞
dz
ε(z)
8π

(
dψ
dz

)2

+ kBTnb

 d

0
dz

�
2−e−βeψe−βα++eβeψe−βα−

�

+ 2kBTnb

 L

d

dz (1−cosh βeψ). (48)

As the electrostatic potential and its derivative are of the order
O
�
e−βα−−e−βα+

�
, the MFT surface tension to that order is

simply

∆γ0≃−kBTnbd
��

e−βα−−1
�
+
�
e−βα+−1

��
. (49)

On the MFT level, the equation above is exact for α−= α+.
To show this, we first substitute α−= α+ in Eq. (20), leading
to vanishing electric field and potential. Further substitution
of ψ = 0 and ∂zψ = 0 in Eq. (48) leads to Eq. (49) without any
further approximations.

In order to make contact with the PB surface tension of
a charged surface with adhesivity, we write Eq. (48) to linear
order in d. Substituting the first integration of Eq. (16) into
Eq. (48), one gets

β∆γ0=−nbd
�

e−βα−−1
�
eβeψ+

�
e−βα+−1

�
e−βeψ



− 8nbκ
−1
D

(
cosh(βeψs/2)−1

)
. (50)

The second term in the above equation is the PB surface
tension. For our purposes, the electrostatic potential is small
and the same second term is negligible. In this case, the above
equation exactly coincides with Eq. (49).

B. One-loop correction to the surface tension

The one-loop correction to the surface tension, ∆γ1, is
obtained from Eqs. (40) and (47)

8π
kBT
∆γ1=

 Λ

0
dk k

(
ln


k
p

(
εwq+εak

2(εw+εa)kq

)2
+ ln


q
�
1−∆(q, k)e−2qd�

+ p
�
1+∆(q, k)e−2qd�2

)
− 2d

3
�
ξ3− κ3

D

�
, (51)

recalling that q2= k2+ξ2. Taking the limit of d→ 0 or α±→ 0
(which implies q→ p) gives the OS result with a correction
due to the finite ion size.31 By keeping terms linear in d, the
linearized fluctuation contribution yields44

8π
kBT
∆γ1≃

 Λ

0
dk k ln



k
p

(
εak+εwp
k (εw+εa)

)2
+ 2d

 Λ

0
dk k (q− p) εwq−εak

εwp+εak

−
ξ3− κ3

D

3


. (52)

The above result contains the OS result5,23,31 and an ionic-
specific correction, as will be discussed later. It is clear from
the above results that as long as the adhesivity parameters
α± are small, the MFT contribution to the surface tension,
∆γ0, is small and the dominant contribution comes from the
fluctuation term, ∆γ1. This observation goes hand in hand with
the fact that the OS result by itself originates from fluctuations
beyond MFT.

The leading asymptotic behavior of the integral of Eq. (51)
reveals the OS result and its correction terms. Writing down
only the remaining Λ-dependent terms, the one-loop surface
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FIG. 2. Comparison of the fitted excess surface tension, ∆γ, at the air/water interface with experimental data from Ref. 45 (for the K+ series) and Ref. 46 (for the
Na+ series), as function of ionic concentration, nb. For (a) KX and for (b) NaX, where X stands for one of the Halogen anions F−, Cl−, Br−, and I−. The bottom
dashed line represents the OS surface tension.5 The fitted adhesivity values, α∗ in units of kBT , are shown in Tables I and II. Other parameters are T = 300 K,
εw = 80 (water), and εa = 1 (air).

tension to leading order in d is

8π
kBT
∆γ1≃−

(
εw−εa
εw+εa

)
κ2
D

2


ln

(
1
2
κDlB

)
− ln

(
1
2

lBΛ

)

−
2
�
εwd

�
ξ2− κ2

D

��2

κ2
D(ε2

w−ε2
a)

ln
�
κDΛ

−1�

, (53)

with the Bjerrum length defined as lB= βe2/εw and ξ2 defined
in Eq. (18). The first term in ∆γ1 is the well-known OS
result5,23,31 and it varies as ∼κ2

D ln(κDlB), the second term is a
correction due to the ion minimal distance of approach with
Λ= 2

√
π/a, while the third term is a correction related to the

adhesivity parameters, α±, through ξ2≡ κ2
D

�
e−βα−+e−βα+

�
/2.

For βα±≪ 1, the latter term is negligible and the derived
surface tension agrees well with the OS result, as expected.

