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Concentration fluctuations and phase transitions in coupled modulated bilayers
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We consider the formation of finite-size domains in lipid bilayers consisting of saturated and hybrid lipids.
First, we describe a monolayer model that includes a coupling between a compositional scalar field and a
two-dimensional vectorial order parameter. Such a coupling yields an effective two-dimensional microemulsion
free energy for the lipid monolayer, and its characteristic length of compositional modulations can be considered
as the origin of finite-size domains in biological membranes. Next, we consider a coupled bilayer composed of
two modulated monolayers and discuss the static and dynamic properties of concentration fluctuations above
the transition temperature. We also investigate the micro-phase separation below the transition temperature and
compare the micro-phase separated structures with statics and dynamics of concentration fluctuations above the
transition.
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I. INTRODUCTION

Biomembranes are two-dimensional (2D) fluids that sepa-
rate the inner and outer environment of organelles in biological
cells. Naturally occurring biomembranes consist typically
of numerous lipid species, sterols, sugars, and membrane
proteins. According to the “lipid raft” hypothesis [1], some
of the lipid components and/or proteins are incorporated into
finite-size domains, which play an important role on cellular
functions such as signal transduction processes. Recent ex-
periments suggest that lipid rafts are nothing but dynamical
molecular assemblies of 20 nm in size with finite lifetimes in
the order of 10–20 ms [2].

Being motivated by the raft hypothesis, a large number
of investigations [3–14] have been conducted to reveal the
properties of artificial membranes consisting of lipid mixtures
and cholesterol. Below the miscibility transition tempera-
ture, formation of micron-size domains were observed using
fluorescent microscopy [3–6]. In some cases, rather than a
macroscopic phase separation, domains with distinct size in
the micrometer range have been reported [7–9]. For example,
various types of modulated (stripe or hexagonal) patterns
have been found for multicomponent lipid and cholesterol
mixtures [10]. Above the miscibility transition temperature,
even multicomponent membranes do not phase separate, and
their concentration fluctuations around the homogeneous state
can be investigated [11–13], in particular, close to the critical
point, Tc. Furthermore, it is interesting to note that critical
concentration fluctuations have been observed in membranes
extracted from living cells [14].

One of the main reasons that initiated the notion of lipid
rafts in biomembranes is the existence of finite-size domains
rather than domains resulting from a macroscopic phase
separation [15]. Assuming that membranes are in equilibrium,
the same question can be phrased in terms of whether the
biomembrane state is above or below the miscibility transition
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temperature. In the high-temperature one-phase region, the
only relevant length scale is the correlation length associated
with concentration fluctuations, and it diverges at the critical
point, Tc [16]. Below this temperature, there should be a
physical mechanism suppressing domain coarsening in order
to explain the existence of finite-size domains in equilibrium.

Yet another characteristic feature of biomembranes is
that the lipid composition of the two leaflets (monolayers)
constituting the bilayer is not the same [17]. Moreover,
such asymmetric monolayers are not independent but are
coupled to one another. This was confirmed experimentally
by investigating the phase separation of bilayers with different
monolayer lipid compositions [18] or seen in simulations [19].
One mechanism that leads to the coupling between the two
leaflets is the lipid chain interdigitation occurring at the
midplane of the bilayer [20–22], which may affect the domain
size in asymmetric bilayers.

One possibility to account for such finite-size domains
in lipid mixtures is to consider the special role played by
“hybrid lipids” such as POPC or SOPC. These lipids have
one saturated hydrocarbon chain and another unsaturated
one and are major components of biological membranes. It
was suggested that hybrid lipids act as a line-active agent
at boundaries of 2D domains of immiscible lipids [23–26].
Hence, a mixture containing hybrid lipids can be regarded
as a “2D microemulsion” [13,23–27]. For microemulsions it
is known that there is another length scale, in addition to the
correlation length mentioned above, related to the size of water
and oil microdomains [28].

Using the microemulsion analogy, we suggest that an
additional length scale can be responsible for the finite-size
structures in biomembranes. We propose a model for bilayers
consisting of two coupled monolayers that are both in a 2D
microemulsion state, manifesting modulated phases. First,
we describe a monolayer model that includes a coupling
between the lipid composition and a 2D vectorial order
parameter. The model accounts for the line active nature of
hybrid lipids. Next, we consider a bilayer in which two such

021916-11539-3755/2012/86(2)/021916(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.021916


YUICHI HIROSE, SHIGEYUKI KOMURA, AND DAVID ANDELMAN PHYSICAL REVIEW E 86, 021916 (2012)

monolayers are coupled through an interleaflet interaction.
For the coupled bilayer, we discuss the static and dynamic
properties of concentration fluctuations above Tc and investi-
gate their micro-phase separation below Tc [29]. Intermediate
structures arise when two competing structures have different
characteristic length scales. One of our important conclusions
is that the micro-phase-separated structures below Tc reflect
the static and dynamic properties of concentration fluctuations
above Tc.

This paper is organized as follows. In Sec. II, after describ-
ing how the microemulsion state is obtained for monolayers, a
model for coupled modulated bilayers is presented. In Sec. III,
we show the results of static and dynamic structure factors
for the coupled bilayers above Tc. In Sec. IV, we describe
some results for competing micro-phase separation in coupled
bilayers below Tc. Finally, in Sec. V, further discussion and
final remarks are presented.

II. MODEL

A. Modulated lipid monolayers

We consider a 2D microemulsion formation in a monolayer
consisting of two types of lipids: a saturated lipid (denoted
by “S”) and a hybrid one (“H”). As shown schematically in
Fig. 1(a), the saturated lipid has two saturated chains, whereas
the hybrid lipid has one saturated chain and an unsaturated
one. It is well known [3–6] that the resulting liquid-ordered
(Lo) and liquid-disordered (Ld) phases are rich in saturated
and hybrid lipids, respectively, as is depicted in Fig. 1(c). In
the experiments mentioned previously, cholesterol is usually
added as a third component and is known to affect the area
per headgroup of lipids [30,31]. However, since cholesterol
has a strong preference for the Lo phase and affects mainly the
saturated lipid, we do not consider cholesterol explicitly in our
model and neglect its presence hereafter.

