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Budding of domains in mixed bilayer membranes
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We propose a model that accounts for the budding behavior of domains in lipid bilayers, where each of the
bilayer leaflets has a coupling between its local curvature and the local lipid composition. The compositional
asymmetry between the two monolayers leads to an overall spontaneous curvature. The membrane free energy
contains three contributions: the bending energy, the line tension, and a Landau free energy for a lateral phase
separation. Within a mean-field treatment, we obtain various phase diagrams which contain fully budded, dimpled,
and flat states. In particular, for some range of membrane parameters, the phase diagrams exhibit a tricritical
behavior as well as a three-phase coexistence region. The global phase diagrams can be divided into three types
and are analyzed in terms of the curvature-composition coupling parameter and domain size.
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I. INTRODUCTION

Biological membranes are multicomponent assemblies
typically composed of lipids, cholesterol, glycosugars, and
proteins, whose presence is indispensable to the normal
functioning of living cells [1]. Given the complexity of
biological membranes, studies of model membranes have been
conducted in vitro in order to gain insight into the structural
and physical behavior of biomembranes. Many studies, in par-
ticular, over the last two decades, have focused on simplified
artificial systems containing vesicles in solution, composed of
ternary mixtures of lipids and cholesterol [2,3]. By decreasing
temperature, the ternary mixtures undergo a phase separation
between a liquid-ordered (Lo) phase and a liquid-disordered
(Ld) one [4,5]. Depending on thermodynamical parameters,
the liquid domains show one of three distinct domain shapes:
flat, dimpled (partially budded), or fully budded [6].

A theoretical model for domain-induced budding of planar
membranes was proposed by Lipowsky [7,8] and later ex-
tended for the case of closed vesicles [9,10]. In the model, the
competition between the membrane bending energy and the
domain line tension leads to a budding transition under
the constraint of a fixed domain area. Hu et al. [11] proposed
a mechanism based on this interplay, which stabilizes patterns
of several domains on closed vesicles without requiring any
osmotically induced membrane tension.

Returning to the case of planar membranes, Lipowsky’s
model [12] predicts that (i) an initially flat domain deforms
spontaneously into a completely spherical bud when the
initial domain size exceeds a critical size, and (ii) dimpled
domains are stable only when the spontaneous curvature of
the bilayer membrane is nonzero. The latter prediction was
later re-examined [13], because dimpled domains are observed
experimentally in vesicles with no apparent spontaneous cur-
vature [14]. In order to resolve this discrepancy, Rim et al. [15]
considered the effect of adding an overall lateral tension acting
on the membrane and used ideas about entropy-driven lateral
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tension that were originally proposed by Helfrich and Servuss
[16]. The resulting phase diagram [15] contains regions of
stability for the three domain morphologies mentioned above.
Moreover, the effect of the lateral tension on budding was
discussed by Lipowsky and coworkers [7,17] as well as by
others [18,19]. In particular, the budding process requires
that the activation energy has to exceed the energy barrier
associated with the surface tension.

In this paper, we propose a model that describes domain-
induced budding in bilayers composed of a binary mixture of
lipids. We suggest that dimpled domains can be formed and
remain stable due to a possible asymmetry between the two
monolayer compositions. We show that the dimpled structure
appears when the line tension along the domain rim is not too
great. Global phase diagrams are calculated within mean-field
theory, and in some range of system parameters, we obtain a
tricritical behavior as well as a three-phase coexistence region.
We discuss different morphologies that characterize the phase
diagrams in terms of model parameters.

It was recognized long ago that such an asymmetry in the
monolayer composition leads to a nonzero bilayer spontaneous
curvature [20,21]. The coupling between composition and
monolayer curvature was also considered [22] in order to
describe the transition between lamellar and vesicular phases
of bilayer membranes composed of two types of amphiphiles.
It is worthwhile mentioning related works by Harden et al.
[23,24] and Góźdź et al. [25], who studied budding and domain
shape transformations in bilayer membranes. In Refs. [23] and
[24], the phase separation is assumed to occur in only one
of the monolayers, and the domain spontaneous curvature
due to the compositional asymmetry is kept constant. For
finite spontaneous curvatures, it was shown that dimpled
domains are obtained in equilibrium when both line and
surface tensions are low [24]. More recently, ring-shaped
domains were experimentally obtained in model membranes
using a bud-mimicking topography [26]. Such a ring-shaped
domain is located around a bud-neck region having a negative
curvature and is characterized by the composition asymmetry
between the two monolayers.

