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Interaction between heterogeneously charged surfaces: Surface patches and charge modulation
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When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind
charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of
the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface
charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the
nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is
crucial in determining the intersurface interaction. In the present work we study the interaction between two
charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within
the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is
found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with
respect to each other. For quenched random charge distributions we find that due to the presence of the ionic
solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of
the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial
in the case of large charged domains.
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I. INTRODUCTION

Long-range interactions between charged surfaces substan-
tially influence the structural properties of soft materials,
such as lipid membranes and colloidal suspensions [1–3].
The nature of the long-range interaction between two charged
surfaces immersed in an ionic solution is mainly determined
by electrostatic interactions, mediated by the ionic solutes and
polar solvent. When modeling the electrostatic interaction,
surfaces are usually assumed to be homogeneously charged
[1,4–6]. However, most charged surfaces in soft matter
are heterogeneous over a certain length scale. A schematic
drawing of two such heterogeneously charged surfaces is
presented in Fig. 1. While the interaction between two
homogeneous surfaces depends on the average surface charge
and the intersurface separation, the interaction between two
heterogeneous surfaces depends on the intra- and intersurface
charge correlations as well.

Several experimental studies [7–17] measured intersurface
forces for different configurations of surface charge hetero-
geneities. For example, it was demonstrated [7–15] that coat-
ing a negatively charged mica surface with a cationic surfactant
monolayer may lead to the formation of positively charged
bilayer patches, which neutralize the negative patches of the
bare mica. A long-range attractive force was measured [7–15]
between two such coated mica surfaces. In another setup,
it was found that adsorption of positive polyelectrolytes on
negatively charged spherical beads can lead to charge inversion
of the beads [16,17]. The adsorbed polyelectrolyte forms
positively charged domains, while patches of bare regions on
the beads remain negatively charged. It has been shown [17]
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that by controlling the amount of adsorbed polyelectrolyte,
overall neutral particles with a patchy heterogeneous charge
distribution can be prepared. In this special case of neutral
beads, the interparticle interaction is attractive, while for
smaller or larger amount of adsorbed polyelectrolyte (where
the average bead charge is, respectively, negative or positive)
the interaction is repulsive.

The interaction between two periodically ordered charged
surfaces has been studied theoretically in several works
[18–26] within the framework of the linearized
Poisson-Boltzmann (PB) equation. For non-neutral surfaces,
the leading interaction term depends on the average charge.
For neutral surfaces, where the average charge is zero, the
interaction depends strongly on the relative phase between the
two charge distributions and can vary from being repulsive to
attractive. For two surfaces with identical average charge and
small amplitude charge modulation it was shown, in the nonlin-
ear regime, that the repulsive interaction is weaker than the re-
pulsion between two uniformly charged surfaces with the same
average charge [27–32]. However, for nonzero average charge,
the charge modulation leads only to a small correction, as com-
pared to the leading interaction term determined by the average
charge.

In a more general case of experimental relevance the surface
charges are distributed randomly (and not periodically). We
further make the important distinction between quenched and
annealed cases of surface charge disorder. In the annealed
case, the surface charges are in thermodynamic equilibrium
with other system variables, such as intersurface separation,
temperature, and concentration of other species. The attraction
can then be caused by self-adjusting of surface charged
domains, where positively charged patches on one surface
position themselves against negatively charged patches on
the second surface and vice versa [33–36]. For this case to
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FIG. 1. Schematic drawing of two planar heterogeneously
charged surfaces immersed in ionic solution. The gray regions are
positively charged, and the white ones are negatively charged. The
charge distributions of the bottom and top surfaces are given by
�B (x,y) and �T (x,y), respectively. The intersurface separation is d .

hold, the typical time scale of patch rearrangement must be
substantially shorter than the measurement time scale, such
that the self-adjustment (annealing) of charged domains on
the surfaces has enough time to be completed.

In the quenched case, the surface charges are frozen
and independent of other system variables. For a quenched
distribution of surface charges with no inter- and intrasurface
correlations, it was reported that such heterogeneities have
no effect on the two-surface interaction at the mean-field
level [37,38], and the interaction depends solely on the average
surface charge.

Another interesting case of quenched disorder, to be
considered in detail in the present work is the case where
finite-size charged domains (patches) are randomly distributed
on each surface. In some of the experiments such random
charged domains stem from the specific surface preparation
[7–15].

The outline of our paper is as follows. The model is
formulated in Sec. II. In Sec. III the interaction between
surfaces with periodic charge modulations is revisited and a
crossover from attraction to repulsion is discussed. Quenched
random charge distributions are treated in Sec. IV for several
cases within the linear regime of the PB equation. In particular,
the limit of small domains having a size in the molecular
range is compared with the limit of large domains. In Sec. V
we discuss the implications of our results, and concluding
remarks are presented in Sec. VI. Finally, in the limit of
infinitely large charged domains, we compare in the Appendix
the predictions of the linear regime to those of the nonlinear
one considered in Ref. [15], where an attractive intersurface
interaction was predicted in the limit of infinitely large charged
domains. An interesting crossover is found from intersurface
attraction of strongly charged surfaces to repulsion for weakly
charged surfaces, emphasizing even further the role of the
domain lateral size.

