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Abstract – We study the surface tension of electrolyte solutions at the air/water and oil/water
interfaces. Employing field-theoretical methods and considering short-range interactions of an-
ions with the surface, we expand the Helmholtz free energy to first order in a loop expansion
and calculate the excess surface tension. Our approach is self-consistent and yields an analytical
prediction that reunites the Onsager-Samaras pioneering result (which does not agree with ex-
perimental data), with the ionic specificity of the Hofmeister series. We obtain analytically the
surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show
consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond
the mean-field result. Our theory fits well a wide range of concentrations for different salts us-
ing one fit parameter, reproducing the reverse Hofmeister series for anions at the air/water and
oil/water interfaces.

Copyright c© EPLA, 2014

Introduction. – When salts are added in small quan-
tities to an aqueous solution, its surface tension generally
increases [1,2]. Wagner [3] was the first to connect this
finding with the dielectric discontinuity at the air/water
surface, suggesting dielectric image interactions as a pos-
sible explanation. This idea was implemented in the pio-
neering work of Onsager and Samaras (OS) that was built
upon the work of Debye and Hückel [4]. In their model, OS
found a universal limiting law for the dependence of the
excess surface tension on the salt concentration [5]. How-
ever, the OS result implies an increase in the surface ten-
sion that is independent of the ion type, which turned out
to be violated in many physical realizations [6]. This led
to numerous investigations of non-electrostatic ion-specific
interactions between ions and surfaces [6,7], and their role
in modifying surface tension of electrolyte solutions [2].
However, even nowadays a fundamental understanding of
surface tension of electrolyte solutions is still missing.

On a broader scope, ion-specific effects date back to the
late 19th century, when Hofmeister [8] measured the
amount of protein precipitation from solution in the pres-
ence of various salts, and found a universal (Hofmeister)
series of ionic activity. The same ionic series emerged in a

large variety of chemical and biological experiments [9–11],
such as forces between mica or silica surfaces [12–14],
osmotic pressure in the presence of (bio)macromolecules
[15,16], and quite notably in the surface-tension measure-
ments at the air/water and oil/water interfaces [17,18].
For simple monovalent salts the air/water surface tension
depends strongly on the type of anion, while the depen-
dence on the cation type is weaker [19], and is consis-
tent with the fact that anion concentration exceeds that
of cations at the air/water interface. For halide ions, the
lighter ones lead to a larger excess in surface tension in
a sequence that is precisely the reverse of the Hofmeister
series.

The OS treatment of electrolyte surface tension
attracted much interest and generated a vast number of
modifications to the original model, in particular more
recent ones [20–26] that are relevant for our approach
advocated below. Specifically, Dean and Horgan [20]
calculated the ionic solution surface tension to first or-
der in a cumulant expansion, where the zeroth order is
equivalent to the Debye-Hückel approximation [4]. The
surface-specific interactions were included via an ionic
surface-exclusion layer in the vicinity of the dielectric
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interface. In another study, a surface cation-specific, short-
range interaction was added [21], but the corresponding
surface tension was not calculated.
Levin and coworkers [22,23] calculated the solvation free

energy of polarizable ions at air/water and oil/water inter-
faces. Their model relies on three surface-ion terms that
are added in an ad hoc way to the PB exponent: image
charge interaction in the presence of a Stern layer, ionic
cavitation energy and ionic polarizability. Although these
three terms give a clue to the origin of the ion-surface in-
teraction, they cannot be added in a self-consistent way.
Furthermore, these terms are neither completely indepen-
dent nor can be obtained from a mean-field (MF) the-
ory [6,8]. Double counting of electrostatic contributions is
a common ambiguity as manifested by the image charge
term. This term cannot simply be added to the mean
potential in the Boltzmann weight factor, as it is not a
solution of the Poisson-Boltzmann (PB) equation close to
a planar wall. The PB equation is a MF equation that fol-
lows from minimization of a certain free-energy functional.
A consistent way to generalize it would have to be based
on an augmented free-energy functional that would then
give the generalized PB equation. As will be shown below,
within a self-consistent treatment, the image charge term
follows from the one-loop correction to the MF result [27].
A different line of reasoning was initiated by Netz and