The outline of our paper is as follows. In the next section,
we present a model for bilayer domains. In Sec. III, various
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mean-field phase diagrams are obtained by changing the ratio
between the domain size and the invagination length, as well
as tuning the intermonolayer coupling parameter strength.
Finally, Sec. IV includes some discussion and interpretation
of our results.

II. MODEL

We model the membrane as a bilayer having two mono-
layers (leaflets), each composed of an A/B mixture of lipids
that can partition themselves asymmetrically between the two
monolayers. We consider the case where the lipids can undergo
a lateral phase separation creating domains rich in one of the
two components. As discussed below, these domains can also
deform (bud) in the normal direction, and the deformations are
controlled by the membrane curvature elasticity. We do not
include any gradient terms in the free energy; this results in
an unrealistic discontinuous jump of the membrane curvature
close to the bud edge. For the fully budded state this jump in
curvature does not matter because the bud neck corresponds to
a small length scale, of the order of the membrane thickness.
However, in the dimpled state, this jump occurs on a bigger
length scale and artificially affects the free energy. We further
introduce a coupling between local lipid composition and local
curvature [20–22], which can eventually drive the budding
process of the membrane.

We start by considering a single two-dimensional (2D)
circular domain of an initial and arbitrary radius L embedded
in an otherwise flat (2D) membrane, as shown in Fig. 1(a). The
area of the domain, S = πL2, is assumed to stay constant even
when the domain buds into the third dimension. For simplicity,
we consider only budded domains whose shape is a spherical
cap of radius 1/C [Fig. 1(b)]. The total bending energy of the
budded domain is given by adding the curvature contributions
from the two monolayers [27,28],

Eb = 2πL2κ[(C − C0)2 + (C + C0)2], (1)

where κ is the bending rigidity modulus and C0 the monolayer
spontaneous curvature. As shown in Fig. 2, the two monolayers
are fully coupled together, and their curvatures are given by
+C and −C, respectively.

FIG. 1. (Color online) (a) The flat phase, (b) the dimpled phase,
and (c) the fully budded phase. In (a) the circular flat domain (red)
has radius L and area S = πL2. In (b) a bud of the same area S forms
a spherical cap of radius 1/C, where C is the curvature, embedded
in an otherwise flat membrane. In (c) a fully budded domain of area
S has a spherical shape, just touching the flat membrane. The line
tension γ acts along the boundary [solid (blue) line] between the
domain and the flat membrane.

φ1 ≈ φ2

φ1

φ2

φ1 = φ2

φ1

φ2

FIG. 2. (a) Flat bilayer domain when the relative A/B compo-
sitions in the two monolayers, φ1 and φ2, are almost symmetric,
φ1 ≈ φ2. (b) Curved bilayer domain when the compositions are
asymmetric, φ1 �= φ2. The spontaneous curvature of each monolayer
is assumed to depend linearly on the composition, as given by Eq. (4).

The next contribution is the domain edge energy, which is
proportional to the edge length and its line tension, γ [7]:

Eed = 2πLγ
√

1 − (LC/2)2. (2)

In the extreme case, when the domain buds into a complete
spherical domain as in Fig. 1(c), C = ±2/L and Eed = 0.

For domains that are composed of two lipid types, the
relative composition in each monolayer is defined as φi =
φA

i − φB
i (i = 1,2), where φA

i (φB
i ) is the molar fraction of the

A lipid (B lipid) in the ith monolayer. We assume that each of
the monolayers is incompressible, hence, φA

i + φB
i = 1. For

the sake of simplicity, the molecular areas of A and B species
are taken to be the same, meaning that the molar fraction of
the lipids is indenting to their area fraction. As in any A/B
mixture, the possibility of a phase separation due to partial
incompatibility between the two species can be described by
a phenomenological Landau expansion of the free energy in
powers of φi around the critical point, φi = 0. In our case, this
expansion is done separately for each monolayer, and the free
energy is the sum of the two contributions,

Eph = πL2 U

�2

2∑
i=1

[
t

2
φ2

i + 1

4
φ4

i − μφi

]
, (3)

where � ≡ κ/γ is the invagination length, U a parameter that
sets the energy scale, t ∼ (T − Tc)/Tc the reduced temperature
(Tc being the critical temperature), and μ the chemical
potential, which fixes the A/B relative composition in each
layer. In general, a different chemical potential can be assigned
to each of the two monolayers. However, since it is difficult
to control the average composition in each layer separately,
we introduce only one chemical potential μ that fixes the
total relative composition φ1 + φ2 of the entire bilayer. Note
that we allow exchange of lipid molecules between the two
monolayers via a flip-flop process. Bilayers where each of the
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monolayer compositions can be controlled independently will
be addressed in our future work.