For salt concentration larger than ∼0.3kBT , the analytical
approximation shown in Eq. (53) deviates from the full
numerical solution of Eq. (51). It is nevertheless possible
to solve Eq. (51) analytically to order O(d2). Along these lines
we present in Appendix B, an analytical solution to order
O(1/Λ), Eq. (B1), where we do not neglect constants (with
respect to Λ). This solution is almost equivalent to the full
numerical solution of Eq. (51).

V. COMPARISON TO EXPERIMENTS

We now compare our results for the surface tension,
∆γ =∆γ0+∆γ1, with experimental data. The surface tension
prediction is obtained from ∆γ0 in Eq. (49) and the numerical
solution, ∆γ1 of Eq. (51).

For simplicity we take d, the thickness of the proximal
layer, to be equal to a, the average minimal distance between
cations and anions, a = rhyd

+ + rhyd
− . Furthermore, we treat

α± as fit parameters. We note that the obtained results for the
surface tension, ∆γ =∆γ0+∆γ1, are symmetric with respect
to anion←→ cation exchange. This is important because it
means that two parameter fit with α± will always give two
equivalent results, α+↔ α−. Furthermore, for βα±≪ 1, one
can define α∗= α−+α+ as a single fit parameter, and the fit

with α∗ produces almost equivalent results to the fit with the
two independent parameters.

We start by presenting the fits of the experimental data
with α∗. In Fig. 2, we compare our theory at the air/water
interface for (a) three different ionic solutions with K+ as
their cation and (b) four different ionic solutions with Na+

as their cation. The fits in (a) are in very good agreement
with experiments. In (b), for the larger Br− and I− anions
(with respect to their crystallographic size), the fit agrees well
for the entire concentration range up to ∼1M, while for the
smaller F− and Cl− anions, some deviations at concentrations
larger than ∼0.8M can be seen.

Our model can also be applied successfully to other types
of liquid interfaces, such as oil/water, and to more complex
anions such as oxy anions, which are defined by the generic
formula, AxO−y , or acids such as HCl and HClO4. As hydrogen
can form complexes with water molecules, the H+ represents
all of these complexes. We do not need to know the specific
complexation of the hydrogen in water but only its effective
radius.48

In Fig. 3, we compare the fits for oil/water interface,
where in the experiments dodecane is used as the oil. The fits
are done for three different salts having in common the K+

cation. The fits for KCl and KBr are in very good agreement
with experiments, while the fit for KI is not as good. The
surface tension of KI shows a very small ∆γ, which is almost
independent of the salt concentration and, hence, harder to fit.
In Fig. 4, we fitted yet another series of four different oxy
anions (with Na+ as their cation), and the fits in the figure are
in excellent agreement with experiments.

It is reasonable to assume that for the same interface, the
adhesivities of the anions/cations will not differ significantly
for different combinations of anion-cation pairs. For example,
we can calculate α∗KI even when we use α∗ as the only
fit parameter. This can be done with a simple substitution,
α∗KI≃ α

∗
NaI−α

∗
NaBr+α

∗
KBr≃ 0.1071. Using this procedure, it is

possible to obtain reasonable predictions for α∗ for additional
salts.

We also tried to fit the experimental data with two
independent parameters for anions (α−) and cations (α+).
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FIG. 3. Comparison of the fitted excess surface tension for KX electrolytes,
where X stands for one of the Halogen anions Cl−, Br−, and I−, with ex-
perimental data from Ref. 45, as function of ionic concentration, nb, for
dodecane/water. The fitted adhesivity values, α∗, are shown in Table I. All
other parameters are as in Fig. 2, beside the dielectric constant of dodecane,
εd = 2.

FIG. 4. Comparison of the fitted excess surface tension at the air/water
interface for NaX electrolytes, where X = IO−3, BrO−3, ClO−3, and NO−3 stands
for one of the oxy anions, with experimental data from Refs. 49 and 50,
as function of ionic concentration, nb. The fitted adhesivity values, α∗, are
shown in Table II. All other parameters are as in Fig. 2.

Just taking the “best fit” is not sufficient for these fits. The
first problem is that our results do not distinguish between
anions and cations, as explained earlier. This implies that the
cation and anion adhesivities have to be attributed from other
external considerations.