coworkers [24–26], who calculated the surface tension for
both charged and neutral surfaces by combining molecular
dynamics (MD) with the PB theory on a MF level. Their
results fit well the experiments performed with hydropho-
bic and hydrophilic surfaces and agree with the Hofmeister
series results.
An inclusion of ion-specific effects in a theory of

electrolyte solutions is highly desirable but also quite
difficult to obtain rigorously. We believe that a very
promising line of reasoning lies within a phenomenological
approach [7], where short-range non-electrostatic interac-
tions are explicitly added to the electrostatic free energy.
This approach allows a clearcut separation between vari-
ous degrees of freedom. The additional free-energy terms
describe specific electrolyte features that go beyond the
regular PB theory and depend on the ion chemical nature,
size, charge, polarizability, and the preferential ion-solvent
interaction [7,28–31].
In this letter, we propose such a phenomenological

approach that not only describes successfully the sur-
face tension of electrolyte solutions, but also adds in-
structive insight into the corresponding surface interaction
parameters. Our approach is self-consistent and yields an
analytical prediction that reunites the Onsager-Samaras
pioneering result, which does not agree with experimen-
tal data, with the ionic specificity of the Hofmeister
series. We take ionic specificity into account through the
ionic size and a short-range ion-surface interaction [22,23],
characterized by a single phenomenological adhesivity
parameter [21,32]. Our theory is formally consistent, fits
well a variety of experimental interfacial tension data at

the air/water and oil/water interfaces and reproduces the
revered Hofmeister series for several types of monovalent
anions.

Model. – In our model the water and air phases are
taken as two continuummedia with uniform dielectric con-
stant εw and εa, respectively, and with a sharp planar
boundary between them at z = 0. The water volume
V = AL is modelled as a box of cross-section A and an
arbitrary large length, L → ∞. We consider a monovalent
symmetric (1:1) salt, where the ions carry a unit charge
±e and are taken to be point-like.
We also include explicitly an ion-surface interaction that

is short ranged with a scale of the order of the ionic size,
denoted as a. As it is experimentally known that anions
are less hydrated than their cation counterparts [19], the
ion-surface interaction is considered only for anions, but
the model can easily be implemented for more general se-
tups to also include the cation-surface interaction [33].
The model Hamiltonian is

H =
1

2

∑

i�=j

qiqju(ri, rj) + αa
∑

i ǫ anions

δ (zi) , (1)

where qi = ±e are the cation/anion electric charge, and
the adhesivity parameter α is expressed in units of kBT .
The first term is the usual Coulombic interaction ∇2u =
− 4π

εw
δ(r), where the diverging self-energy of the ions should

be subtracted. The second term is a short-range ion-
surface interaction modeled as a Dirac δ-function, akin
to the adhesivity used by Davies [34]. Its strength is pa-
rameterized by the parameter α. As ions have a finite
size, we defined a as their minimal distance of approach,
which will serve hereafter as the shortest-length cutoff.
The limit a → 0 is appropriate for point-like ions. Note
that we have chosen to use the same finite size a for the
ionic minimal distance of approach as well as for the range
of the ion-surface interaction.
Using the standard Hubbard-Stratonovich transfor-

mation [27], the grand-partition function (up to a
normalization factor) can be written as

Ξ =
(

det[β−1u(r, r′)]
)−1/2

∫

Dφ e−S[φ] , (2)

with β = 1/kBT being the inverse thermal energy and S
plays the role of a “field action”,

S =

∫

V

d3r

(

βεw
8π

[∇φ(r)]2 − λ+e
−iβeφ(r) − λ−e

iβeφ(r)

)

− aλ−

(

e−βα − 1
)

∫

A

d2reiβeφ(z=0). (3)

The surface term accounts only for the anion (charge −e)
interaction and the fugacities λ± are defined via the chem-
ical potentials µ± as λ± ≡ a−3 exp

[

βµ± + 1
2βe

2u(r, r)
]

.
In the surface term of eq. (3) we also make use of the
discretized δ-function property, aδ(0) = 1, giving

e−βαaδ(z) = 1+ a
(

e−βα − 1
)