The local area fraction of saturated and hybrid lipids
are defined as φS(r) and φH(r), respectively, where r =
(x,y) is a 2D vector. Under the incompressibility con-
dition, φS + φH = 1, the only relevant order parameter is
the difference between the two lipid compositions, φ =
φS − φH. The phenomenological free energy that describes
the 2D phase separation between S and H lipids is given
by a Ginzburg-Landau expansion in terms of the order
parameter φ,

Fs[φ] =
∫

d2r

[
σ

2
(∇φ)2 + τ

2
φ2 + 1

4
φ4 − μφ

]
. (1)

Here σ > 0 is related to the line tension between monolayer
domains, τ ∝ T − Tc is the reduced temperature with respect
to the critical point Tc, and μ is the chemical potential that
regulates the average φ value in the monolayer. Without loss
of generality, the coefficient of the quartic term is set to be a
positive constant by an appropriate rescaling of the position
variable, r.

Next, we discuss the role of the hybrid lipid and its
effect on the phase separation. We define a 2D lateral vector
b pointing from the unsaturated tail of the hybrid lipid
toward its saturated one, as depicted in Fig. 1(a). We then
introduce a coarse-grained 2D vectorial order-parameter field

m(r) = (mx(r),my(r)), as shown in Fig. 1(b). This vector is the
spatial average of the b vectors over areas large as compared
with molecular size but still small enough as compared
with macroscopic scales. The phenomenological free energy
associated with the vectorial field m (and due to the hybrid
lipids) can be written as an expansion up to quadratic order
in m [32],

Fh[m] =
∫

d2r

[
K

2
(∇ · m)2 + a

2
m2

]
. (2)

The coefficient K is the 2D elastic constant, while a is
taken to be positive so that m = 0 is the stable homogeneous
state. Although an additional term (∇ × m)2 is allowed by
symmetry, it is not included in Eq. (2) because this term does
not modify our results. The reason why the term (∇ × m)2 is
irrelevant after the minimization is due mainly to the form of
the coupling term discussed in the next.

At the Lo/Ld interface, hybrid lipids orient their saturated
and unsaturated chains toward the Lo and Ld phases, respec-
tively, thereby reducing the chain mismatch [25,26] as shown
in Fig. 1(c). Within our phenomenological approach, the role
of hybrid lipids can be represented by a coupling between
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FIG. 1. (a) Saturated lipids (S) with two saturated hydrocarbon
chains, and hybrid lipids (H) with one saturated and another
unsaturated chain. For each hybrid lipid, we define a 2D vector b
pointing from its unsaturated tail toward the saturated one. (b) The
vector m denotes a coarse-grained 2D vectorial order parameter over
the microscopic b vectors. (c) A binary lipid monolayer consisting
of saturated and hybrid lipids. At the interface between the Lo and
Ld phases, hybrid lipids orient their saturated chains toward the Lo

phase. The distribution of the m(r) vector field is shown by arrows of
variable length.
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the lateral variation of φ and the vectorial field m. To lowest
orders, the coupling term in the free energy is given by

Fc[φ,m] = −�

∫
d2r m · (∇φ), (3)

where � is a positive coupling constant because the vector m
tends to orient toward the Lo domains. The total monolayer free
energy is given here by the sum of the three terms introduced
in Eqs. (1)–(3): Fm = Fs + Fh + Fc. Notice that our model
is valid in the weak segregation limit (close to Tc), because
slow spatial variation of the order parameters is intrinsically
assumed. We further note that a similar free-energy functional
using a vectorial order parameter was proposed for 3D
microemulsions [33].

The total free energy can be conveniently expressed using
the 2D Fourier transform of φ

φ(q) =
∫

d2r φ(r)e−iq·r, (4)

where q = (qx,qy) is a 2D wave vector and, similarly, m(q) is
the Fourier transform of m(r). Minimizing Fm with respect to
m, we obtain its optimum value as

m(q) = i�q
a + Kq2

φ(q), (5)

where q = |q|. By substituting back Eq. (5) into the monolayer
free energy Fm, the minimized free energy is expressed as

Fm[φ] =
∫

d2q

(2π )2

1

2

(
τ + σq2 − �2q2

a + Kq2

)
φ(q)φ(−q)

+
∫

d2r

(
1

4
φ4 − μφ

)
, (6)

where the Fourier transform has been used only for the second-
order terms in φ. Expanding the effective binary interaction
for small q, we obtain

Fm[φ] ≈
∫

d2q

(2π )2

(
2Bq4 − 2Aq2 + τ

2

)
φ(q)φ(−q)

+
∫

d2r

(
1

4
φ4 − μφ

)
, (7)

where two new parameters are defined

B ≡ K�2

4a2
, A ≡ 1

4

(
�2

a
− σ

)
. (8)

When the coupling constant � is small enough, i.e., �2/a < σ

(or A < 0), the minimum of the Gaussian term (first integral)
in Eq. (7) occurs at q∗ = 0 and is a signature of a macroscopic
phase separation (for τ < 0). On the other hand, when � is
large enough, i.e., �2/a > σ (or A > 0), the minimum occurs
at a nonzero wave number q∗ �= 0 given by

q∗ =
√

A

2B
=

√
a(1 − aσ/�2)

2K
, (9)

indicating a potential micro-phase separation with q∗ > 0
modulation.

Taking the inverse Fourier transform, Eq. (7) can be
expressed in position space as

Fm[φ] =
∫

d2r

[
2B(∇2φ)2−2A(∇φ)2+ τ

2
φ2 + 1

4
φ4 − μφ

]
.

(10)

This is the “2D microemulsion” free energy for a monolayer
composed of a binary lipid mixture. When A > 0, the negative
gradient-squared term favors spatial modulations, while the
positive Laplacian squared term with B > 0 suppresses modu-
lations. As mentioned above, Yamamoto et al. [25,26] showed
that the effective line tension between domains becomes
negative for membranes consisting of saturated and hybrid
lipids.

More generally, models based on equations similar to
Eq. (10) have been used successfully in the past to describe
modulated phases [34] arising in a variety of different
biophysical and chemical systems such as Langmuir films [35],
lipid membranes [36,37], and diblock copolymers [38].