As argued before [22], we do not include any φi gradient
term in Eq. (3) because we consider only a homogeneous
composition within a single domain. The energy cost as-
sociated with a gradient term in composition is effectively
taken into account through the line tension γ in Eq. (2),
which is regarded here as an external control parameter. This
assumption regarding γ can be justified for situations of strong
segregation (far from the critical point) between the domain
and the background, for which the domain boundary is sharp.

Hereafter, we use several dimensionless variables: a
rescaled curvature c ≡ LC, rescaled spontaneous curvature
c0 ≡ LC0, and rescaled invagination length ξ ≡ �/L. The
coupling between the spontaneous curvature c0 and the com-
position is taken into account by assuming a linear dependence
on φi [22] (see also Fig. 2),

c0(φi) = c̄0 − βφi, (4)

where all variables in Eq. (4) are dimensionless, c̄0 is
the spontaneous curvature of the monolayer at its critical
composition φi = 0, and β is a coupling constant. Since c̄0 is a
constant that merely shifts the origin of the chemical potential
μ, we can drop it without loss of generality.

The total free energy of the bilayer model is given by the
sum of Eqs. (1), (2), and (3):

Etot = Eb + Eed + Eph. (5)

Denoting the average of and difference between the two
monolayer compositions, respectively, as

φ+ ≡ φ2 + φ1

2
and φ− ≡ φ2 − φ1

2
, (6)

the dimensionless total free energy of one domain, ε =
Etot/2πκ , is expressed as

ε = 2c2 − 4βcφ− + 2β2(φ2
+ + φ2

−)

+ 1

ξ

√
1 − c2/4 + 1

ξ 2

(
U

2κ

) [
t(φ2

+ + φ2
−)

+ 1

2
(φ4

+ + 6φ2
+φ2

− + φ4
−) − 2μφ+

]
, (7)

where we have dropped unimportant constant terms. Within a
mean-field theory, the equilibrium state of the system and the
phase transitions are determined by minimization of the above
ε with respect to φ± and c.

We note that Eq. (7) depends on three dimensionless
parameters — β, ξ , and U/2κ — while the thermodynamic
variables are the temperature t and the three order parameters,
φ± and c. In the calculations presented hereafter, we set
U/(2κ) = 1 and vary the values of β and ξ . Since the total free
energy is invariant under simultaneous exchange of β → −β

and φ− → −φ−, it is sufficient to study only the β > 0 range.
Typical experimental values of flat domain size are in

the range of L � 50–500 nm [29], the bending rigidity κ �
10−19 J ≈ 25kBT [28], and the line tension is in the range of
γ � 0.2–6.2 × 10−12 J/m [14,30]. These parameter values
yield an invagination length, �, of the order 0.01L to 10L

(ξ � 0.01–10), as used in the next section.

III. PHASE BEHAVIOR AND PHASE DIAGRAMS

A. Flat, dimpled, and fully budded states

The total free energy ε in Eq. (7) is first minimized with
respect to the curvature c, yielding

4c − 4βφ− − c

4ξ
√

1 − c2/4
= 0. (8)

The above equation indicates that the value of c, taken at the
minimum of ε, uniquely determines the value of φ−, as long

FIG. 3. (Color online) Plots of the free energy ε as a function
of the curvature c for (a) φ− = 1, (b) φ− = 0.5, and (c) φ− = 0.
The other parameter values are t = −0.5, φ+ = 0.4, β = 1, and ξ =
0.25. The free-energy minimum is shown by the filled (red) circle
and corresponds to the fully budded state [c = 2; (a)], dimpled state
[0 < c < 2; (b)], and flat state [c = 0; (c)].
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FIG. 4. (Color online) Plot of the free energy ε as a function of
φ+ for t = −0.5, β = 1, and ξ = 0.25. The solid gray (red) and
black lines of the free energy correspond to the flat and fully budded
states, respectively. The two dotted lines are the common tangent
constructions, which determine two sets of coexisting compositions
indicated by green dots.

as |c| < 2. The value of the curvature determines which of the
domain states is the equilibrium one: flat (F) with c = 0, fully
budded (B) with c = ±2, or dimpled (D) with 0 < |c| < 2. By
substituting back the above minimization condition for |c| < 2
into the total free energy, we obtain ε(φ+,φ−) as a function
of φ+ and φ−. This free energy is further minimized with
respect to φ−, leading to the expression ε(φ+), which is only a
function of φ+. We assume that the average composition φ+ is a
conserved order parameter (while c and φ− are nonconserved)
and can be controlled by varying the conjugate chemical
potential μ acting as a Lagrange multiplier.