δ(z). (4)
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By rescaling the action into a dimensionless form,
S → S/C, we introduce the coupling constant [33], C =
2πl2Baλ−

(

e−βα − 1
)

, where lB = βe2/εw is the Bjerrum
length. In the weak-coupling regime, C ≪ 1, the field ac-
tion of eq. (3) can be expanded around its MF solution S0

as S ≃ S0 +S1 + . . . , where S1 is the one-loop correction.
The grand-potential can then be written to the one-loop
order as [35]

Ω = Ω0 +Ω1 = kBT

[

S0 +
1

2
Tr lnH2(r, r

′)

]

, (5)

with H2(r, r
′) =

[

δ2S
δφ(r)δφ(r′)

]

0
being the Hessian of S eval-

uated at its MF value. The MF solution, corresponding
to the saddle point of S, can be rewritten in the standard
form of a PB equation for the mean-field electrostatic po-
tential ψ by identifying ψ = iφMF.
The electrostatic potential in the air (z < 0), ψ1(z),

satisfies the Laplace equation, while the electrostatic po-
tential in the aqueous phase (z > 0), ψ2(z), obeys the PB
equation in the form

ψ′′
2 (z) =

8πenb

εw
sinh (βeψ2) . (6)

We used the electro-neutrality condition,
∑

i=± λiqi = 0,
which for symmetric electrolytes implies, λ± = λ, and on
the MF level λ = nb, where nb is the salt bulk concentra-
tion. The boundary condition is

εwψ
′
2|0+ − εaψ

′
1|0− = −4πσ0e

βeψ0 , (7)

where the RHS of the above equation represents an
effective surface charge, σ0e

βeψ0 , induced by the surface
potential ψ0 ≡ ψ(z = 0), and σ0 is

σ0 = −anbe
(

e−βα − 1
)

. (8)

Note that for α > 0 (repulsive interaction), the surface
charge σ0 is positive. In the weak-coupling MF regime,
C ≪ 1 implies that σ0 is small and the surface potential
ψ0 is also found self-consistently to be weak. Therefore,
βeψ(z) ≪ 1 and the above PB equation (6) can be lin-
earized. Using the fact that the electrostatic field vanishes
at z → ±∞, ψ1,2 become

ψ1 = ψ0 =
4πσ0

κDεw − 4πβeσ0
,

ψ2 = ψ0e
−κDz,

(9)

where κ−1
D ≡ (8πnblB)

−1/2
is the Debye length.

Ω0 is obtained by substituting eq. (9) into eq. (5), while
the fluctuation contribution around the MF, Ω1, can be
obtained by using the argument principle [35,36]. The dis-
crete sum of the Hessian operator eigenvalues is expressed
in terms of its secular determinant, Dν , yielding

Ω1 =
AkBT

8π2

∫

d2k ln

(

Dν=1(k)

Dν=0(k)

)

, (10)

and the integral is over the transverse wave vector k =
(kx, ky). The index ν refers to the eigenvalue equation of
the form

f ′′
ν (z)− k2fν(z) = νκ2

D cosh(βeψ0e
−κDz)fν(z), (11)

with the boundary condition at z → 0

εwf
′
ν(0

+)− εaf
′
ν(0

−) = ωνfν(0), (12)

and fν(z→±∞) = 0, where ων = −4πνβeσ0e
βeψ0 . The

secular determinant, Dν , is obtained from the boundary
conditions.
In the weak-coupling regime, the RHS of eq. (11) can

be linearized, yielding

f ′′
ν (z)− p2νfν(z) = 0, (13)

where p2ν ≡ k2 + νκ2
D. The general solution of the above

equation is

f1(z) = A1e
kz ,

f2(z) = A2Cν(z) +B2Sν(z),
(14)

where the subscript “1” stands for the z < 0 region (air),
and “2” stands for the z > 0 region (water). The functions
Cν(z) and Sν(z) are defined as the even and odd solutions
for z > 0, respectively:

Cν(0) = 1, C′
ν(0) = 0;