II. THE LINEAR POISSON-BOLTZMANN MODEL

We consider an aqueous solution as depicted in Fig. 1,
which is confined between two semi-infinite and planar
charged surfaces, located at z = ±d/2, where the ẑ axis
is perpendicular to the surfaces. The surface-charge density

distribution (charge per unit area) is given by �B (x,y) for the
bottom surface at z = −d/2, and �T (x,y) for the top one at
z = d/2. As we are interested in the effect of quenched charge
heterogeneity, we model the lateral surface charge distributions
�B and �T as fixed charge boundary conditions. Namely, they
are frozen and independent of other system variables.

The aqueous solution contains a 1:1 monovalent salt ions.
The solvent (water) is modeled as a homogeneous dielectric
background with dielectric constant ε = 80. The solution is
coupled to a reservoir of ionic density nb. The electrostatic
potential, ψ , and the ionic densities, n± = nbe∓eψ/kBT , are
calculated via the Poisson-Boltzmann (PB) equation:

∇2ψ = 8πenb

ε
sinh (eψ/kBT ) , (1)

where e is the electron charge, kBT is the thermal energy,
and kB is the Boltzmann constant. By rescaling the potential
ψ → φ ≡ eψ/kBT the PB equation is rewritten for φ, the
dimensionless electrostatic potential, as

∇2φ = κ2
D

sinh φ, (2)

where κD = λ−1
D

= √
8πlBnb is the inverse Debye screening

length and lB = e2/ (εkBT ) is the Bjerrum length. The bound-
ary conditions at z = ±d/2 are given by

∂φ

∂z

∣∣∣∣
−d/2

= −σ (x,y) ,
∂φ

∂z

∣∣∣∣
d/2

= η (x,y) , (3)

where σ ≡ 4πlB (�B/e) and η ≡ 4πlB (�T/e) are the two
rescaled surface charge densities, having dimensions of inverse
length. For homogeneous surface charge densities the rescaled
densities σ and η are the inverse of the Gouy-Chapman
length [2] (up to a factor of two) that characterizes the
thickness of the condensed ionic layer near a homogeneously
charged surface. The boundary conditions contain an implicit
simplification that all the electric field lines are contained
within the aqueous medium between the two surfaces. This
commonly used assumption [39] is strictly correct in the limit
where the surfaces are either infinitely thick or that the external
regions have vanishing dielectric constant.

The interaction energy between the two surfaces as a
function of the separation d is given by the free energy, F (d),
subject to the boundary conditions, Eq. (3). We obtain F (d) by
using the charging method [4] and calculate the work needed
to increase the surface charge incrementally, at each point on
the surface, from zero to the desired final value. The charging
free-energy of two surfaces coupled with an ionic reservoir of
density nb is given by(

4πκD lB

kBT

)
F (d)

= κD

∫∫
dx dy

∫ (σ,0)

(0,0)
dσ ′ φ[σ ′,η′ = 0]z=−d/2

+ κD

∫∫
dx dy

∫ (σ,η)

(σ,0)
dη′ φ[σ,η′]z=d/2, (4)

where throughout the paper F (d) is made dimensionless by
rescaling it, F → (4πκD lB/kBT )F . The electrostatic potential
on the surfaces, φ, is written in the above equation as a function
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of the distributions σ and η to stress that the integration is
performed with respect to these variables.

Equations (1)–(4) are valid for the general PB theory, while
hereafter we concentrate on the linear PB equation, being valid
as long as φ = eψ/kBT � 1 (ψ � 25 mV):

∇2φ = κ2
D
φ. (5)

The in-plane Fourier transform of φ (ρ,z) in the ρ = (x,y)
plane is denoted by φ k (z) and is given by

φ k (z) =
∫

d2ρ eik·ρφ (ρ,z) , (6)

where k is the inplane wave vector. Using φk we get from
Eq. (5)

∂2φ k

∂z2
= q2φ k, q =

√
κ2

D
+ k2. (7)

The boundary conditions for φk are similarly obtained by
Fourier transforming Eq. (3):

∂φk

∂z

∣∣∣∣
−d/2

= −σk,
∂φ k

∂z

∣∣∣∣
d/2

= ηk, (8)

where σk, ηk are, respectively, the Fourier transforms of σ (ρ)
and η (ρ):

σk =
∫

d2ρ eik·ρσ (ρ), ηk =
∫

d2ρ eik·ρη (ρ) . (9)

Solving for the z dependence of φk, Eqs. (7) and (8) yield

φ k (z) = (σk + ηk) cosh(qz)

2q sinh(qd/2)
+ (ηk − σk) sinh(qz)

2q cosh(qd/2)
. (10)

The free energy can be reexpressed in terms of the Fourier
transforms σk, ηk, and φ k. By substituting Eq. (10) into the
free energy [Eq. (4)] we obtain

F (d)

= κD

∫
d2k

(2π )2

σkη−k + σ−kηk + (σkσ−k + ηkη−k) e−qd

2q sinh(qd)
,

(11)

where the reference contribution at d → ∞ was subtracted in
order to obtain zero interaction between surfaces at infinite
separation, F (d → ∞) = 0. Because of the linearity, the PB
free energy can also be written as a sum of two decoupled
variables σ±

k ≡ (σk ± ηk) /2:

F (d) = κD

∫
d2k

(2π )2

[
e−qd/2

q sinh(qd/2)
σ+

k σ+
−k

− e−qd/2

q cosh(qd/2)
σ−

k σ−
−k

]
. (12)

The first term is positive definite and decreases monotonically
as a function of the separation d, contributing to the repulsive
part of the intersurface interaction, while the second term,
being negative definite and a monotonic increasing function of
d, gives the attractive part of the interaction.