B. Coupled lipid bilayers

We consider two coupled modulated monolayers forming
a bilayer as shown in Fig. 2. Each monolayer is a binary
mixture of saturated and hybrid lipids. We define two local
order parameters for the two monolayers, φ = φS − φH and
ψ = ψS − ψH, depicted in Fig. 2. The coarse-grained free-
energy functional is then written as [29]

Fb[φ,ψ] =
∫

d2r

[
2B(∇2φ)2 − 2A(∇φ)2 + τφ

2
φ2 + 1

4
φ4

−μφφ + 2D(∇2ψ)2 − 2C(∇ψ)2

+ τψ

2
ψ2 + 1

4
ψ4 − μψψ − �φψ

]
. (11)

The first five terms depend only on φ and its derivatives
and describe the upper monolayer in Fig. 2 and its possible
modulations. These are the same terms as in Eq. (10)
for the single monolayer case. Similarly, the latter five ψ

terms describe the lower monolayer, where τφ and τψ are
the two reduced temperatures, while μφ and μψ are the
corresponding chemical potentials. The last term, �φψ , rep-
resents the coupling between the two leaflets with a coupling
constant �.

We comment here on the physical origin of the proposed
coupling term, −�φψ , in Eq. (11). Note that this quadratic
term is invariant under exchange of φ ↔ ψ . When � > 0,

φ

ψ

FIG. 2. Schematic illustration of two coupled modulated mono-
layers forming a bilayer membrane. Each monolayer is composed
of a binary S/H lipid mixture, which can have a lateral composition
modulation. The relative composition of S and H lipids in the upper
and lower leaflets are defined by φ and ψ , respectively. The lipid tails
interact across the bilayer midplane.
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this term can be obtained from a term such as +(φ − ψ)2,
which represents a local energy penalty when the upper and
lower monolayers have different compositions [20,21]. For
mixed lipid bilayers, such a coupling may result from the
conformational confinement of the lipid chains and, hence,
would have an entropic origin [20]. By estimating the degree
of lipid chain interdigitation, the order of magnitude of the
coupling parameter � can be evaluated [22]. In general,
� can also be negative depending on the specific coupling
mechanism [39]. However, the sign of � does not affect our
results in any essential way because the free energy Eq. (11) is
invariant under the combined exchange of either φ → −φ and
� → −� or ψ → −ψ and � → −�. Since such an effect
only changes the sign of the chemical potential (either μφ or
μψ ), it is sufficient to consider the � > 0 case.

The other possible higher-order coupling terms which are
allowed by symmetry are φ2ψ2, φψ3, and φ3ψ . However,
these terms do not affect the properties of concentration
fluctuations in any essential way and will not be considered
hereafter.

III. CONCENTRATION FLUCTUATIONS ABOVE Tc

Using the bilayer free energy, Eq. (11), we obtain the static
and dynamic structure factors, which describe the properties of
concentration fluctuations for two coupled monolayers in their
respective one-phase region (above Tc). We shall closely follow
the formulation of Ref. [40] in which the coupled macro-phase
separation was discussed for bilayers.

A. Static structure factor

The spatially varying φ(r) and ψ(r) can be written as φ(r) =
φ0 + δφ(r) and ψ(r) = ψ0 + δψ(r), respectively, where φ0 =
〈φ〉 and ψ0 = 〈ψ〉 are the spatially averaged monolayer
compositions, and δφ and δψ describe the deviations from
their average values. In thermal equilibrium, φ0 and ψ0 satisfy

τφφ0 + φ3
0 − μφ − �ψ0 = 0,

(12)
τψψ0 + ψ3

0 − μψ − �φ0 = 0.

Expanding the free energy, Eq. (11), and retaining the quadratic
order terms in δφ and δψ , we obtain the Gaussian free energy

FG[δφ,δψ] =
∫

d2r

[
2B(∇2δφ)2 − 2A(∇δφ)2

+ εφ

2
(δφ)2 + 2D(∇2δψ)2 − 2C(∇δψ)2

+ εψ

2
(δψ)2 − �(δφ)(δψ)

]
, (13)

where the notations εφ = τφ + 3φ2
0 and εψ = τψ + 3ψ2

0 as
well as Eq. (12) are used.

The static partial structure factor is Sφφ(q) =
〈δφ(q)δφ(−q)〉, and because of the radial symmetry,
Sφφ(q) = Sφφ(q), where q = |q|. It is given by

Sφφ(q) = 2gψ (q)

4gφ(q)gψ (q) − �2
, (14)

and similarly for Sψψ and Sφψ ,

Sψψ (q) = 2gφ(q)

4gφ(q)gψ (q) − �2
, (15)

Sφψ (q) = Sψφ(q) = �

4gφ(q)gψ (q) − �2
, (16)

and

gφ(q) = 2Bq4 − 2Aq2 + εφ

2
,

(17)
gψ (q) = 2Dq4 − 2Cq2 + εψ

2
.

Since the structure factors diverge at Tc, we see that the
coupling parameter � effectively shifts the critical temperature
to lower values.

B. Decoupled leaflets (� = 0)

When the two leaflets are decoupled, � = 0, it is sufficient
to present results for only one of the two monolayers, say, the
φ one. From Eq. (14), the decoupled structure factor is simply
given by

Sφφ(q) = 1

2gφ(q)
. (18)

The correlation function Gφφ(r) = 〈δφ(r)δφ(0)〉 = Gφφ(r),
where r = |r|, is obtained by use of the inverse 2D Fourier
transform of Eq. (18) (see Appendix A for the derivation)

Gφφ(r) = ξφλφ

32πB
Re

[
H

(1)
0

(
2πr

λφ

+ i
r

ξφ

)]
, (19)

where H
(1)
0 (z) is the zeroth-order Hankel function of the

first kind and “Re” denotes the real part. This correlation
function contains two length scales; the first is the modulation
periodicity

