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We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to

the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop

expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric

decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description

of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well

a large range of concentrations for different salts using only one fit parameter related to the size of ions

and dipoles.
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Electrostatic interactions in aqueous media between di-
poles and charged objects such as ions, colloidal particles,
and interfaces, play an important role in electrochemistry,
biology, and materials science. The century-old Poisson-
Boltzmann (PB) theory gives a simple and powerful de-
scription for numerous systems, taking into account only
Coulombic interactions on a mean-field level, treating ions
as pointlike particles and the aqueous solution as a continu-
ous and homogeneous dielectric medium with a dielectric
constant, "w. The PB theory succeeded over the years in
capturing much of the underlying physics of electrolyte
solutions, and, in particular, is successful when applied to
monovalent ions and weak surface charges [1–4].

The PB theory has several limitations. It does not take
into account the correlations between the charges, nor does
it allow for any fluctuations beyond mean field. This leads
to significant unaccounted corrections in cases of high
charge density, especially near charged surfaces and inter-
faces [5]. In order to improve upon the PB theory, several
extensions have been offered in recent years, and effects of
correlations and fluctuations for charged interfaces were
considered, for example, by using integral equation
theories [6] and linearized hypernetted chain models
[7,8]. In other approaches [9], the PB theory was modified
in a simple and elegant way to include steric and other
ionic-specific effects preventing ions from accumulating
near a charged surface for very high ionic concentra-
tions. Furthermore, in the well-known Deryagin-Landau-
Verwey-Overbeek theory [10], van der Waals attractive
interactions were added to the electrostatic repulsion in
order to explain charged colloidal stability. More recently,
Monte Carlo and molecular dynamics simulations were
employed in order to study specific solvents and solutes
and the interaction between them [11–16]. Some of these
methods were also used to study the dielectric constant of
ionic solutions [7,8,16].

The PB theory as well as other primitive models of ionic
solutions [17] assume that the ions are immersed in a
continuum dielectric background characterized by the di-
electric constant of water, "w. Hence, in order to model the
experimentally known dielectric decrement phenomenon
[9,18–20], one needs to employ more refined theories,
which take into account ion-dipole correlations and fluc-
tuations. The electric decrement stems from the fact that
the local electric field around each ion is greater than the
external field, and orients the dipolar water molecules in
its vicinity. This creates a hydration shell [21] that en-
circles the ions. The total response of dipoles to the exter-
nal field is thus smaller and leads to a reduction in the
dielectric constant. In dilute solutions, the dielectric con-
stant depends linearly on cs, the salt concentration, "ðcsÞ ¼
"w � �cs, where � is the coefficient of the linear term. The
value of �="0 is ion specific and ranges from 8 M�1 to
20 M�1, for concentrations up to 1.5 M. At higher cs
values, noticeable deviations from linearity are observed
and are due to ion-ion interactions [18–20].
In this Letter we go beyond the standard PB theory and

investigate the microscopic origin of the dielectric decre-
ment. We construct the field theory for a grand-canonical
ensemble of pointlike ions and dipoles. On a mean-field
level, we obtain an analytic description of the hydration
shell around ions and calculate the average dielectric
constant in the shell. Then, using a field-theoretical ap-
proach we examine the dielectric decrement by a one-
loop calculation. A closed-form formula for the dielectric
constant is obtained and depends on a single length scale,
related to the typical size of ions and water molecules.
Our results show a substantial contribution arising from
the one-loop correction terms, and deviate from the linear
relation, "ðcsÞ ¼ "w � �cs. We fit the calculated "ðcsÞ
and compare it with the experimental data for several
monovalent ions. The results agree rather well for a
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wide range of ionic concentrations, even in the nonlinear
decrement regime.