Quite generally, it can be stated that the magnitude of the
repulsive term is larger than the attractive one for all values of
q and d, because of the inequality sinh(qd/2) < cosh(qd/2).
Furthermore, for d → 0 the magnitude of the repulsive term

diverges, while the attractive term approaches a finite limiting
value. Consequently, only when σ+

k σ+
−k = 0 for any wave

number k, does the interaction become attractive for any d.
This occurs only when the distributions of the two surfaces
are completely out-of-phase (antisymmetric) with each other,
σ (ρ) = −η (ρ). Furthermore, by properly choosing σ±

k , F (d)
can be made attractive for large enough d.

III. PERIODIC SURFACE CHARGE MODULATION

In the previous section the distributions σ (ρ) and η (ρ) have
been taken to be arbitrary. Hence, the intersurface interaction
of Eqs. (11) and (12) applies to any form of surface charge
distributions. We treat next two interacting charged surfaces
each characterized by a periodic charge modulation. As
periodic charge modulations have been investigated previously
[18–26], we revisit the periodic case in order to discuss the
interesting crossover from attraction to repulsion and the
limiting behavior for small and large periodic domains. It is
also instructive to compare the periodic case with the quenched
disorder that will be derived later in Sec. IV.

A. Single mode

We first consider two surfaces characterized by the same
single-k0 mode modulation

σ (ρ) = Cσ cos(k0 · ρ), η(ρ) = Cη cos(k0 · ρ + ϕ), (13)

where Cσ and Cη (having units of inverse length) are the
modulation amplitudes of the two surfaces, taken to be positive
without loss of generality. The angle −π � ϕ � π is the
relative phase between the two charge modulations. It reflects
an in-phase arrangement of like charges at ϕ = 0, and an
antiphase one at ϕ = ±π .

The intersurface interaction per unit area, F (d) /A, is given
by

F (d)

A
= 2κDCσCη cos ϕ + κD e−q0d

(
C2

σ + C2
η

)
4q0 sinh(q0d)

, (14)

where A is the lateral surface area and q0 =
√

κ2
D

+ k2
0. For

large separations, q0d 
 1, the energy decays exponentially,
F/A ∼ κDq−1

0 e−q0d , while for small separations, q0d � 1, the
energy scales as F/A ∼ κD (q2

0d)−1. We note that at sufficiently
small separations, where the linearized PB equation is not
valid, the scaling of the free energy should be F ∼ log d as
obtained from the nonlinear PB equation for homogeneously
charged surfaces.

Rewriting F/A in terms of C± ≡ (Cσ ± Cη)/2 as in
Eq. (12) leads to

F (d)

A
= κD

2q0

e−q0d + cos ϕ

sinh(q0d)
C2

+ + κD

2q0

e−q0d − cos ϕ

sinh(q0d)
C2

−.

(15)

Here both the C2
+ and C2

− terms can be either repulsive or
attractive, depending on the values of d and ϕ.

In Fig. 2 the intersurface interaction per unit area F (d) /A

is presented for charge modulations with two equal amplitudes,
Cσ = Cη = C+. The second term of Eq. (15) then vanishes as
C− = 0, and the sign of the interaction energy is determined
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FIG. 2. The intersurface interaction (per unit area) F̂ /A for a single q0 mode, rescaled by the prefactor of Eq. (15), F̂ = (q0/κDC2
+)F , and

plotted for the equal amplitude case: Cσ = Cη = C+ (C− = 0). (a) The intersurface interaction as a function of the intersurface separation d

in units of q−1
0 . The values of the relative angle ϕ are 0, 0.85π , π for the solid, dashed, and dotted lines, respectively. (b) The intersurface

interaction as a function of the relative phase ϕ. The values of q0d are 0.5, 1, and 2 for the solid, dashed, and dotted lines, respectively.

by the relative phase ϕ and d. The repulsion is maximal with
respect to ϕ for the in-phase state ϕ = 0, while for the antiphase
state, ϕ = ±π , the attraction is maximal:

F (d)

A
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κD

2q0

e−q0d/2

sinh(q0d/2)
C2

+ for ϕ = 0

− κD

2q0

e−q0d/2

cosh(q0d/2)
C2

+ for ϕ = ±π

. (16)

Furthermore, for modulated surfaces with equal amplitudes,
Cσ = Cη, the interaction in Eq. (15) is purely repulsive
in the range |ϕ| < π/2, where the cosine is positive.
When cos ϕ becomes negative, in the range π/2 < |ϕ| < π ,
the intersurface interaction F (d) has a minimum at dc =
q−1

0 cosh−1 (1/ |cos ϕ|), leading to a crossover from attraction
for d > dc to repulsion for d < dc.

The interaction between two non-neutral and uniformly
charged surfaces is obtained by setting k0 = ϕ = 0 in
Eqs. (12) and (13), recovering the well-known result of
Parsegian and Gingell [40]:

F (d)

A
= e−κD d/2

sinh(κDd/2)
C2

+ − e−κD d/2

cosh(κDd/2)
C2

−, (17)

written here in a decoupled way, separating the pure re-
pulsive from the pure attractive contributions in terms of
the amplitudes C± = (Cσ ± Cη)/2, where Cσ and Cη are
uniform surface charge densities. Unlike neutral modulated
surfaces, for two uniformly charged surfaces with the same
sign (Cσ · Cη > 0), the interaction is purely repulsive since
the inequality C+ > C− is always valid.