TABLE II. Fitted values for α∗ and α± at the air/water interface. The α± are
obtained by the procedure elaborated in the text and include a prediction for
HClO4 at the air/water interface. The radii for all ions except H+ are obtained
from Ref. 47. The H+ effective radius is obtained from Ref. 48.

d (Å) α∗ (kBT ) α− (kBT ) α+ (kBT )
NaF 7.1 0.2813 0.1515 0.1111
NaCl 6.9 0.2052 0.0851 0.1111
NaBr 6.88 0.0991 −0.0101 0.1111
NaI 6.89 0.0330 −0.0707 0.1111

NaIO3 7.32 0.2673 0.1391 0.1111
NaBrO3 7.09 0.1852 0.0671 0.1111
NaClO3 6.99 0.0651 −0.0410 0.1111
NaNO3 6.93 0.0591 −0.0470 0.1111

HCl 4.32 −0.6116 0.0851 −0.6537
HClO4 4.38 −0.9898 −0.5696 −0.6537

The other, and more significant issue, is the fact that
many pairs of α± give similar excellent fits. We first fit all the
electrolytes at the air/water interface in the following way. (i)
We fit NaF and choose from the “best fit” the larger adhesivity
to be α+ as it is known9,21 that F− is more hydrated than
Na+. (ii) We then use the Na+ adhesivity and fit all other ions
in the NaX series. (iii) We continue by using the fitted α−
for I− adhesivity and fit the KI electrolyte. (iv) With the K+

adhesivity and the adhesivities obtained from the NaX fits, we
can make predictions for the air/water surface tension of KBr
and KCl.

The same procedure was also applied to two acids, HCl
and HClO−4 (see Table II). First, we used the Cl− adhesivity
to fit HCl and then the H+ adhesivity to fit HClO−4 . Finally,
for the K+ fits at the oil/water interface, we first fitted KI and
then used the adhesivity of K+ to fit all other KX salts at the
oil/water interface. The results of these fits are all presented
in Tables I and II. We do not show these fits in the figures as
they are almost identical to the fits in Figs. 2-5, where a single
α∗ parameter is utilized.

In Fig. 5, we show the difference of our prediction to KBr
from the “best fit” of the data. The predicted surface tension
is excellent. The difference from the “best fit” is very small,
and up to 0.8M, it is almost unnoticeable. We do not show
the prediction of KCl, but it is just as good. It is important
to note that other fitting strategies would have given different
results for α± and probably would result in good fits. Our
model gives good estimates of the adhesivity parameters for
physical systems, and we can consistently fit a large number
of experiments and even make reasonable predictions.

TABLE I. Fitted values for α∗ and α± for the air/water and oil/water interfaces. The α± are obtained by the
procedure elaborated in the text and include also predictions for KCl and KBr at the air/water interface. The ion
radii are obtained from Ref. 47.

Air Oil

d (Å) α∗ (kBT ) α− (kBT ) α+ (kBT ) d (Å) α∗ (kBT ) α− (kBT ) α+ (kBT )
KCl 6.63 0.2112 0.0851 0.1652 6.63 0.1171 −0.0050 0.1313
KBr 6.61 0.1732 −0.0101 0.1652 6.61 −0.0390 −0.1451 0.1313
KI 6.62 0.0811 −0.0707 0.1652 6.62 −0.3333 −0.4141 0.1313
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FIG. 5. Comparison of the “best fit” to the data (dashed line) and the pre-
dicted (red solid line) excess surface tension for KBr at the air/water interface
as function of ionic concentration, nb. The fit parameter values, α±, are
shown in Table I.

In Fig. 6, we plot the excess surface tension at the air/water
interface, ∆γ, the sum of Eqs. (49) and (51), as function of
ionic concentration, nb, for different values of α. The OS
result is recovered almost exactly for α ≃ −0.2kBT . Notice
that the surface tension has an upper bound for α→ ∞, but
this bound is practically reached for α & 5kBT . This happens
for infinite repulsion when all the ions are expelled from the
proximal layer. In addition, in order to obtain this bound, we
require that the ionic concentration at the surface cannot be
negative. This is not the case for α→ −∞, which leads to
an infinite amount of anions to be adsorbed on the surface.
This is not physical because the actual upper bound is the
close packing concentration (not accounted by us), even for
an infinite attraction. In this paper, we expect, and obtain,
only small values of adhesivities. Hence, this non-physical
situation is not relevant.