Sν(0) = 0, S′
ν(0) = 1,

(15)

and equal to Cν ≡ cosh(pνz) and Sν ≡ sinh(pνz)/pν. The
derivatives with respect to z are denoted by C′ and S′.
We use the method described in refs. [35–37] in order to

find the secular determinant, Dν :

Dν = det

[

M +N

(

Cν(L) Sν(L)

C′
ν(L) S′

ν(L)

)]

. (16)

The boundary conditions of the eigenvalue equation,
eq. (11), can be written using the matrices M and N that
satisfy

M

(

uν(0)

u′
ν(0)

)

+N

(

uν(L)

u′
ν(L)

)

= 0, (17)

while uν is equal to either Cν or Sν . We can choose
conveniently these matrices to be

M =

(−ων − εak εw

0 0

)

, N =

(

0 0

0 1

)

, (18)

and the resulted secular determinant is

Dν = det

(−ων − εak εw

C′
ν(L) S′

ν(L)

)

= − (ων + εak) cosh(pνL)− pνεw sinh(pνL). (19)
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The leading asymptotic term in the limit, L → ∞, leads to

Dν = −1

2
[ων + εwpν + εak] e

pνL, (20)

Inserting Dν into eq. (10) and expressing κD in terms of
the fugacity gives:

Ω1 =
V kBT

12π

[

(

Λ2 + κ2
D

)3/2 − κ3
D − Λ3

]

+
AkBT

4π

∫ Λ

0

dkk ln

(

εwp+ εak + ω

(εw + εa) k

)

, (21)

where ω ≡ ων=1 and p ≡ pν=1. Although Coulombic in-
teractions between point-like ions diverge at zero distance,
in reality such a divergence is avoided because of steric re-
pulsion for finite-size ions. A common way in field theory
to avoid this issue without introducing an explicit steric
repulsion is to employ a short-length (UV) cutoff. For
isotropic two-dimensional integrals, as in eq. (21) above,
the UV cutoff is taken to be Λ = 2

√
π/a. As noted after

eq. (1), a is the average minimal distance between ions,
and thus is related indirectly to the ion size.

Surface tension. – In order to calculate the surface
tension, we need to obtain the Helmholtz free energy
F = Ω +

∑

i µiNi. A useful simplification for symmet-
ric electrolytes is to replace the fugacities, λ± by the bulk

densities, n
(b)
± = nb. This simplification is exact on the

one-loop order for F (but not for Ω) [33]. In order to
separate the volume and surface contributions in the free
energy, we take explicitly the Λ → ∞ in the first term
of eq. (21), obtaining the well-known Debye-Hückel vol-
ume fluctuation term [4]. The final expression for the
Helmholtz free energy is then cast as

F = Ω0 + 2kBTV nb ln(nba
3)− V kBT

12π
κ3
D

+
AkBT

4π

(

∫ Λ

0

dkk ln

[

εwp+ εak + ω

(εw + εa) k

]

− ωΛ

εw + εa

)

. (22)

We note that in the above equation we already explic-
itly subtracted the ions volume self-energy, while the last
term is the self-energy of the ions only on the surface. Ex-
panding the last two terms in powers of Λ yields a leading
asymptotic behavior that will be discussed below.
We proceed by calculating ∆γ, the added contribution

of the electrolyte to the surface tension of pure water at
the air/water interface.

∆γ ≡
[

F − F (B)(L)− F (air)(L)
]

/A, (23)

with F (B) being the free energy of a slab of length L con-
taining aqueous solution, and F (air) is the free energy of a
slab of air1.

1F (B) is obtained from eq. (22) by replacing the air phase at
z < 0 with an aqueous solution, εa → εw. Because there is no
interface at z = 0, the ion-surface interaction vanishes leading to
ω = 0. The only changes needed in order to obtain F (B) are to
replace D1(k)/D0(k) by p/k and insert Ω0 = −2nb, where for the
latter we use the MF solution of ψ = 0 for bulk solvent. Because
there are no ions in the air phase, its free energy vanishes, F (air) = 0.
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Fig. 1: (Color online) Comparison of the predicted excess sur-
face tension at the air/water interface, ∆γ, from eq. (24) with
experimental data from ref. [38], as a function of the ionic
concentration, nb. The values of the α fitting parameter for
the various salts are 0.179 kBT for NaF, 0.135 kBT for NaCl,
0.069 kBT for NaBr, and 0.023 kBT for NaI. Other parameters
are T = 300K, εw = 80 (water) and εa = 1 (air). The bottom
dashed line represents the OS surface tension [5]. The a values
used in the fits are taken from the literature and given in the
text.