For uniform charged surfaces, only the ions in solution
screen the interaction, whereas for modulated charged surfaces
there is an additional screening effect, yielding an effective
screening length, q−1

0 = 1/
√

κ2
D

+ k2
0. Therefore, the lateral

charge modulations result in a faster decay of the interaction
as compared to the interaction between two uniformly charged
surfaces, due to the additional mechanism of screening.

Note that when two surfaces have each a different single-
mode modulation, kσ �= kη, the integral over the coupling
terms in Eq. (11) vanishes, leading to a purely repulsive
interaction:

F (d)

A
= κD

4qσ

e−qσ d

sinh(qσ d)
C2

σ + κD

4qη

e−qηd

sinh(qηd)
C2

η, (18)

where qσ =
√

κ2
D

+ k2
σ , qη =

√
κ2

D
+ k2

η , and kσ , kη are the
wave numbers of the bottom and top surfaces, respectively.

The intersurface interaction as expressed in Eq. (18)
can be interpreted as a superposition of two decoupled
systems each composed of one uniform charged surface and
a second (virtual) surface that is neutral. Namely, the first
term corresponds to a uniformly charged surface located at
z = −d/2 and a neutral one located at z = +d/2, while
the second term corresponds to a neutral surface located
at z = −d/2 and a uniformly charged surface located at
z = +d/2. Although the virtual surface is neutral and does
not interact electrostatically, it leads to a repulsive interaction
because the counter-ions are confined between the two surfaces
and their translational entropy is reduced. The magnitude of
the confined ionic volume depends linearly on d and decreases
at smaller separations.

The above result suggests that a slight difference between
the two wavelengths (kσ �= kη) is sufficient to eliminate
any intersurface attraction between two periodically ordered
surfaces, implying that the attraction is a delicate effect
that might be difficult to obtain in experimental conditions
corresponding to the linear PB regime.

B. Multimode modulation

The analysis of the previous section can be generalized to
multimode distributions of the charges on the two surfaces.
The charge distributions are written as

σ (ρ) = δσ (ρ) + σ0, η (ρ) = δη (ρ) + η0, (19)
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where σ0 = 〈σ 〉 and η0 = 〈η〉 are the average surface charge
densities, and δσ (ρ) and δη (ρ) are the charge modulations
around these averages. The intersurface interaction of Eq. (11)
can be separated into two terms:

F (d) = F0 (d) + F1 (d) , (20)

where the first term depends only on σ0 and η0, and coincides
with Eq. (17) with C± = (σ0 ± η0)/2:

F0 (d)

A
= 2σ0η0 + (

σ 2
0 + η2

0

)
e−κD d

2 sinh(κDd)
. (21)

It vanishes when both surfaces are neutral, σ0 = η0 = 0. The
second term is the contribution due to charge heterogeneity,
given by Eq. (11) without the mode k = 0:

F1 (d) = κD

∫
d2k

(2π )2

[
δσ kδη−k + δσ−kδηk

2q sinh(qd)

+ (δσ kδσ−k + δηkδη−k)e−qd

2q sinh (qd)

]
, (22)

where δσ k and δηk are the Fourier transforms of δσ (ρ) and
δη (ρ), respectively. By definition, from Eq. (19), 〈δσ 〉 =
〈δη〉 = 0, or equivalently in Fourier space δσ k=0 = δηk=0 =
0. Note that δσ k and δηk have units of length in Fourier space
(unlike the units of Cσ and Cη). Hence, F1 is dimensionless.

An important length scale for a general periodic (multi-
mode) distribution is the periodic charged domain size, L,
which is related to the smallest wave number, L = 2π/kmin.
The wave vector kmin also acts as a lower cutoff in the k-space
integration, Eq. (22).

Two limiting cases of small and large kmin can be con-
sidered separately. In the limit of charges with molecular-
size heterogeneities, the domain size is molecular L � κ−1

D
,

and qmin =
√

κ2
D

+ k2
min � 2π/L 
 κD depends inversely on

L. Therefore, the leading term in the integrand varies as
κDq−1e−qd � κDLe−2πd/L → 0 (as long as L � d) and leads
to a negligible contribution due to charge heterogeneity,
F1 (d) → 0.

On the other hand, in the limit of large domains, L 
 κ−1
D

,
qmin � κD + O(L−2) has no dependence on L. The decay
length of the interaction is the Debye length, κ−1

D
, similarly

to the average charge contribution in Eq. (21). The leading
term of F1(d) is then given by

F1 (d) � S1 + S2e−κD d

sinh(κDd)
, (23)

where the prefactors S1 = 1
2

∫
d2k

(2π)2 (δσkδη−k + δσ−kδηk), and

S2 = 1
2

∫
d2k

(2π)2 (|δσk|2 + |δηk|2) > 0 do not depend on d and
can be interpreted as contributions from effective uniform
surface charges.

The similar dependence on d of Eqs. (21) and (23) implies
that the effect of large domains can be understood as a
modification of the prefactors in Eq. (21). When S1 is negative,
the contribution F1 (d) � 2S1e−κD d < 0 is attractive for large
separations κDd 
 1 and is followed by a crossover at dc =
κ−1

D
cosh−1 (−S2/S1) from attraction for d > dc to repulsion

for d < dc, resembling the crossover found in Eq. (15).
Examining the two limits of small and large domains leads

to the observation that periodic charge modulation has a

significant effect only when the domain size is sufficiently
large. Thus, for charge modulations characterized by molecu-
lar heterogeneities, one can treat the interaction effectively as if
the charges on the two surfaces are distributed homogeneously.
On the other hand, for surfaces where the charged domains are
larger than the Debye screening length κ−1

D
, the contribution

due to charge modulation cannot be neglected and may lead
to a substantial change in the strength of the intersurface
interaction. Furthermore, a crossover from repulsion at d < dc

to attraction at larger separations, d > dc, can be induced.