In order to illustrate this minimization process, we plot ε as
a function of the curvature c in Fig. 3, for given values of t and
φ±. We see that the free energy takes its minimum at different
curvature values [shown by filled (red) circles] for different
φ− values. Figures 3(a), 3(b), and 3(c) correspond to the fully
budded, dimpled, and flat states, respectively. In Fig. 4 the free
energy ε, which was minimized with respect to both c and φ−,
is plotted as a function of φ+ for a fixed temperature. Different
colors of the free-energy plot correspond to different domain
states (F and B). The two dotted lines are the common tangents
that determine the two sets of coexisting compositions. For the
chosen parameter values as in Fig. 4, the flat and fully budded
phases coexist (F + B and B + F).

B. Phase diagrams

The numerically computed phase diagrams are 3D ones
for fixed values of ξ and β. They can be plotted in either the
(φ+,t,c) or the (μ,t,c) parameter space. Recall that throughout
this work we set, for simplicity, U/(2κ) = 1. In addition,
note that the equilibrium φ− value is self-determined by
the equilibrium c value according to Eq. (8). As it is too
cumbersome to present 3D plots, we plot 2D phase diagrams
in the (φ+,t) or (μ,t) planes, which represent a projection in
the c direction, or 2D cuts in the (c,t) plane for fixed values of
the conserved order parameter, φ+ (see Fig. 8).

FIG. 5. (Color online) Phase diagram (a) in the (φ+, t) plane,
where φ+ is the average composition and t the reduced temperature;
and (b) in the (μ, t) plane, where μ is the chemical potential. The
parameters are β = 1 and ξ = 0.25. Flat (F), dimpled (D), and fully
budded (B) phases. Coexistence regions are denoted “F + D”, etc.,
in (a). The black and darker gray (red) lines indicate first- and
second-order phase transitions, respectively, while the lighter gray
(blue) line indicates a first-order phase transition with a discontinuous
jump in both c and φ−. Filled circles represent the tricritical points
(ttcp � 0.011, φtcp

+ � ±0.094, μtcp � ±0.488), and open circles in (b)
represent the triple points (ttri � −0.267, μtri � ±1.49), where three
phases coexist, with φtri

+ = ±0.484, ±0.066, and ±0.045.

In Fig. 5 we present the phase diagrams that are obtained
numerically for β = 1 and ξ = 0.25. In (a) the phase diagram
is plotted in the (φ+,t) plane; in (b), in the (μ,t) plane. The
phase diagram in (a) is symmetric about φ+ = 0, and that in
(b), about μ = 0. At high temperatures, only the flat phase
is stable. For lower temperatures, in the range −0.267 < t <

0.042, the dimpled phase becomes stable. The phase diagrams
show a tricritical behavior, similar to the well-known tricritical
behavior of the Blume-Emery-Griffiths spin-1 model [31].

The darker gray (red) line in Fig. 5 denotes a second-order
phase transition between the F and the D phases, occur-
ring when c → 0. It terminates at two symmetric tricritical
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FIG. 6. (Color online) Enlarged middle zone (φ+ ≈ 0 and t

around the triple-point value) from Fig. 5(a). The solid gray (blue)
line is a first-order phase transition between dimpled and fully budded
phases, with a jump in the curvature value from c � 0.75 to c = 2.
Solid black lines indicate the boundaries of the two-phase coexistence
regions: F + D and F + B. On the triple line, ttri � −0.267, three
phases coexist with φtri

+ = ±0.066 and ±0.045.

points (filled circles), ttcp � 0.011, φ
tcp
+ � ±0.094 in (a) and

μtcp � ±0.488 in (b). The tricritical points are also obtained
analytically using some approximations and their calculated
values, ttcp � 0.014 and φ

tcp
+ � ±0.095, agree well with the

numerical ones. More details on the analytical derivations are
provided in the Appendix. For t < ttcp, the phase transition
between F and D becomes first-order (solid black line) with
coexistence lines in the (μ,t) plane and two coexistence
regions, labeled F + D and D + F, in the (φ+,t) plane. As
one crosses this phase transition line, there is a jump in φ+, as
well as in c and φ−, and the jump in φ− is fully determined by
a similar jump in c.