The excess surface tension to one-loop order can now
be written as a sum of two terms, ∆γ = ∆γ0 +∆γ1, and
constitutes our primary analytical result:

∆γ0 = kBT

[

σ0

e
eβeψ0 − nbκ

−1
D

(

eψ0

kBT

)2
]

∆γ1 =
kBT

8π

∫ Λ

0

dk k ln

[

k

p

(

εwp+ εak + ω

(εw + εa) k

)2
]

− kBT

4π

ωΛ

εw + εa
. (24)

The first term ∆γ0 is the MF excess [32] and ∆γ1 is the
fluctuation term, which contains the OS result [5,20,27]
and a correction. The above result leads to an interest-
ing observation due to the dominance of fluctuations. As
long as σ0 is small, the MF term, ∆γ0, is small and the
dominant contribution comes from the fluctuation term,
∆γ1. This observation goes hand in hand with the fact
that the OS result by itself originates from fluctuations
beyond MF.
The fits to the experimental data are done by evaluating

the integral in eq. (24) numerically for any value of Λ, but
the integral has a leading asymptotic behavior that can be
obtained analytically in the Λ → ∞ limit. Writing down
only the remaining Λ-dependent terms, we obtain

8π

kBT
∆γ1 ≃ −

(

εw − εa
εw + εa

)

κ2
D

2

[

ln

(

1

2
κDlB

)

− ln

(

1

2
lBΛ

)

− 2ω2

κ2
D(ε

2
w − ε2a)

ln
(

κDΛ
−1

)

]

. (25)

The first term in ∆γ1 is the well-known OS result [5,20,27]
and it varies as ∼ κ2

D ln(κDlB), the second term is a
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∆
γ

∆
γ

Fig. 2: (Color online) Comparison of the predicted excess surface tension, ∆γ, from eq. (24) with experimental data from
ref. [39], as a function of the ionic concentration, nb, for the air/water interface (a) and dodecane/water (b). In (a) the fitting
values of the α parameter for the various salts are 0.137 kBT for KCl, 0.115 kBT for KBr, and 0.057 kBT for KI. In (b) 0.085 kBT
for KCl, −0.025 kBT for KBr, and −0.291 kBT for KI. All other parameters are as in fig. 1, beside the dielectric constant of
dodecane, εd = 2.

correction due to the ion minimal distance of approach
with Λ = 2

√
π/a, while the third term is a correction

related to the ion-surface interaction, α. In the limit
|α| → 0, the latter term vanishes ad the derived surface
tension agrees well with the OS result, as expected.

Comparison with experiments. – We now compare
our result for the surface tension, eq. (24), with experi-
mental values [38] for four different ionic solutions (with
Na+ as their cation) at the air/water interface as shown in
fig. 1. Taking a as the average minimal distance between
cations and anions, a = rhyd+ + rhyd− , and treating α as
a fit parameter, we obtain very good fits to experimental
data. The values we used for a are obtained from the hy-
drated ionic radii in ref. [40]: aNaF = 7.1 Å; aNaCl = 6.9 Å;
aNaBr = 6.88 Å; aNaI = 6.89 Å; aKCl = 6.63 Å; aKBr =
6.61 Å; aKI = 6.62 Å. For the larger anions (with respect
to their crystallographic size) Br− and I− the fit agrees
well for the entire concentration range up to ∼ 1M, while
for the smaller anions, F− and Cl−, deviations at concen-
trations larger than 0.8M are noticed.

Our model can be applied successfully to other types of
liquid interfaces such as oil/water. In fig. 2, we compare a
fit for air/water in (a) with oil/water in (b), where in the
experiments dodecane is used as the oil. The fits for both
interfaces are done for the same series of three different
salts having in common the K+ cation, and are in very
good agreement with experiments. The only exception is
the KI case at the oil/water interface, which shows a very
small ∆γ contribution that is almost independent of the
salt concentration and, hence, is harder to fit.