C. Time-dependent lateral displacement
and intersurface correlations

The case of two identical single-mode distributions with
a relative phase ϕ, Eqs. (13)–(15), can be generalized for
two identical multimode distributions with a relative lateral
displacement �:

δη (ρ + �) = δσ (ρ). (24)

The above charge distribution, Eq. (24), is motivated by a
specific intersurface force experiment setup [15] that will be
discussed in Sec. V, while here we explore its theoretical
consequences. The relative displacement � = (�x,�y) is related
to a k-dependent phase ϕk = k · � in Fourier space with
δηk = δσ keiϕk , and F1 from Eq. (22) reads

F1 (d) = κD

∫
d2k

(2π )2

cos(k · �) + e−qd

q sinh(qd)
|δσk|2 . (25)

For � = 0 the two distributions are in-phase (symmetric),
leading to repulsive contributions from all modes for any d. In
the more general case of a relative displacement � �= 0, each k
mode can have either an attractive or a repulsive contribution,
and Eq. (25) gives the overall positive or negative sign of F1,
due to strong correlations between the two surfaces.

We consider two surfaces with identical charge distributions
that are relatively displaced by applying on one of them a time-
dependent lateral force. This force leads to a time-dependent
lateral vector �(t) such that δη[ρ + �(t)] = δσ (ρ). The time
dependence �(t) is related to the temporal dependence of the
applied lateral (shear) force. The validity of this model holds as
long as the lateral motion is a quasistatic process, for which the
ions in the solution equilibrate faster than the typical time scale
of the surface lateral motion. Then, the intersurface interaction
is given by averaging the cos [k · �(t)] term in Eq. (25) over
the displacement period T :

〈F1 (d)〉T = κD

∫
d2k

(2π )2

〈cos[k · �(t)]〉T + e−qd

q sinh(qd)
|δσk|2 ,

(26)

where F1 is the contribution to the intersurface interaction
due to charge modulation, and 〈O〉T = T −1

∫ T

0 dt O(t) is the
time average. Since the average of the cosine depends on
the lateral periodic motion, the interaction energy would vary
when changing the oscillatory mode of the force.

A simple example is a square-wave motion in the x̂

direction, given by

�(0 < t < T ) =
{

(�0 − ��) x̂ 0 < t � T/2,

(�0 + ��) x̂ T /2 < t � T ,
(27)
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where �0 is the mean lateral displacement between the two
surfaces, and �� is the oscillation amplitude. The intersurface
interaction is given by

〈F1(d)〉T
= κD

∫
d2k

(2π )2

cos(kx�0) cos(kx��) + e−qd

q sinh(qd)
|δσk|2, (28)

and depends both on the mean displacement �0 and the oscil-
lation amplitude ��. Here kx is the wave-vector component
along the direction of the shear motion.

For a general periodic dependence �(t), if the amplitude of
the lateral oscillations ��(t) = �(t) − �0 is small, kx�� � 1,
and to leading orders the interaction depends on the average
displacement, �0, and the mean square amplitude of the
oscillation, 〈��2〉T = ��2:

〈F1 (d)〉T � κD

∫
d2k

(2π )2

[(
1 − 1

2k2
x(��)2

)
cos(kx�0)

q sinh(qd)

+ e−qd

q sinh(qd)

]
|δσk|2 . (29)

Note that the above equation is exact for the square-wave
distribution of Eq. (27).

IV. QUENCHED SURFACE DISORDER:
PATCHY SURFACES

We generalize now the periodic distribution of Sec. III to
patchy surfaces with random charged domains, but which are
overall neutral. Consider two surfaces with charge distributions
σ (ρ) and η (ρ), respectively. The surface charges are randomly
distributed with a joint probability distribution P [σ (ρ),η(ρ)].
The intersurface interaction, Eq. (11), is obtained by averaging
over the bilinear terms of the Fourier transform:

〈F (d)〉σ,η = κD

∫
d2k

(2π )2

[ 〈σkη−k〉σ,η + 〈σ−kηk〉σ,η

2q sinh(qd)

+ 〈σkσ−k〉σ,η + 〈ηkη−k〉σ,η

2q sinh(qd)
e−qd

]
, (30)

where 〈O〉σ,η = ∫
Dσ

∫
DηP [σ,η] O is the average over the

joint σ and η distribution. In experiments the probability
distribution is usually determined by the preparation procedure
of the surfaces.

When the surfaces are prepared separately, there are no
intersurface correlations, 〈σkη−k〉 = 0, leading to a purely
repulsive interaction:

〈F (d)〉σ,η

= κD

∫
d2k

(2π )2

〈σkσ−k〉σ + 〈ηkη−k〉η
2q sinh(qd)

e−qd > 0, (31)

and the strength of the repulsive interaction depends on the
probability distribution of each surface. For an uncorrelated
Gaussian distribution, the two-point correlation function is
given by

〈σ (ρ)σ (ρ ′)〉σ = 〈η(ρ)η(ρ ′)〉η = γ 2δ

(
ρ − ρ ′

a

)
, (32)

where δ(ρ) is the two-dimensional Dirac δ-function, γ is the
root mean square charge density (taken to be the same on
the two surfaces), and a is a conveniently defined molecular
length. This leads to 〈σkσ−k〉σ = 〈ηkη−k〉η = Aγ 2a2, and to
an intersurface interaction per unit area:

〈F (d)〉σ,η

A
= κ2

D
γ 2a2

2π
I (κDd) > 0, (33)

where

I (κDd) =
∫ ∞

0
dk

ke−qd

κDq sinh(qd)
= − ln(1 − e−2κD d )

κDd
. (34)

The repulsive free energy for the uncorrelated Gaussian case
is presented in Fig. 3(a). At separations larger than the Debye
screening length, κDd 
 1, the leading term decays exponen-
tially as 〈F 〉/A ∼ e−2κD d/(κDd), while at small separations,
κDd � 1, the energy scales as 〈F 〉/A ∼ ln[1/(2κDd)]/(κDd).