Two triple points are shown as open circles in Fig. 5(b) at
ttri � −0.267 and μtri � ±1.49 or, equivalently, as a horizontal
line in Fig. 5(a). At the triple point, the three phases (F, D, and
B) coexist. In order to explain in more detail the phase behavior
close to the triple line, we show in Fig. 6 an enlarged section
of Fig. 5(a) around the triple line. The tip of the middle [gray
(blue)] line starts at about t � −0.261 and terminates at the
triple-point temperature. This is a first-order phase transition
line where both c and φ− show a discontinuous jump from
their dimpled values (c � 0.75) to their fully budded values
(c = 2). The other solid lines delimit the two-phase coexistence
regions: F + D above the triple line and F + B below it.

We plot the equilibrium values of c in Fig. 7(a) and those
of φ− in Fig. 7(b), in order to view the phase transitions more
clearly. Both c and φ− are plotted in the (φ+,t) plane as a
contour color plot. In Fig. 7(a) we see two parabola-like lines
delimiting different values of c. At the upper black line, the
curvature continuously tends towards 0, c → 0. The region
close to the curve tip (φ+ ≈ 0) coincides with the second-order
phase transition between phase F and phase D [darker gray
(red) line in Fig. 5(a)], while the rest of the line lies inside
the two-phase coexistence region, and does not influence the
equilibrium state of the system. The lower, lighter gray (blue)
line represents a jump in c from c � 0.75 (D phase) to c = 2
(B phase). Its top region (close to φ+ = 0) coincides with
the first-order phase transition between phase D and phase B

FIG. 7. (Color online) (a) The curvature c as a contour plot in
the (φ+, t) plane, with a color bar that corresponds to 0 � c � 2.
A jump from c = 2 to about c = 0.75 can be seen as t increases
its value and eventually crosses the lower black line, while along
the upper black line c vanishes continuously. (b) The compositional
asymmetry between the two monolayers, φ−, is plotted as a contour
plot in the (φ+, t) plane. As t increases, a jump is seen from φ− = 0.7
to φ− = 0.55 along the lower black curve. For the upper black curve
φ− vanishes continuously (just as c did). The chosen parameters are
β = 1 and ξ = 0.25.

[lighter gray (blue) lines in Figs. 5(a) and 6], and the rest of the
line lies within the F + B coexistence region. In Fig. 7(b), a
similar contour plot is shown for φ−, as determined by Eq. (8).

The complementary plot is shown in Fig. 8 in the (c,t) plane
for several fixed values of φ+, ranging from 0.1 to 0.4. We
recall that φ+ = (φ1 + φ2)/2 = (φA

1 + φA
2 )/2 − (φB

1 + φB
2 )/2

is a conserved quantity determined by the total amount of the
A and B lipids in the domain. In the model we control it by the
chemical potential μ. As t is lowered, the minimized curvature
c continuously increases from 0. This represents a continuous
(second-order) phase transition from the flat state (F with c =
0) to the dimpled one (D with c > 0). When the temperature
is lowered even further, the curvature discontinuously jumps
from c � 0.75 (indicated by the arrow in Fig. 8) to c = 2. This
is a first-order phase transition from the dimpled state (D) to
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FIG. 8. The reduced temperature t as function of the equilibrium
curvature c for fixed values of β = 1, ξ = 0.25 and several values of
φ+: 0.1, 0.2, 0.27, 0.33, and 0.4. As t decreases, the curvature c first
continuously increases from 0 and then discontinuously jumps from
c � 0.75 (marked by the arrow on the c axis) to c = 2. The former
corresponds to the second-order phase transition from the flat state to
the dimpled one; the latter, to the first-order phase transition from the
dimpled state to the fully budded one.

the fully budded (B) one. Note that the maximum curvature
c � 0.75 of the dimpled state does not depend on the average
composition φ+.

When the ξ value is decreased, while β is kept fixed, the
D phase disappears, and the only remaining stable phases are
F and B, with a phase transition between them. This is shown
in Fig. 9, where the chosen parameter values are β = 1 and
ξ = 1/7 � 0.143. A second-order phase transition [gray (red)
line] is seen between the F and the B phases in the proximity of
the symmetric φ+ = 0 axis. This second-order line ends at two
tricritical points, located at ttcp � 0.240 and φ

tcp
+ � ±0.063 in

(a) or, equivalently, μtcp � ±2.64 in (b). Below the tricritical
temperature, the coexistence region is between the F and the
B phases (F + B) and is delimited by the solid black lines.
Note that as the D phase disappears there is no three-phase
coexistence at these parameter values. The disappearance of
the D phase can be understood in the following way. Smaller
values of the invagination length, ξ = κ/(Lγ ), correspond to
larger values of the line tension γ , and domains will fully bud
at lower temperatures without showing any D state.