We can now arrange the various ions in an extended
reverse Hofmeister series with decreasing adhesivity
strength at the air/water interface. The anions series is

FIG. 6. Excess surface tension at the air/water interface as function of ionic
concentration, nb, for different values of α (in units of kBT ). The OS result
is obtained for α ≃ −0.2kBT . All other parameters are as in Fig. 2.

F− > IO3
− > Cl− > BrO3

− > Br− > ClO3
− > NO3

− > I−, while
for cations it is K+>Na+.

At the oil/water interface, Fig. 3, the same reversed
Hofmeister series emerges and the interaction becomes
more attractive. This effect is substantially stronger for the
anions and might be connected with the stronger dispersion
forces at the oil/water interface, related directly to the
large anion polarizabilities.30 We denote the difference in
adhesivity between the air/water and oil/water interfaces by
∆α = α(a/w)−α(o/w). From the fitted values of α∗, ∆α is
different for each anion and ∆αI > ∆αBr > ∆αCl. This can be
explained by a change in the water-surface interaction. If the
water-water interaction (hydrogen bonds) becomes weaker in
the vicinity of the surface, the larger ions (with respect to their
crystallographic size) will be more attracted to the surface.

VI. CONCLUDING REMARKS

Our work presents a general self-consistent theory for
calculating free energies up to one-loop order for ionic
solutions with a surface proximal layer of finite width. In
this layer, we consider a slowly varying ion-specific surface
potential. The loop expansion we use can be computed
systematically to higher orders, and re-summing the loop
terms is actually equivalent to the cumulant expansion done
in Refs. 22 and 23.

The calculation of the excess surface tension, ∆γ, is
based on the free-energy difference between a system with an
air/water interface on one hand and two semi-infinite systems
(electrolyte and air) with no interface on the other hand.
The same calculation can be applied to other liquid/liquid
interfaces such as oil/water, simply by using εa as the dielectric
constant of the oil instead of air. This calculation method is
equivalent to the Gibbs adsorption isotherm method,51 but it
is mathematically more accessible as it avoids the explicit
calculation of the ionic densities. It is also possible to use the
grand potential instead of the free-energy, but the latter does
not simplify the calculation, because one has to consider the
one-loop correction to the fugacities (Appendix C).

We have computed the linearized MFT electrostatic
potential as well as the MFT and one-loop free energies,
utilizing the secular determinant method, where we have
extended the secular determinant method of Ref. 39 for the
three boundaries as in our system.

The one-loop excess surface tension, ∆γ1, is calculated
and the OS surface tension result was naturally recovered
and extended. In fact, we showed that the OS result is
obtained by considering the thermodynamic fluctuations of
the electrostatic potential around its MFT solution, while the
volume fluctuations recovered the known DH correction to
the MFT free energy. Our surface-tension result is analytical
and interpolates between several known limits: the result of
Ref. 38 for d→ 0, the OS one for α±→ 0 or d = 0, and a Stern
layer for α±→ ∞. A wide variety of monovalent ions at the
air/water and oil/water interfaces were fitted by our model, all
taken on a common and unified ground.

Within some approximations, we obtain an analytical
dependence of the excess surface tension on the salt
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concentration. The fits for ∆γ agree well with experiments
and show clearly the reversed Hofmeister series (F− > Cl− >
Br− > I−) both at the air/water and oil/water interfaces. The
various fits reveal an even more extended (Hofmeister)
series: F− > IO3

− > Cl− > BrO3
− > Br− > ClO3

− > NO3
− > I−.

In Ref. 50, a different series was obtained for anions:
IO3

− > F− > BrO3
− > Cl− > NO3

− > Br− > ClO3
− > I−. At

present, it is not clear which of these two predictions is more
accurate. Other experimental measurements, such as surface
potential, might shed light on this discrepancy. We intend to
further investigate this issue in the future by calculating the
surface potential to one-loop order.

In the weak-coupling linear regime, where our theory
is valid, fluctuations dominate over the MFT contribution,
and the cation and anion adhesivities are roughly equal,
α+≃ α−. This then leads to a small MFT contribution, while
the one-loop contribution has terms proportional to ln(Λ) and
independent on α±. These terms arise from the image charge
interaction and, indeed, give the OS result with an ionic-size
correction (minimal distance of approach between ions).