When calculating these scaling relations we ignored the
molecular length scale a, since I (κDd) has no dependence on
a. However, the prefactor in Eq. (33) scales as the square of
the molecular length scale 〈F 〉/A ∼ (κDa)2. Hence, the con-
tribution of uncorrelated Gaussian disorder, Eq. (32), vanishes
in the limit where a is much smaller than the Debye length,
κDa � 1, in agreement with the results reported in Ref. [37].

In order to model the possibility of finite (macroscopic)
charged domains we replace Eq. (32) by a two-point correla-
tion function having a Lorentzian distribution:

〈σ (ρ)σ (ρ ′)〉σ = 〈η(ρ)η(ρ ′)〉η = γ 2ξ 2

(ρ − ρ ′)2 + ξ 2
, (35)

where ξ is the charge correlation length on the surface, which
can be associated with the domain size. In Fourier space
this leads to 〈σkσ−k〉σ = 〈ηkη−k〉η = 2πAγ 2ξ 2K0 (kξ ), where
K0 (x) is the zeroth-order modified Bessel function of the
second kind.

The intersurface interaction is then given by

〈F (d)〉σ,η

A
= κDγ 2ξ 2

∫ ∞

0
dk

ke−qdK0 (kξ )

q sinh(qd)
, (36)

and the dependence of 〈F (d)〉σ,η on κDd for three values of
the correlation length ξ is shown in Fig. 3(b). In the limit of
short-range correlations [dotted line in Fig. 3(b)], κDξ � 1, the
integrand in Eq. (36) depends weakly on ξ , and the interaction
energy scales as 〈F 〉 /A ∼ − ln(κDξ )ξ 2, resembling the scaling
of the Gaussian distribution case, Eq. (33), where 〈F 〉 ∼ a2.
In the other limit of large domains [solid line in Fig. 3(b)],
where κDξ 
 1, the main contribution to the integral comes
from the small values of k, and the interaction is independent
of ξ , 〈F 〉 /A ∼ e−κD d/ sinh(κDd). This reproduces repulsion
with a decay length that does not depend on the lateral length
scale, ξ . These two limiting behaviors of 〈F 〉 /A as a function
of κDξ are shown in the inset of Fig. 3(b) for two values of d.

By examining the short- and long-range charge distributions
we find that short-range charge disorder has a negligible effect
on the intersurface energy, while long-range disorder leads to a
substantial effect, which cannot be omitted even in the case of
nonzero average charge. This observation is in accord with the
results presented in the multimode periodic case, Sec. III B,
where it was found that charge distributions with large charge
domains changed the intersurface interaction substantially,
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FIG. 3. The averaged interaction energy, F̂ /A as a function of the intersurface separation d for randomly charged surfaces. (a) The free
energy from Eq. (33), for an uncorrelated Gaussian distribution [Eq. (32)], is plotted on a semilog plot as a function of κDd . (b) The free energy
is plotted on a semilog plot as a function of κDd , where the charge distribution is a two-dimensional Lorentzian, Eq. (36). Three values of κDξ

are shown: κDξ = 100 (solid line), κDξ = 1 (dashed line), and κDξ = 0.1 (dotted line). In the inset the dependence of the free energy on κDξ is
plotted on a log-log scale for two values of the separation: κDd = 0.1 (solid line) and κDd = 1 (dashed line). The plotted free energy is rescaled
by the prefactor of Eq. (33), F̂ = 2π〈F 〉/(κ2

D
γ 2a2) for (a), and F̂ = 〈F 〉/γ 2 from Eq. (36) for (b).

while distributions with small domains lead to a negligible
effect.

V. DISCUSSION

The model we present accounts for the intersurface interac-
tion of two heterogeneously charged surfaces. It is formulated
on the mean-field level where the electrostatic potential is
given by the Poisson-Boltzmann (PB) equation. Our main aim
is to study the effect of quenched charge disorder with finite do-
mains on the intersurface interaction between the two surfaces.

We focus on the linear regime of the PB equation, where it is
found that the intersurface interaction of two arbitrary charge
distributions depends on a bilinear coupling between the
Fourier components of the two distributions. It is shown that
the interaction can be expressed as a sum of an attractive term
and a repulsive one. The repulsive term at small separations is
usually larger than the attractive one, leading to a repulsion for
d → 0. In a special case where the two distributions are exactly
out-of-phase, σ (ρ) = −η (ρ), such that negatively charged
domains are located against positively charged domains in
the other surface and vice versa, the interaction is attractive
for any value of d.