At yet lower values of ξ , the line tension is large enough
so that only the B phase exists, while the F phase disappears.
In Fig. 10, we present such a phase diagram for β = 1 and
ξ = 0.125. The only coexistence regions are between different
fully budded phases, denoted B1 + B2 and B2 + B3. Each of
these coexistence regions terminates at critical points (filled
squares), tc � −0.028, φc

+ � ±0.251, and μc � ±8.

C. Effects of ξ and β on the phase behavior

By exploring the entire parameter range of ξ and β, we
find the crossover among the three types of phase diagrams
as represented in Fig. 5 (type I), Fig. 9 (type II), and Fig. 10
(type III). This is shown in Fig. 11, where we present the

FIG. 9. (Color online) Phase diagram (a) in the (φ+, t) plane
and (b) in the (μ, t) plane for β = 1 and ξ = 1/7 � 0.143. The
meaning of the lines and symbols is the same as in Fig. 5. A
critical [gray (red)] line separates the F and B phases and terminates
at two tricritical points (filled circles) with (ttcp � 0.240, φ

tcp
+ �

±0.063, μtcp � ±2.64). For t < ttcp, coexistence regions, B + F and
F + B, separate the F and B phases.

stability regions for each of these three phase behaviors in
the (ξ , β) plane. Type I is characterized by the existence of
a dimpled phase and has a triple point where the D, B, and
F phases coexist. In type II, the tricritical points exist but the
triple points and the D phase disappear. Type III is dominated
by various B phases, with coexistence regions between them
that terminate at a critical point. The crossover line between
type II and type III behaviors is almost a straight line, while
the crossover line from type II to type I is almost linear for
β < 1.25 and then saturates at about β � 1.8. This saturation
occurs when the coupling is strong (large β) and/or the domain
size is small (large ξ ). At these values, budding is promoted
because of the large spontaneous curvature.

When ξ decreases, for a fixed value of the coupling
parameter β, the B phase swells and the D phase disappears,
signaling the crossover between type I and II. Upon further
decrease of ξ , only the B phase stays, i.e., crossover between
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FIG. 10. Phase diagram (a) in the (φ+, t) plane and (b) in the
(μ, t) plane for β = 1 and ξ = 0.125. The meaning of the lines and
symbols is the same as in Fig. 5. Only the B domain is stable, a
first-order phase transition separates B1 and B2, and another one
separates B2 and B3. Each of the coexistence regions terminates at a
critical point (tc � −0.028, φc

+ � ±0.251, μc � ±8). Filled squares
correspond to critical points.

type II and III. On the other hand, the larger β is, the larger is
the spontaneous curvature that favors the fully-budded state.
For this reason, at higher values of β, the system buds at lower
temperatures for the same value of ξ .

IV. DISCUSSION

We have proposed a model that accounts for domain
budding of lipid bilayers, where each of the bilayer leaflets
has a coupling between its local curvature and the local A/B
lipid composition. The composition asymmetry between the
two leaflets is equivalent to the introduction of a membrane
spontaneous curvature. This spontaneous curvature is not taken
to be fixed (as assumed in previous works) but is calculated and
depends on the asymmetry in leaflet composition. Hence, due
to this extra mechanism of generating a spontaneous curvature,

FIG. 11. (Color online) Behavior diagram as a function of ξ =
�/L and the monolayer coupling parameter β. Examples of types I,
II, and III phase-diagram morphologies are shown in Figs. 5, 9, and
10, respectively. Filled (red) squares delimit the calculated borderline
between type I and type II behavior, while filled (green) circles delimit
the calculated crossover between type II and type III. Dotted lines
serve only as a guide for the eye, and the error bar of the data points
is about ±0.1 in β.

dimpled domains can be stabilized even for bilayers with a
nominal zero spontaneous curvature. Our free-energy model
contains three contributions: bending energy, accounting for
domain deformation in the normal direction; line tension along
the rim of the budded or flat domain; and a Landau free-energy
expansion, which accounts for a lateral phase separation of the
binary lipid mixture. We assume that the domain area remains
constant during the budding process.

Our model predicts three states for domain, as observed
experimentally: fully budded (B), dimpled (D), and flat (F)
states. In particular, in some ranges of parameters, the D
state is found to be the most stable one. The obtained results
indicate that for a certain range of temperatures, monolayer
composition, domain size, and coupling between curvature
and composition, a triple point can appear. At the triple point,
the B, D, and F phases coexist, each with its own composition.
Such a triple point has been reported by Harden et al. [24].
Moreover, we also found a tricritical point, which corresponds
to the intersection of a critical (second-order) line, which joins
a first-order phase transition region between F and D. Finally,
three types of phase diagram morphologies are found and
analyzed in terms of the coupling parameter β and domain
size ξ (see Fig. 11).