Two important limitations of our theory are related to the
ion finite size and to the linearization of the MFT electrostatic
equations. For large adhesivities, where the ion density on the
surface is high and does not correspond to the dilute solution
limit, our theory is expected to fail. Instead, other theories,
such as the modified PB theory,52 can be utilized as they
take into account explicitly the ion finite size. Considering,
for example, the surface tension of acids, such as HCl and
HClO4, the fitted α’s from our theory are found to be rather
large (see Table II) and are not expected to be as reliable, for the
reasons mentioned above. Furthermore, when |α+−α−| ≃ kBT ,
the linear approximation fails and one should solve the full
MFT electrostatic equation.

Note that the image charge term (or other ion-interface
interactions) cannot be simply added in the Boltzmann weight
factor (potential of mean force). Since the PB equation is
a MFT equation that follows from a certain free-energy
minimization, a consistent way to generalize it should be based
on an augmented free-energy functional, which then gives a
generalized PB equation. In this way, double-counting of
different electrostatic contributions is prevented, and remedy
a common ambiguity where the image charge or other ion-
interface interactions are added to the PB equation in an ad
hoc fashion.

Our model provides a self-consistent way to calculate the
fluctuations around the MFT free energy. The image charge
contribution naturally arises from the fluctuations hence α±
originate only from solvent (short-range) interactions and the
problem of double counting is avoided. An augmented free
energy (“action”), Eq. (10), is obtained and its minimization
indeed leads to a modified PB equation.

The microscopic origin of the adhesivity is still not
very well understood. Nevertheless, several possibilities have
been suggested recently. For the special case of silica/water
interface,12,13 the orientation of water molecules in the vicinity
of the interface was proposed to lead to changes in the
hydrogen bond strength at the interface. This surface effect
can be identified as a possible microscopic source of α±,
whose value is proportional to the difference in free energy

between a single ion solvated in the bulk as compared to its
partially solvated state at the surface. Another possible origin
for the adhesivity is the cavitation energy.21 The ion interferes
with the water structure by breaking hydrogen bonds. This
costs energy, leading to an effective attraction of the ion to
the interface. Other effects such as the ion polarizability21 or
dispersion forces30 might also play a role in the ion-surface
interaction. Since all proposed origins of the adhesivity are
short range (their range is comparable to the ionic radius) and
our theory is a coarse-grained one, it is appropriate to average
over their degrees of freedom and obtain α±, whose magnitude
is reasonably obtained from the fits to the experimental data.

Our model is applicable to many systems that exhibit
a spatial region characterized by ionic-specific and slowly
varying interactions. Two examples of such systems are a
dense layer of polymer brushes that are attached to a solid
surface or a polyelectrolyte gel occupying a finite volume
of solution. Our model is ionic-specific and can be used to
obtain simple and analytical predictions also for such complex
inhomogeneous systems.
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APPENDIX A: SECULAR DETERMINANT

The 4 × 4 coefficient matrices A, B, and C for the
boundary condition equation, as discussed in Eq. (28), are

A=
*.....
,

−εak εw 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+/////
-

,

B=
*.....
,

0 0 0 0
1 0 −1 0
0 1 0 −1
0 0 0 0

+/////
-

, (A1)

C=
*.....
,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

+/////
-

.

In general, for a system with two boundaries, the secular
determinant can be written as39

Dν(k)= det
�
A+B Γν(a)Γ−1

ν (0)+C Γν(L)Γ−1
ν (0)�, (A2)
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with Γν(z) computed at the spatial point z and is defined as
another 4 × 4 matrix

Γν(z)=
*......
,

h(2)
ν g

(2)
ν 0 0

∂zh
(2)
ν ∂zg

(2)
ν 0 0

0 0 h(3)
ν g

(3)
ν

0 0 ∂zh
(3)
ν ∂zg

(3)
ν

+//////
-

.

In the equation above, we have used the notations h(i)
ν (z) and

g
(i)
ν (z) with i = 2, 3 for the two independent solutions of the

eigenvalue equation, Eq. (26), in the proximal (0 ≤ z ≤ d)
and distal (z > d) regions, respectively. It is then convenient
to choose these independent solutions such that Γ(0) = 1.
The secular determinant expression, Eq. (A2), can be then
simplified as is used in Eq. (29).