Several types of surface charge distributions are studied in
the linear PB regime. First, we consider two overall neutral
surfaces with the same single-mode periodic charge density,
but with a relative phase shift ϕ between the two. When the
average surface charge is taken to be zero, the intersurface
interaction stems only from the lateral charge modulation.
When the top surface mode is identical with the bottom one, the
interaction can vary between pure attraction and pure repulsion
as function of the relative phase ϕ between the two surfaces.
For an out-of-phase distribution, ϕ = π , there is a relative
displacement by half a wavelength between the bottom and
top surfaces, and the interaction is purely attractive, while for
the in-phase case, ϕ = 0, it is purely repulsive.

These two limits are a consequence of strong intersurface
correlations. For intermediate values of the relative phase ϕ,
the correlation is weaker and a crossover from attraction (at
large separations) to repulsion (at small separations) occurs at
a separation dc ∼ cosh−1 (1/ |cos ϕ|). Note that the crossover
separation dc does not depend on the modulation amplitude. In
the more general case where the bottom and top surfaces have
different (single) k mode, the interaction is found to be purely
repulsive. The origin of the repulsion in this case is due to the
confinement of the counter-ions in between the surfaces.

The role of the domain size in a general periodic (mul-
timode) distribution is also investigated. It is found that the
contribution due to periodic charge modulation is important
only in the limit of large domains κDL 
 1. For sufficiently
large domains the contribution due to charge heterogeneity
is substantial, even in the case of non-neutral surfaces,
where the main contribution stems from the average surface
charge.

The time-dependent relative displacement case discussed
in Sec. III C is motivated by a recent surface force experiment
[15], which examined whether the charge heterogeneity on the
two surfaces is annealed or randomly distributed (quenched
case). In the experiments, the normal forces between two mica
surfaces partially coated with a cationic lipid bilayer were
measured, while during the vertical approach the surfaces were
also sheared laterally in an oscillatory mode at a rate which is
slower than the typical time required for the ions in solution
to rearrange, but faster than the time scale of vertical approach
or lipids rearrangement on the coated surfaces. Thus, it is
assumed that the initial ordering of the surface charge on each
surface is preserved during the normal approach.

If the hypothesis that the surfaces are periodically ordered
[34] is correct, then the measured intersurface force should
depend on the average and mean square amplitude of the
lateral motion as in Eqs. (28) and (29). However, it was shown
in Ref. [15] that the forces measured for different lateral

022402-7



DAN BEN-YAAKOV, DAVID ANDELMAN, AND HAIM DIAMANT PHYSICAL REVIEW E 87, 022402 (2013)

motions remained unchanged, suggesting that the surface
charge distribution is not periodic, but presumably is quenched
and random.

While in the annealed case the surface charges can rearrange
themselves, and the system approaches the minimum energy
state as was investigated in Refs. [33–36], in the quenched case
the accessible configurations of the surfaces are frozen. The
quenched probability distribution is usually determined by the
experimental setup. For example, in surface force experiments
the two surfaces are prepared separately before the force
measurement, and their corresponding charge distributions can
be assumed to be independent with no intersurface correlation.
We consider this case and find that the interaction is purely
repulsive in the linear PB model, due to the vanishing of in-
tersurface bilinear coupling terms. The intersurface interaction
can be thought of as an average over equal weights of repulsive
and attractive contributions. However, since the repulsive term
varies as exp(−qd/2)/ sinh(qd/2) and the attractive one as
exp(−qd/2)/ cosh(qd/2), the repulsive contribution is always
larger than the attractive one, leading to an overall repulsive
interaction between uncorrelated randomly charged surfaces
in the linear PB model.

We discuss two specific types of random distributions. For
Gaussian charge distributions with no inter- and intrasurface
correlations, the interaction depends on a molecular length
scale a (lower cutoff length). Disorder at the molecular level
may emerge due to local processes that are not affected by
neighboring surface charges. The contribution of the hetero-
geneity in this case is negligible, in agreement with Ref. [37].

In a more general case of Lorentzian distribution with
correlation length ξ , we find two limiting regimes. For large
values of ξ we obtain a substantial effect due to charge
disorder, while for small values of ξ the limit of disorder
at the molecular level is recovered and the contribution due
to disorder is negligible. Note the similarity between these
two limiting regimes and the case of periodic distributions
mentioned earlier. For the latter and in the limit of large
domains, κDL 
 1, the effect is significant, while in the
small domain limit, κDL � 1, the domain-size effect is quite
negligible.

All the results obtained in the present work assumed a linear
PB regime and demonstrate that quenched charge disorder
leads (except in special setups) to a nonvanishing repulsive
interaction between charged surfaces. It is reasonable to expect
that similar considerations can be extended to the nonlinear
PB regime, where the electrostatic potential is too large for the
linear approximation to be valid. However, using a simplified
model for the limit of infinitely large charged domains, it
was shown in Ref. [15] that the intersurface interaction in
the nonlinear regime may become overall attractive.

In the Appendix we reproduce this simplified treatment and
compare its results, for a range of surface charge densities, with
those of the linear model presented above. For weakly charged
surfaces, when the validity of the linear PB approximation can
be justified, the overall repulsion predicted in the linear regime
agrees with the nonlinear one, while for strongly charged
surfaces the linear PB equation fails to predict the attraction
obtained in the nonlinear regime. This suggests a possible
crossover from repulsive to attractive intersurface interaction,
as a function of charge density and patch size.

VI. CONCLUDING REMARKS

The results presented in our work demonstrate that charge
heterogeneity may have important implications on the inter-
surface interaction both for periodically modulated surfaces
and randomly quenched ones. Several extensions to our work
can be considered.