We discuss now the values of α for seven different salts at
the air/water interface as is presented in fig. 1 (with Na+

as cation) and in fig. 2(a) (with K+ as cation). They are
all positive (repulsive) and range between 0.02 kBT and
0.18 kBT , where αF > αCl > αBr > αI is obeyed for both
cations, and reproduces exactly the reversed Hofmeister

series. Note that the values of α are smaller in NaX solu-
tions than in KX solutions (for the same X anion). This
small effect can be explained by a different ion-surface
interaction of K+ and Na+. We intend to further inves-
tigate this effect by introducing an extra adhesivity pa-
rameter for cations [33]. The positive values of α are
in agreement with the values obtained by Netz and co-
workers [25], but in contrast with the effective attraction
to the surface presented by Levin and co-workers [23]. Al-
though in ref. [23] an effective attraction (similar to the
adhesivity α) was obtained, the trend is the same as ours,
where αF > αCl > αBr > αI.

At the oil/water interface (fig. 2(b)) the same reversed
Hofmeister series emerges but with a more attractive ion-
surface interaction. The adhesivity α decreases and even
becomes negative for some of the electrolytes. Since our
model treats the ion-surface interaction on a phenomeno-
logical level, we can model both attraction or repulsion
of anions from the interface. The difference in adhesivity
between the air/water and oil/water interfaces is denoted
by ∆α = α(a/w)− α(o/w). The obtained ∆α is different
for each anion, where ∆αI > ∆αBr > ∆αCl, and can be
explained by a change in the water-surface interaction.

The present work offers several important and unique
advantages. It is a self-consistent theory that extends
the OS result, and can be used quite generally for a wide
variety of interfaces and surface interactions, all taken on
a common and unified ground. The model predicts ana-
lytically the dependence of the excess surface tension of
different electrolytes at the air/water as well as at the
oil/water interface. The obtained fits agree well with ex-
periments and show clearly the reversed Hofmeister series
(F− >Cl− >Br− > I−) for surface tension at both the
air/water and oil/water interfaces. It is of importance to
remark that, for the system parameters considered here,
fluctuations dominate over the MF contribution to the
computed surface tension.
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The image charge interactions are taken into account
self-consistently, hence α originates only from solvent
structure-driven interactions and there is no double count-
ing. As was discussed recently in refs. [12,13] for the spe-
cial case of silica/water interface, the orientation of water
molecules in the vicinity of the interface may change the
hydrogen bond strength at the interface. This surface ef-
fect can be identified as a possible microscopic source of α,
whose value is proportional to the difference in solvation
free energy between a single ion in the bulk and at the
surface.
Finally, it will be of interest to generalize our model

to calculate surface tension at the interface between two
immiscible electrolyte solutions [30,41], where the ions are
present in both solutions, as well as between a variety of
hydrophobic and hydrophilic solid substrates in contact
with an electrolyte solution [12,13].
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PACS 99.10.Cd – Errata

Copyright c© EPLA, 2014

After publication, the authors required two further amendments which are listed in the following:

– on page 2, left column, line 7, “PB exponent” should read instead “PB equation”;

– the first sentence of the acknowledgments on page 6 should read as follows: “We thank D. Ben-Yaakov,

H. Diamant, R. Netz, H. Orland and Y. Tsori for useful discussions and numerous suggestions.”.

Moreover, the authors pointed out the following, unfortunate, technical mistakes occurred during production:

– in eq. (6) on page 3, “sinh” should be corrected to “sinh” so to have

ψ′′

2 (z) =
8πenb

εw
sinh (βeψ2) ; (6)

– on page 3, left column, line after eq. (6), “λiqi” should read “λiqi” in the formula
∑

i=±
λiqi = 0;

– on page 5, left column, line 4, the correct text should read as “. . . |α| → 0, the latter term vanishes and the
derived surface. . . ”.

We deeply apologize to the authors for the inconvenience occurred.
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