APPENDIX B: ONE-LOOP SURFACE TENSION TO
ORDER O(1/Λ)

The analytical solution to the integral in Eq. (51) in the
limit Λ→ ∞ can be computed to order O(d2) by neglecting
terms of order O(1/Λ), while retaining constant terms (with
respect to Λ)

∆γ1≃−
kBT
8π

(
εw−εa
εw+εa

)
κ2

D

4


2 ln(κDΛ

−1)−1

+
4εw

(εw−εa)2
*
,
εa ln 2−εw ln

εw+εa

εw+ωκ
−1
D

+
-



+
kBT
8π

ωκD

εw+εa


− εw
εw−εa

− ω

2κD(εw+εa)

+
ω

κD(εw−εa)
*
,

2εa
εw−εa

ln 2− ln
εw+εa

εw+ωκ
−1
D

+
-

+
ω

κD(εw+εa) ln(κDΛ
−1)

+
4εwεa

�
κ2

D

�
ε2
w−ε2

a

�
−ω2� 1

2

κD(εw−εa)2(εw+εa)

× arctan
*..
,


κ2

D(ε2
w−ε2

a)−ω2

κD(εw+εa)+ω
+//
-


, (B1)

with ω ≡ εwd
�
ξ2− κ2

D

�
. The first term above (proportional to

κ2
D) represents a correction to the OS result. In the case where
α±= 0, we recover exactly the result obtained in Ref. 31 (apart
from an inconsequential typo). The second term (proportional
to ωκD) is the ion-specific term, with leading behavior as in
Eq. (53).

APPENDIX C: FUGACITIES ONE-LOOP CORRECTION

The grand-potential is written in terms of the fugacities,
λi, with i = ±, for the anions and cations, respectively. The
fugacities are related to the bulk densities by

n(i)
b
=−λi

β

V
∂Ω

∂λi
. (C1)

It is clear from the above equation that if one modifies the
grand potential with quadratic fluctuations, the fugacities will
be modified as well. Writing the grand potential to one-loop
order yields

Ω≃Ω0(λi)+CΩ1(λi), (C2)

where we introduce the parameter C to keep track of the
expansion terms. After finishing the calculation, this parameter
will be set to unity. Substituting Eq. (C2) into Eq. (C1) gives,
λi,1, the one-loop correction to the fugacities

λi≃λi,0+Cλi,1

=−


V n(i)
b

β∂Ω0/∂λi
+Cλi,0

∂Ω1/∂λi
∂Ω0/∂λi

λi=λi,0
, (C3)

where λi,0 is the zeroth-order fugacity. We now expand the
grand-potential correction,Ω1(λi), around λi,0 and use Eq. (C3)
for λi,1 to obtain

Ω≃Ω0(λi,0)

+C

Ω1(λi,0)−


i=±
λi,0

∂Ω1(λi)
∂λi

λi=λi,0
. (C4)

The electro-neutrality condition


iλiqi = 0, for symmetric
electrolytes, imposes λ+ = λ− ≡ λ. Using Eq. (C1) and the
definition of the fugacities, Eq. (5), we obtain the intrinsic
chemical potential

µi(r)≃−1
2

e2u(r, r)+ kBT

ln

�
λi,0a3�+C λi,1

λi,0


. (C5)

In the above equation, we have also expanded the fugacities
around λi,0. We now calculate the free energy from Eqs. (38)
and (C4), with the chemical potential obtained in Eq. (C5),

F ≃F0+CF1=Ω0(λi,0)− e2

2
n(i)
b

Vub(r, r)

+V kBT

i=±

n(i)
b

ln
�
λi,0a3� + C


Ω1(λi,0)

+

i=±
λi,1

(
∂Ω0(λi)
∂λi

)
λi=λi,0

+ V kBT

i=±

n(i)
b

λi,1

λi,0


. (C6)

The second and third terms in F1 (the square brackets) cancel
each other exactly (from the definition of λ0, Eq. (C3)). Thus,
the free-energy to one-loop order yields

F ≃Ω0(λi,0)− 1
2

e2n(i)
b

Vub(r, r)
+V kBT


i=±

n(i)
b

ln
�
λi,0a3�+Ω1(λi,0). (C7)

This result gives rise to a useful simplification, where to first
order in a loop expansion of the free-energy, the fugacities can
be taken as λi,0 and are equal to the bulk densities. Note that
this is not the case for the grand potential,Ω. For the latter, the
fugacities must be calculated consistently to one-loop order
as shown in Eq. (C3).
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