λφ

2π
=

(
B

εφ

)1/4 2√
1 − γφ

(20)

and the second is the correlation length

ξφ =
(

B

εφ

)1/4 2√
1 + γφ

, (21)

where γφ = −A/
√

εφB.
When −1 < γφ < 1, both λφ and ξφ are finite, and the

corresponding phase is called the structured-disordered phase.
In Fig. 3, we plot Eq. (19) for certain parameter values. The
correlation function has exponentially decaying oscillations as
a function of the distance r , similar to 3D microemulsions [28].
The peak of the structure factor Sφφ occurs at q∗ = √

A/2B >

0 for −1 < γφ < 0, whereas q∗ = 0 for 0 � γφ < 1. In the
former case, the peak height is given by

Sφφ(q∗
φ) = 1

εφ − A2/B
(22)

and diverges at ε∗
φ = A2/B. The line at γφ = 0 is the Lifshitz

line. The modulation periodicity λφ diverges for γφ → 1, and
the monolayer transforms into a disordered phase for γφ > 1.
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FIG. 3. The rescaled (dimensionless) real-space correlation func-
tion, Gφφ , of a single monolayer in the structured-disordered phase as
a function of r . The parameters are B/εφ = 1 and γφ = −0.9, and the
two resulting characteristic lengths are λφ/2π  1.45 and ξφ  6.32.

The line of γφ = 1 is called the disorder line and is not a phase
transition line. On the other hand, the correlation length ξφ

diverges for γφ → −1 (hence, this is the critical point), and
the ordered phase appears for γφ < −1 [28].

As shown in Fig. 4(a), the phase diagram of a decoupled
bilayer is easily obtained by combining the phase sequences
in terms of the two independent parameters γφ = −A/

√
εφB

and γψ = −C/
√

εψD. The various phases are expressed by
the binary combination of ordered (O), structured-disordered
(S), and disordered (D) phases for each of the leaflets. The two
disorder lines are shown in the figure by dashed lines, while
the Lifshitz lines occur at γφ = 0 and γψ = 0 (not shown).

C. Coupled leaflets (� �= 0)

When the two monolayers are coupled (� �= 0), the
corresponding phase diagram can be obtained by analyzing
the poles in the complex plane of Eqs. (14)–(16). One example
is shown in Fig. 4(b). The boundary between the OO and SS
phases (solid line) is determined by the condition that all the
structure factors diverge. In the DD phase, all the poles are pure
imaginary, whereas in the SS phase the poles are complex, and
at least one real pole exists in the OO phase.

In Fig. 4(b) we see that the asymmetric phases such as DO
and SD are suppressed as compared with Fig. 4(a). This is
because one of the leaflets induces modulations in the other
leaflet due to the interleaflet coupling, �. In fact, all the
asymmetric phases disappear for any finite value of �. In
addition, the OO and SS phases are expanded as compared
to Fig. 4(a). As mentioned before, increasing the coupling �

effectively lowers the bilayer temperature. The Lifshitz lines
(dotted lines) are obtained by plotting the main peak positions
of Eqs. (14) and (15). Due to the coupling effect, they are tilted
as compared to the � = 0 case where the lines occur at γφ = 0
and γψ = 0.

In Figs. 5(a) and 5(b), we plot the structure factors
of the decoupled and coupled bilayers, respectively. As an
illustration of the coupling effect with � = 0.3, we consider

-1 0 1
γφ

-1

0

1

γψ SS

OO

DDOD

DO

SD

SO

OS DS

OO

DD

(a)

(b)

SS

-1 0 1
γφ

-1

0

1

γψ

FIG. 4. (a) Phase diagram of a decoupled modulated bilayer (� =
0) plotted in the plane of γφ = −A/

√
εφB and γψ = −C/

√
εψD.

The phases are labeled using a binary combination of two letters
representing phases in the φ and ψ monolayers. “O,” “S,” and “D”
denote the ordered, structured-disordered, and disordered phases,
respectively. Solid and dashed lines are the phase transition and
disorder lines, respectively. (b) Phase diagram of a coupled modulated
bilayer (� = 1) for εφ = εψ = 2, B = D = 0.5. In addition, the two
dotted lines are the Lifshitz lines.

two different characteristic wavelengths, q∗
φ �= q∗

ψ . The heights
of the two peaks are set to be equal by requiring εφ = εψ and
A2/B = C2/D = 1 [see Eq. (22)]. The peak height of Sφφ at
q∗

φ = 1/
√

2 is increased [as in Fig. 5(b)] due to the coupling

effect, whereas that of Sψψ at q∗
ψ = 3/

√
2 is almost unchanged

compared with the decoupled case. We also plot Sφψ given by
Eq. (16) which represents the cross correlation of fluctuations
between the two monolayers. This quantity is proportional to
the coupling constant � and its peak position is essentially
determined by that of Sφφ at q∗

φ = 1/
√

2.
The peak position of Sφψ denoted as q∗

φψ for the coupled
case (� = 0.3) is obtained numerically and plotted in Fig. 6(a)
as a function of q∗

φ and q∗
ψ , which are, respectively, the peak

positions of Sφφ and Sψψ for the decoupled case. We find that
for the coupled case, the value of q∗

φψ is almost equal to that
of the smaller of (q∗

φ,q∗
ψ ). In Fig. 6(b), the peak height of Sφψ

at q∗
φψ is plotted as a function of the coupling parameter �

and the ratio of the two characteristic wave numbers q∗
ψ/q∗

φ
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FIG. 5. Bilayer structure factors Sφφ , Sψψ , and Sφψ as a function
of the wave number q for εφ = εψ = 1.5, B = A = 1, D = 0.0123,
C = 0.1111 (q∗

φ = 1/
√

2,q∗
ψ = 3/

√
2). (a) The decoupled case, � =

0; (b) the coupled case with � = 0.3.

for the specific case of q∗
φ = 1/

√
2, as the parameters are fixed

to B = A = 1 and C2/D = 1. The peak height increases as
� is increased because the temperature of the coupled bilayer
is effectively lowered. To see this clearly, we have plotted in
Fig. 6(b) the phase-transition line (dashed line) separating the
structured-disordered and ordered phases. The peak height of
Sφψ also increases as q∗

ψ/q∗
φ = √

2q∗
ψ approaches unity, which

is the case where Sφφ and Sψψ completely overlap.