The formation of domains in membranes and understanding
them remain an open and ever-challenging problem, even after
intense research in the last two decades. Many hypotheses have
been proposed to explain the appearance of domains and their
possible structure and function [2,3,32].

One of the important assumptions in our model is that
the domain size L and area S remain fixed during the
budding process. Domains of fixed size can be obtained in
thermodynamical equilibrium for a binary mixed membrane
that undergoes a lateral microphase separation and forms a
2D modulated phase with an equilibrated spatial periodicity
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[33]. This microphase separation can be driven by a coupling
between the local lipid composition and the membrane curva-
ture, leading to a curvature instability [34–37], as discussed, in
particular, in Refs. [38] and [39]. When the A/B average lipid
composition is off-critical, circular domains rich in one of the
lipids can form spontaneously and be arranged in a hexagonal
array, embedded in a background rich in the second lipid.
These circular domains are characterized by their equilibrium
fixed size and can undergo a budding process as explored in
the present work.

Formation of finite-size domains in equilibrium can also be
explained by the presence of hybrid lipids having one saturated
tail and a second unsaturated one [40]. Such hybrid lipids
decrease the domain line tension [41–43] and offer another
potential mechanism to induce micro phase separation. In a
previous work [44,45], we considered a model that includes
a coupling between a compositional scalar field and a 2D
vectorial order parameter. This coupling yields an effective 2D
free energy that exhibits micro phase separation and results
in a modulated phase. A somewhat different viewpoint of
membrane domains was recently discussed by Shlomovitz
et al. [46], who investigated a general phenomenological
model capable of producing macro phase separation, micro
phase separation, and microemulsion-like phases. In these
works, the characteristic length of compositional modulations
is responsible for the origin of finite-size domains that are
equilibrium structures. These types of domains can undergo
the budding transition as discussed in this paper.

On the other hand, when macro phase separation takes
place in mixed membranes, the domain size grows to
macroscopic sizes as a function of time, and the assumption of
fixed domain size becomes more questionable. However, if the
shape transformation of domains occurs on time scales much
faster than the time required for domain coarsening, one can
still use our equilibrium argument for domain morphologies,
whereby we regard the domain size L and, hence, the
invagination length ξ to be time dependent. In fact, the
slowdown of dimpled-domain coarsening was experimentally
observed [5] and theoretically discussed [13]. According to
these works, the suppression of the phase separation may
be caused by membrane-mediated elastic interactions and/or
hydrodynamic interactions acting between domains. Our
model, with its assumption of fixed domain size, can also be
applied in such situations.

A dynamical growth of the budding domain size was
proposed [7] to occur in two steps, when the spontaneous
curvature is not too large. In the early stage the domains
are small and the diffusion-aggregation phenomenon induces
a growing dimpled domain until its size becomes unstable,
whereas in the later stage, the domains are large enough to
fully bud into a sphere that detaches completely from the
planar membrane at the neck point. In other words, the budded
domain curves mainly during the second step. Our results
are in qualitative agreement with these predictions. We show
in Fig. 11 that, for small values of β and for small domain
sizes (large ξ ∼ 1/L), the typical phase diagram is of type
I, for which the dimpled state appears as a stable phase. As
the domain size becomes larger (smaller ξ ), the typical phase
diagram will change to either type II or type III so that the
membrane can bud easily. In contrast, for large values of β,

the dimpled state cannot be stable. In this case, the domain will
retain a highly curved state already in the early stage of the
phase separation, and the budding can occur in only one step.

Finally, our model may be applied to the description of
the formation and growth of vesicles in mixed amphiphilic
systems [47]. For example, it was observed in experiments
that mixtures of anionic and cationic surfactants in solution
form disk-like bilayers for some range of relative surfactant
compositions. As these disk-shaped bilayers grow in size,
they transform into spherical caps and eventually become
spherically closed vesicles. Such a sequence of morphological
changes was indeed observed by cryo–transmission electron
microscopy [47]. In such a setup, it is likely that the
spontaneous curvature of bilayer membranes is induced due
to the compositional asymmetry between the two monolayers.
Hence, one would expect that disks, caps, and vesicles can
be analyzed similarly to the flat, dimpled, and fully budded
phases in our model.
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APPENDIX: THE TRICRITICAL POINT