An effect not taken into account in the present work and left
for future investigations is that the membrane charge distribu-
tion in reality is not planar. It is actually a three-dimensional
landscape with peaks and valleys, created, for example, by the
lipidic charged domains. This would result in a z-dependent
charge distribution of a nano-scale thickness, hence, adding
another length scale of inhomogeneity, in addition to the
transverse correlation length of the planar model.

A further remark should be made on the divergence of the
free energy at small separations. This is related to our simplify-
ing assumption on the boundary conditions, Eq. (3), in which
the electrostatic field is confined in between the surfaces, and
does not leak to the outer region. Namely, the electrostatic field
in the outward direction of the surface is set to zero. This as-
sumption is reasonable when the dielectric constant of the outer
region is much lower than the one of the ionic solution. How-
ever, for sufficiently small intersurface separations, one might
need to consider the leakage of the field to the outer region [38].

Since the attraction in the nonlinear regime was predicted
only in the limit of infinitely-large surface patches [15], it
is worthwhile to investigate further the nonlinear PB model.
It will be of interest to study the origin of the attraction and
relate it to the difference between the scaling of the counter-ion
entropy for counter-ion release (attraction) versus counter-ion
confinement (repulsion).

Another possible extension would be to find a suitable
approximation for the nonlinear PB regime in three dimensions
with heterogeneous boundary conditions. Using such an
approximation may shed more light on the interaction between
randomly charged surfaces within the PB theory and related
experiments.
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APPENDIX: COMPARISON OF THE LINEAR
AND NONLINEAR PB THEORY FOR INFINITELY

LARGE CHARGED DOMAINS

We repeat here the calculation presented in Ref. [15] for
the nonlinear PB theory and compare it with the linear theory
treated in our paper. We consider two heterogeneous surfaces
where the typical size of a charged patch (domain) is much
larger than any other length scale in the system. Each patch
can be treated as an extended section of a uniform charged
surface, and the leading interaction term would presumably be
a superposition of all patch-patch interactions between the two
surfaces.
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FIG. 4. The patch-patch intersurface interaction energy per unit area, |F̂ |/A, as a function of the separation d rescaled by κD . The plotted
free energy F̂ = F/κ2

D
is rescaled by κ2

D
. (a) Attraction |F̂att| (dashed line) and repulsion F̂rep (solid line) are calculated by the nonlinear PB

equation for σ = −η = 10κD and σ = η = 10κD , respectively. The inset shows the average of the repulsive and attractive corresponding free
energies F̂av = (F̂rep − |F̂att|)/2, calculated by the linear and nonlinear PB equation. (b) The solid and dashed lines are calculated with the
nonlinear PB equation for σ = η = 0.5κD and σ = −η = 0.5κD , respectively. The inset shows the average F̂av. The results of the linear PB
equation are omitted in (b) since their difference from the nonlinear calculation is invisible.

The two surfaces are overall neutral, and on each of
them there are positively and negatively charged patches,
with uniform charge densities: σ = η = ±σ0, leading to four
types of possible patch-patch interactions between the two
surfaces, (±σ0,±σ0). The electrostatic potential ψ is obtained
by solving numerically the nonlinear PB equation for two uni-
formly charged surfaces. The patch-patch interaction energy
is repulsive for the like-charge case, Frep > 0, and attractive
for the opposite-charge case, Fatt < 0, and is obtained by
integrating over the osmotic pressure �(d),

F/A = 4πκD lB

kBT

∫ ∞

d

dz �(z), (A1)

where the osmotic pressure is given by

� = − ε

8π

(
dψ

dz

)2

+ 2kBT nb

[
cosh

(
eψ

kBT

)
− 1

]
(A2)

and has the same dependence on ψ for both attractive and
repulsive cases. The overall free energy Fav is then given by
averaging over the four possible patch-patch arrangements,
yielding Fav = (Frep + Fatt)/2 = (Frep − |Fatt|)/2.

In Fig. 4(a) a comparison between the free energy of
the two cases is presented for strongly charged patches,
σ = ±η = 10κD . At separations larger than κDd > 0.043, the
attractive interaction (oppositely charged surfaces, σ = −η,
dashed line) is stronger than the repulsive one (equally charged
surfaces, σ = η, solid line). This effect is related to different
scaling of the ionic entropy as a function of d for the repulsive

and attractive cases. At smaller separations, κDd < 0.043, the
repulsive interaction becomes stronger than the attractive one,
and even diverges. The inset shows the overall intersurface
interaction as calculated in the simplified nonlinear and linear
PB models. It is clear that for large values of σ and η the linear
approximation fails to predict the crossover between attraction
to repulsion of the nonlinear PB equation.

The origin of the difference between the linear and nonliner
PB models stems from the different dependence of the counter-
ions entropy on the intersurface separation d in the case
of attraction and repulsion [6,41]. While the entropy in the
repulsive case is determined by counter-ion confinement [5],
the entropy in the attractive case is governed by counter-ion
release [41]. By directly comparing the linear and nonlinear
PB solution for strongly and equally charged surfaces, it is
found that the counter-ion entropy is largely overestimated
in the linear PB solution [42]. This is due to a slower decay
of the ionic profile close to charged surfaces in the linear
case.

For complementarity, in Fig. 4(b), we present the intersur-
face interaction of weakly charged surfaces σ = ±η = 0.5κD .
As expected, the linear approximation agrees well with the
simplified nonlinear PB, and the overall interaction is repul-
sive. These rough estimates suggest a possible crossover as a
function of patch charge strength from repulsive to attractive
intersurface interaction, but requires further investigations of
the nonlinear PB equations for surfaces with finite-size charge
patches.
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