D. Dynamic structure factors

The dynamical fluctuations in composition, δφ(r,t) and
δψ(r,t), depend on time t and are now considered for coupled
modulated bilayers. We assume that both δφ and δψ are
conserved for each monolayer. This means that the exchange
of lipids between the two monolayers is negligible. Such an
assumption is justified when the typical time scale for lipid
flip-flop motion is considerably large as compared to that for
the domain formation (see Sec. V). Hence, the time evolution
of δφ and δψ are given by the following diffusive equations

0 0.2 0.4 0.6 0.8 1
Λ
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2
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3

q ψ

0.5 1 50.1 10

(a)

(b)
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qψ
∗

qφψ=2

1.5
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0.5

∗

∗
√

2

FIG. 6. (a) Contour plot of the peak position q∗
φψ of the structure

factor Sφψ as function of q∗
φ = √

A/2B and q∗
ψ = √

C/2D. The
parameters are � = 0.3, εφ = εψ = 1.5, and A2/B = C2/D. The
dotted line represents q∗

φ = q∗
ψ . (b) Contour plot of the peak height

of the structure factor Sφψ (q∗
φψ ) as a function of � and

√
2q∗

ψ . For

the choice of parameters B = A = 1 and C2/D = 1, q∗
φ = 1/

√
2, the

two characteristic wave numbers satisfy q∗
ψ/q∗

φ = √
2q∗

ψ . The dashed
line is the phase-transition line.

for each monolayer:

∂δφ(r,t)
∂t

= Lφ∇2 δFG

δ(δφ)
+ νφ(r,t),

(23)
∂δψ(r,t)

∂t
= Lψ∇2 δFG

δ(δψ)
+ νψ (r,t).

Here Lφ and Lψ are the kinetic coefficients taken to be con-
stants, and νi(r,t) represent Gaussian white noise, satisfying
〈νi(r,t)〉 = 0 and

〈νi(r,t)νj (r′,t ′)〉 = −δijLi∇2δ(r − r′)δ(t − t ′), (24)

where i,j = φ,ψ and 〈· · ·〉 now indicates the average over
space and time. In the above equations, we have also neglected
any hydrodynamic effects. In general, one has to take into
account the fluid nature of both the bilayer membrane and the
surrounding bulk solvent [41].
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TABLE I. Expressions for αij (q) and βij (q).

αij (q) βij (q)

αφφ = 2Lφq2(ω2
ψ − ω2

+)

ω2
− − ω2

+
βφφ = 2Lφq2(ω2

− − ω2
ψ )

ω2
− − ω2

+

αψψ = 2Lψq2(ω2
φ − ω2

+)

ω2
− − ω2

+
βψψ = 2Lψq2(ω2

− − ω2
φ)

ω2
− − ω2

+

αφψ = 2LφLψq4�ωφψ

ω2
− − ω2

+
βφψ = −2LφLψq4�ωφψ

ω2
− − ω2

+

The Fourier transform of fluctuations in both space and time
is

δφ(q,ω) =
∫

d2r dt δφ(r,t)e−i(q·r−ωt), (25)

and a similar Fourier transform is used for δψ and
νi . The dynamic structure factors such as Sφφ(q,ω) =
〈δφ(q,ω)δφ(−q,−ω)〉 are given by

Sij (q,ω) = αij (q)

ω2 + [ω+(q)]2
+ βij (q)

ω2 + [ω−(q)]2
, (26)

where the explicit expressions of αij (q) and βij (q) are given
in Table I and the characteristic frequencies ω±(q) are

[ω±(q)]2 = 1

2

[
ω2

φ(q) + ω2
ψ (q)

∓
√[

ω2
φ(q) − ω2

ψ (q)
]2 + 4LφLψq4�2ω2

φψ (q)

]
,

(27)

ω2
φ(q) = 4L2

φq4[gφ(q)]2 + LφLψq4�2, (28)

ω2
ψ (q) = 4L2

ψq4[gψ (q)]2 + LφLψq4�2, (29)

ωφψ (q) = 2q2[Lφgφ(q) + Lψgψ (q)], (30)

and gφ and gψ are defined in Eq. (17). In the more special case
of Lφ = Lψ = L, ω± reduce to a simpler form,

ω±(q) = Lq2

[
gφ(q) + gψ (q) ∓

√
(gφ(q) − gψ (q))2 + �2

]
.

(31)

The intermediate structure factors Sij (q,t) depend explicitly
on time and are obtained by taking the inverse Fourier
transform in t :

Sij (q,t) =
∫

dω

2π
Sij (q,ω)e−iωt , (32)

and from Eq. (26), we obtain

Sij (q,t) = αij (q)

2ω+(q)
e−ω+(q)t + βij (q)

2ω−(q)
e−ω−(q)t . (33)

Hence, the decay of concentration fluctuations is described
by a sum of two exponentials with two characteristic times

(a)

(b)
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FIG. 7. Decay time of concentration fluctuations as a function
of the wave number q for εφ = εψ = 1.5, B = A = 1, D = 0.0123,
C = 0.1111 (resulting in q∗

φ = 1/
√

2 and q∗
ψ = 3/

√
2), and L = 1.

(a) The decoupled case, � = 0; (b) the coupled case with � = 0.3.

1/ω±(q). However, when the two monolayers are decoupled
(� = 0), the Sφφ and Sψψ structure factors decay with a single
exponential characterized by a decay rate ωφ and ωψ [see
Eqs. (28) and (29)], respectively.

For the decoupled case (� = 0), the decay times 1/ωφ

and 1/ωψ are plotted as a function of q in Fig. 7(a), with
the same parameters as those in Fig. 5. The plots show a
shoulder reflecting the characteristic structure at wave numbers
q∗

φ = 1/
√

2 and q∗
ψ = 3/

√
2. Notice that the larger the initial

length scale, the longer the decay time. For the coupled case
with � = 0.3, we plot 1/ω± in Fig. 7(b). Due to the coupling
effect, the two decay times split into a larger and smaller one,
1/ω+ > 1/ω−. The larger one, 1/ω+, exhibits two shoulders,
while the smaller one, 1/ω−, has a shoulder between the two
characteristic wave numbers. The coupling affects the decay
time of the structure corresponding to the smaller wave number
(larger length), similar to the effect seen in Fig. 5 for the static
structure factor.