It is possible to compute analytically the location of the
tricritical point (ttcp), corresponding to the intersection of the
first- and second-order transition lines in the phase diagram in
Fig. 5(a). The left side of the binodal line corresponds to c = 0
(F phase), while its right side corresponds to c > 0 (D phase).
Using the fact that the F phase with c = 0 has two symmetric
monolayers, and that φ− = 0 from Eq. (8), we calculate the
free energy for c = φ− = 0 by substituting c = 0 in Eq. (7):

ε(φ+,c = 0) = 1
2ξ−2φ4

+ + (2β2 + tξ−2)φ2
+ + ξ−1. (A1)

The free-energy expression can then be expanded up to fourth
order in c (valid close to the tricritical point where c � 1),
yielding

ε(c,φ+,φ−) = 1
2ξ−2(φ4

+ + φ4
− + 6φ2

+φ2
−)

+ (2β2 + tξ−2)(φ2
+ + φ2

−) − 4cβφ−

+ 2c2 + ξ−1(1 − 1
8c2 − 1

128c4). (A2)

From Eq. (8) we can expand c up to third order in φ−: c �
aφ− + bφ3

−. Substituting this c expression back into Eq. (A2)
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and retaining terms up to fourth order in φ−, we can expand
ε(φ+,φ−), obtaining a fourth-order polynomial in both φ+ and
φ−,

ε(φ+,φ−) = φ4
−

(
4ab − 4bβ − ab

4
ξ−1 − a4

128
ξ−1 + 1

2
ξ−2

)

+φ2
−

(
2a2 + 2β2 − 4aβ − a2

8
ξ−1

+ tξ−2 + 3φ2
+ξ−2

)
+ 1

2
ξ−2φ4

+

+ (
2β2 + tξ−2

)
φ2

+ + ξ−1, (A3)

where the coefficients a and b are defined as a = 16βξ/

(16ξ − 1) and b = a3/(128ξ − 8).
The free energy, Eq. (A3), is then minimized with respect

to φ−, yielding

φ2
− = (

δ − tξ−2 − 3φ2
+ξ−2) /η, (A4)

with new coefficients δ and η defined as δ = −2a2 −
2β2 + 4aβ + a2ξ−1/8 and η = 8ab − 8bβ − abξ−1/2 −
a4ξ−1/64 + ξ−2. Substituting the expression of φ− in Eq. (A4)
into Eq. (A3), we get

ε (φ+) � − 1

2η

(
δ − tξ−2 − 3ξ−2φ2

+
)2 + (

2β2 + tξ−2) φ2
+

+ 1

2
ξ−2φ4

+ + ξ−1 , (A5)

which is valid in the limit c � 1.
At the tricritical point, the free energies for c = 0 and c � 1

are equal for the same values of φ+ and t . Comparing Eqs. (A5)
and (A1), we obtain the condition for the tricritical point:

δ − tξ−2 − 3ξ−2φ2
+ = 0. (A6)

In addition, the spinodal line is obtained from the requirement
that ε′′(φ+) = 0 in Eq. (A5):

3φ2
+

(
1 − 9

η
ξ−2

)
+ 3

η

(
δ − tξ−2

) + 2β2ξ 2 + t = 0. (A7)

FIG. 12. Tricritical temperature ttcp as function of ξ , calculated
from Eq. (A8), for a fixed value of the coupling parameter, β = 1.
The analytical expansion is valid only for ξ values that are not too
small. In particular, below ξ = 0.2 the overall change in the phase
diagram is from type I to type II, as shown in Fig. 11.

By combining Eq. (A6) with Eq. (A7), we obtain

ttcp = ξ 4
(
6δξ−2 − δη − 2β2η

)
/6, (A8)

which depends on the values of ξ and β. In Fig. 12 we plot the
variation of ttcp with respect to ξ for β = 1 and U/(2κ) = 1.
Substituting β = 1 and ξ = 0.25 in Eq. (A8), we obtain φ

tcp
+ �

±0.095 and ttcp � 0.014. These tricritical values are in good
agreement with the numerical ones, as can be read off from the
phase diagram in Fig. 5(a), φ

tcp
+ � ±0.094 and ttcp � 0.011.

The present argument is valid only when c � 1 and can
be applied to a type I phase diagram, for which the domain
size should be small (large ξ ). For a type II phase diagram,
on the other hand, the tricritical points are located close to the
fully budded phase with c = 2 (see Fig. 9). In this case, the
expansion in terms of c cannot be justified, and ttcp(ξ ) is no
longer valid for ξ < 0.2 when β = 1.
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