IV. COUPLED MODULATED PHASES WITH DIFFERENT
PERIODICITIES q∗

φ �= q∗
ψ

In our previous paper [29], we investigated the phase
behavior of coupled modulated bilayers by using the free
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energy, Eq. (11), below Tc. When the two monolayers have
the same preferred periodicity, q∗

φ = q∗
ψ , we obtained the

mean-field phase diagram exhibiting various combinations
of modulated structures such as stripe (S) and hexagonal
(H) phases. In some cases, the periodic structure in one of
the monolayers induces a similar modulation in the second
monolayer. Moreover, the region of the induced modulated
phase expands as the coupling parameter � becomes larger.

However, when the preferred periodicities in the two
leaflets are different, q∗

φ �= q∗
ψ , it is difficult to obtain the

phase diagram because the free-energy densities cannot be
obtained analytically. We then have to rely on numerical
simulations [29,42] to solve the time evolution of the two
coupled order parameters as explained below.

For the dynamics of coupled modulated bilayers below Tc,
we use the following time evolution equations [29]

∂φ(r,t)
∂t

= Lφ∇2 δFb

δφ
,

∂ψ(r,t)
∂t

= Lψ∇2 δFb

δψ
, (34)

where the bilayer free energy, Fb, is given by Eq. (11). As in
Eq. (23), we have assumed that both φ and ψ are conserved
for each monolayer and neglect any hydrodynamic effects.
Below Tc the effect of thermal fluctuations is less important
and the noise terms have been omitted in the above equations.

Hereafter, the kinetic coefficients Lφ and Lψ are set to unity
for simplicity.

We solve numerically the above 2D equations using peri-
odic boundary conditions. Each run starts from a homogeneous
state with a small random noise around the average compo-
sitions φ0 and ψ0. Time is measured in discrete time steps,
and t = 5000 corresponds to a well equilibrated system. In all
our simulations, the reduced temperature parameters are fixed
to be τφ = τψ = 0.8. The characteristic wave number in the φ

monolayer is fixed as q∗
φ = 1/

√
2 by setting B = A = 1, while

the periodicity in the ψ monolayer q∗
ψ = √

C/2D is varied and
the condition C2/D = 1 is used as before. In the following,
we shall consider only the two coupled stripe phases for φ0 =
ψ0 = 0. However, the combination of stripe and hexagonal
phases leads to a rich variety of complex patterns [42].

When the characteristic wave numbers of the two decoupled
monolayers differ, q∗

φ �= q∗
ψ , the two coupled modulated

structures cannot apparently match each other. The frustration
between the two different periodicities is due to the interleaflet
coupling and affects their morphologies. In Fig. 8, we show
one example of the time evolution of a coupled micro-phase
separation for q∗

ψ/q∗
φ = 3 (q∗

φ = 1/
√

2 and q∗
ψ = 3/

√
2) and

� = 0.3. The spatial patterns of φ, ψ , φ + ψ , φ − ψ , and
the Fourier transformed pattern, ψ(q), are presented for
time steps of t = 25, 60, 250, and 5000. Starting from

0-1.7 1.7

φ ψ φ+ψ φ−ψ

(a)

(b)

(c)

(d)

ψ(q)

FIG. 8. Time evolution of spatially modulated patterns in a coupled bilayer, which consists of two stripe monolayers with different
periodicities, q∗

φ �= q∗
ψ . Real-space patterns of φ, ψ , φ + ψ , φ − ψ , as well as the Fourier transform, ψ(q), are presented. The time steps are (a)

t = 25, (b) t = 60, (c) t = 250, and (d) t = 5000. The parameters are φ0 = ψ0 = 0, τφ = τψ = 0.8, B = A = 1, D = 0.0123, C = 0.1111,
and � = 0.3, yielding q∗

ψ/q∗
φ = 3. In order to emphasize the color contrast, the gray color code of the real-space patterns is chosen to vary

between −1.7 and 1.7.
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φ ψ φ+ψ φ−ψ ψ(q)

(a)

(b)

(c)

0-1.7 1.7

FIG. 9. Equilibrated patterns (time step t = 5000) of two coupled bilayers consisting of stripe monolayers with different periodicities. All
parameters in addition to � are the same as in Fig. 8. The � parameter values are (a) � = 0.1; (b) � = 0.3; (c) � = 0.5. In order to emphasize
the color contrast, the color code of the real-space patterns is chosen to vary between −1.7 and 1.7.

the isotropic state, the ψ monolayer forms first stripes (a).
Then, as the φ monolayer starts to segregate at larger t , it
simultaneously chops the ψ stripes into smaller sections (b),
and the ψ monolayer transforms into a fingerlike patterns (c).
Reconnection of the φ stripes takes place after a long time
of annealing, and a pattern of alternating fingers in the ψ

monolayer is finally obtained (d). From the time evolution of
the 2D Fourier patterns of the ψ monolayer, it is apparent that
the intermediate structures are characterized by the two length
scales of ratio 1:3.

In Fig. 9, we show the spatially modulated patterns at
t = 5000 of the two coupled φ and ψ monolayers with
different periodicities (q∗

φ = 1/
√

2 and q∗
ψ = 3/

√
2 as before)

for different values of the coupling parameter � = 0.1, 0.3,
and 0.5. Notice that Fig. 9(b) is the same as Fig. 8(d).
In the weak-coupling case (� = 0.1), the two monolayers
exhibit two independent stripe morphologies with charac-
teristic periodicities (called the “independent” morphology).
Here the two stripes essentially do not affect each other. As
the coupling constant is increased (� = 0.3), stripes with a
fingerlike structure appear in the ψ monolayer, while the stripe
morphology in the φ monolayer is almost unaffected (called
the “intermediate” morphology). In the Fourier transformed
pattern of ψ , we clearly see that the structures with two
different characteristic wave numbers are coexisting. This
result is also in accord with the properties of the static
structure factors, Sij (q), having two different characteristic
lengths, as shown in Fig. 5. For a larger coupling parameter
(� = 0.5), very similar patterns are obtained for φ and ψ

and almost coincide with one another (called the “coincident”
morphology). It should be noted that the structure with the
larger wavelength dominates when the coupling is large

enough, and the sequence of morphological changes shown
in Fig. 9, as � increases, is rather typical.

In order to quantify the three morphologies (independent,
intermediate, and coincident), we calculate the spatial average
of the product of the two compositions

〈φψ〉 = 1

A

∫
d2r φ(r,t)ψ(r,t), (35)

whereA is the total system area. In Fig. 10, we plot 〈φψ〉 at t =
1000 (sufficient for equilibration) for various combinations
of � and q∗

ψ/q∗
φ = √

2q∗
ψ (for the case q∗

φ = 1/
√

2). The
morphology of the obtained patterns is marked on the figure by
circles, crosses, and squares. The values of 〈φψ〉 are small for
“independent” (circles) structures, while they become larger
for the “intermediate” (crosses) and “coincident” (squares)
morphologies. Although the morphological changes are grad-
ual and do not represent a sharp transition, the intermediate
patterns appear roughly for 0.05 < 〈φψ〉 < 0.2. The region of
intermediate structure expands as q∗

ψ/q∗
φ = √

2q∗
ψ increases,

and the patterns coincide for � = 0.5. We note that although
the morphology cannot be solely determined by the quantity
〈φψ〉, the behavior of 〈φψ〉 is similar to that of the peak values
of the cross correlation, Sφψ (q∗

φψ ), presented in Fig. 6(b).
For the quantitative argument concerning the micro-phase

separation dynamics in each monolayer, we have also calcu-
lated the two self-quantities,

〈φ2〉 = 1

A

∫
d2r φ2(r,t) (36)

and

〈ψ2〉 = 1

A

∫
d2r ψ2(r,t). (37)
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FIG. 10. Contour plot of 〈φψ〉 at t = 1000 as a function of �

and
√

2q∗
ψ , for the specific case of q∗

φ = 1/
√

2. (a), (b), and (c)
correspond to � = 0.1, 0.3, and 0.5, respectively, as given in Fig. 9.
Circles, crosses, and squares correspond, respectively, to independent,
intermediate, and coincident structures (see text).

In Fig. 11, we plot the square root of these quantities as a
function of t , with the same parameters as those used in Fig. 9.
In all studied cases, the modulation of the ψ monolayer having
a larger wave number (q∗

ψ > q∗
φ) grows faster than that of the

φ monolayer. We also remark that the structure formation in
the φ monolayer is accelerated for larger �, whereas that of
the ψ monolayer is almost unchanged. According to the linear
stability analysis of Eq. (34), the initial growth rates of the
unstable modes are essentially equivalent to the decay rates
ω± of the concentration fluctuations given in Eq. (31). This
is consistent with Fig. 7, where the characteristic growth time
(1/ω) for larger q is smaller than that for smaller q. The growth
rates increases with � [see Fig. 11(a)] because the coupling
effectively reduces the temperature and enhances the phase
transition. The faster the decay of concentration fluctuations,
the faster the structure formation.

V. DISCUSSION AND FINAL REMARKS

In this paper we present a model for coupled modulated
lipid bilayers. We start by considering a monolayer consisting
of a mixture of saturated and hybrid lipids and propose a
phenomenological model that includes a coupling between the
lipid composition and a 2D vectorial field. This coupling arises
from the line-active nature of the hybrid lipid, which adjusts its
tail orientation in order to reduce the line tension. Minimization
of the monolayer free energy with respect to the vectorial field
yields a 2D microemulsion exhibiting modulated phases. The
characteristic wavelength of modulation is determined by the
monolayer coefficients A and B, Eq. (8), reflecting molecular
properties of lipid mixture. We then construct a model for
lipid bilayers composed of two modulated monolayers that
influence each other through an interleaflet coupling.

Based on the model, we study concentration fluctuations of
bilayers above Tc and calculate their static structure factors.
The calculated phase diagram for coupled bilayers shows

10
0

10
1

10
2

10
3

10
-1

t

0

0.2

0.4

0.6

10
0

10
1

10
2

10
3

10
-1

t

0

0.2

0.4

0.6
(a)

(b)

φ
2

ψ
2

FIG. 11. Time evolution of the modulation amplitudes of the two
monolayers: (a)

√
〈φ2〉 and (b)

√
〈ψ2〉. The parameters are τφ = τψ =

0.8, φ0 = ψ0 = 0, B = A = 1, D = 0.0123, C = 0.1111 yielding
q∗

ψ/q∗
φ = 3. The different lines represent � = 0.1 (solid), � = 0.3

(dashed), and � = 0.5 (dotted).

that the extent of ordered and structured-disordered phases
become larger as compared to the decoupled case. When
the two monolayers with different preferred wave numbers
q∗

φ �= q∗
ψ are coupled (say, q∗

φ < q∗
ψ ), the peak height of Sφφ

occurring at smaller q numbers becomes larger as compared
to the decoupled case, whereas the peak height of Sψψ

occurring at larger q numbers almost does not change. Namely
the interleaflet coupling strongly affects the compositional
modulation in each monolayer. Furthermore, the interleaflet
coupling has a clear signature on the cross structure factor,
Sφψ , as well as on the dynamics of concentration fluc-
tuations. By calculating the intermediate structure factor,
S(q,t), we show that concentration fluctuations generally
exhibit a double exponential decay with two decay rates,
ω±. One of the decay times (1/ω+) exhibits two shoulders
at wave numbers describing the monolayer compositional
modulations.

For membranes below Tc, we studied the micro-phase
separation of a coupled modulated bilayer. When the two
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monolayers have different modulations, q∗
φ �= q∗

ψ , we obtained
numerically a variety of complex patterns. The initial growth
rates of the unstable modes are identical to the decay rates of
the concentration fluctuations.

As mentioned in Sec. III, the special character of
concentration fluctuations in our model may explain the
finite-size domains (“rafts”) in biological membranes. For
ordinary binary mixtures above Tc, the only length scale of
the disorder phase is determined by the correlation length,
and close to Tc, this length becomes large. But within our
2D microemulsion model, there is another length scale
characterizing the modulations as given by Eq. (20). This
second length scale may also explain the finite-size domains
observed in some experiments as a result of micro-phase
separation in the low temperature phase.

We note that our microemulsion picture will not hold if
we replace the hybrid lipids with unsaturated lipids (having
two unsaturated chains) because unsaturated lipids would not
exhibit any line-activity. For mixtures containing unsaturated
lipids, we expect to observe macro-phase separation instead
of micro-phase separation, in agreement with some exper-
iments [5]. In biological membranes, however, unsaturated
lipids are not commonly found and are present only as
minor components. The experimental situation using artificial
membranes is somewhat less clear because it was shown
in some experiments [43,44] that membranes containing
a mixture of saturated lipids, hybrid lipids and cholesterol
show nanoscopic domains, whereas in other works [6], a
macroscopic coarsening of domains was observed for such
mixtures.

A related model based on a microemulsion picture was
recently proposed by Schick [45], who considered a coupling
between curvature and compositional asymmetry between
the two leaflets, resulting in a 2D microemulsion. Although
Schick’s model as well as ours share the microemulsion
viewpoint, the origin of the physical mechanism differs. In
Schick’s model the coupling between composition asymmetry
and curvature gives rise to domains with different spontaneous
curvature. Our model, on the other hand, assumes that for flat
monolayers, the line-active nature of hybrid lipids is solely
responsible for the microemulsion formation [see Eq. (3)].
Hence, our proposed physical mechanism for the bilayer
coupling, as discussed in Sec. II B, differs. In our model, the
domains residing on the two leaflets are either correlated for
� > 0 or anticorrelated for � < 0, whereas they are always
anticorrelated in the model of Ref. [45].

The present work is concerned with the analysis of
equilibrium properties and relaxation dynamics toward the
equilibrium state. The existence of finite-size domains may
also be explained by nonequilibrium lipid transport between
the cell interior and the membrane. Such a mechanism was
considered [46–49] through a coupling between the membrane
and an outer reservoir of lipid or cholesterol. Similarly to our
model, these works explain the appearance of the finite-size
domains as a result of micro-phase separation.

Asymmetry between lipid composition in the inner and
outer leaflets of biomembranes has a very deep significance
and is closely related to the cell biological functions. For
instance, the breakdown of such compositional asymmetry
is related to programmed cell death (apoptosis) [50]. For

living cells, this asymmetry is maintained by an enzyme
called “flippase” that actively transports the lipids between
the two leaflets [51]. The half-life of lipid composition due to
flip-flop motion is measured using time resolved small angle
neutron scattering [52] and is estimated to be several hours at
physiological conditions.

Although membranal signal transduction is important for
various biological functions, its dynamical properties are still
not so well understood. As our theory offers an explanation
for the size and dynamics of lipid domains, we hope that it
and similar models will contribute in the future toward the
understanding of functional processes in biomembranes.
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APPENDIX: DERIVATION OF Gφφ(r)

In this Appendix we present the derivation of Gφφ of
Eq. (19). The real-space correlation function is given by the
2D inverse Fourier transform of Eq. (18):

Gφφ(r) =
∫

d2q

(2π )2
Sφφ(q)eiq·r

= 1

4πB

∫ ∞

0
dq

qJ0(qr)

q4 − (A/B)q2 + εφ/4B
, (A1)

where J0(qr) is the zeroth-order Bessel function. We use the
relation J0(qr) = [H (1)

0 (qr) + H
(2)
0 (qr)]/2, where H

(1)
0 (qr)

and H
(2)
0 (qr) are the zeroth-order Hankel functions of the first

and second kinds, respectively. The integral in Eq. (A1) then
is written as I = (I1 + I2)/2, where

Ii =
∫ ∞

0
dq

qH
(i)
0 (qr)

q4 − (A/B)q2 + εφ/4B
, (A2)

with i = 1,2.
In order to evaluate the above integral, we performed the

integration in the complex plane by replacing q with the
complex variable z = x + iy. The integrand has four poles
at

zj = (εφ/B)1/4

2
(±√

1 − γφ ± i
√

1 + γφ) = ±2π

λφ

± i
1

ξφ

,

(A3)

021916-11



YUICHI HIROSE, SHIGEYUKI KOMURA, AND DAVID ANDELMAN PHYSICAL REVIEW E 86, 021916 (2012)

with j = 1, 2, 3, 4 and λφ and ξφ have been defined in Eqs. (20)
and (21). These poles are located in the quadrants 1, 2, 3, and
4, off the real and imaginary axes. For the integral I1, we
integrate along a quarter-circle contour in the first quadrant in
an counterclockwise direction. The contour radius is taken to
infinity (Fig. 12), and, using the residue theorem, we obtain∫ ∞

0
dx

xH
(1)
0 (xr)

x4 − (A/B)x2 + εφ/4B

+
∫ 0

∞
dy

iyH
(1)
0 (iyr)

y4 + (A/B)y2 + εφ/4B
= 2πi Res|z1 , (A4)

where “Res” denotes the residue. Similarly, for the integral I2,
we integrate along the contour of the quarter-circle of infinite
radius in the fourth quadrant in the clockwise direction,∫ ∞

0
dx

xH
(2)
0 (xr)

x4 − (A/B)x2 + εφ/4B

+
∫ 0

−∞
dy

iyH
(2)
0 (iyr)

y4 + (A/B)y2 + εφ/4B
= −2πi Res|z4 . (A5)

Combining Eqs. (A4) and (A5), and further using the
relation H

(1)
0 (−z) = −H

(2)
0 (z), we obtain

I = π

2
√

εφ/B

√
1 − γ 2

φ

[
H

(1)
0 (z1r) + H

(2)
0 (z4r)

]
. (A6)

x

y

z
1

z
4

z
3

z
2

FIG. 12. Four poles in the complex plane at z = zj (j = 1, 2, 3,
and 4). The two close integral paths are indicated by the arrows in the
first and fourth quadrants.

Finally, using λφ and ξφ from Eq. (A3), we obtain

Gφφ(r) = ξφλφ

32πB
Re

[
H

(1)
0

(
2πr

λφ

+ i
r

ξφ

)]
. (A7)

In the above expressions, we have used the relation H
(2)
0 (z) =

H
(1)
0 (z), where z is the complex conjugate of z.
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