Although our formulation is very general, in this Letter
we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
pointlike permanent dipoles of dipolar moment p0 and the
symmetric 1:1 monovalent salt as a liquid of pointlike
charges, �e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition function
Z and free energy F ¼ ���1 logZ½�ðrÞ� in the presence of
an external charge distribution �ðrÞ can be written as a
functional integral over the real field�ðrÞ that is conjugate
to �ðrÞ

Z½�ðrÞ� ¼
Z

D�ðrÞ exp
�
��

Z
d3rfð�ðrÞÞ

� i�
Z

d3r�ðrÞ�ðrÞ
�
; (1)

with

�fð�ðrÞÞ ¼ �"0
2

½r�ðrÞ�2 � 2�s cos½�e�ðrÞ�

� �d

sinð�p0jr�ðrÞjÞ
�p0jr�ðrÞj ; (2)

where � ¼ 1=kBT, and kBT is the thermal energy. The
activity coefficients of the salt �s and water �d are deter-
mined by solving the implicit equations

�s

V

@

@�s

logZ ¼ cs;
�d

V

@

@�d

logZ ¼ cd; (3)

where V is the volume and cs and cd are, respectively, the
salt concentration and density of water molecules.

The electrostatic potential �ðrÞ is given by

�ðrÞ ¼ � 1

�

� logZ½�ðrÞ�
��ðrÞ ¼ ih�ðrÞi; (4)

where the bracket h. . .i denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �ðrÞ and is
defined as the Legendre transform of F½�ðrÞ� with respect
to �ðrÞ through the equations

G½�ðrÞ� ¼ F½�ðrÞ� �
Z

d3r�ðrÞ�ðrÞ;

�ðrÞ ¼ �F½�ðrÞ�
��ðrÞ ;

(5)

from which we deduce the Legendre relation

�ðrÞ ¼ ��G½�ðrÞ�
��ðrÞ ; (6)

The dielectric tensor "�� is defined through the Fourier

transform,

"�� ¼ @2

@p�@p�

Z
d3reip�r

�2G½�ðrÞ�
��ðrÞ��ð0Þ

���������¼0;p¼0
: (7)

In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal "�� ¼ "���, and our aim is

to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate the
coefficient of the jr�ðrÞj2 terms in the Gibbs free energy
G½�ðrÞ�.
On the mean-field level, the Gibbs free energy for the

dipolar PB system, GDPB, is

�GDPB½�� ¼ ��"0
2

ðr�Þ2 � 2cs coshð�e�Þ � cdgðuÞ;
(8)

with u ¼ �p0r�ðrÞ, u ¼ juj, and gðuÞ ¼ sinhu=u. The
dipolar Poisson-Boltzmann (DPB) equation is an extension
of the standard PB equation, and can be derived via a
variational principle from Eq. (8),

"0r2� ¼ 2cse sinhð�e�Þ

� cdp0r �
� r�

jr�jGð�p0jr�jÞ
�
; (9)

where the function G ¼ g0ðuÞ ¼ coshu=u� sinhu=u2 is
related to the Langevin function LðuÞ ¼ cothðuÞ � 1=u.
The dielectric constant "DPB is calculated by substituting

GDPB into Eq. (7). The result is the same as in Ref. [23],

"DPB ¼ "0 þ �p2
0cd=3: (10)

As can be seen above, the dielectric response depends on
the dipole (but not the ion) density cd and, hence, cannot
explain the dielectric decrement. At room temperature,
T ¼ 300 K, and for pure water with dipolar moment p0 ¼
1:8 D and density cd ¼ 55 M, the obtained value of " is
"DPB ’ 11:1"0. Note that this value is much smaller than
the measured water value "w ’ 80"0. This is not surprising
[23] since Eq. (10) is a dilute gas approximation and does
not capture the correlation effects in the case of dense
liquid water as well as the finite size of water molecules.
It is still possible, however, to circumvent this drawback

by solving the DPB equation, Eq. (9), around a fixed
pointlike ion, and showing the existence of a hydration
shell around it. Expanding G in a Taylor series, the dielec-
tric constant is extracted as a function of the distance r
from the ion,

"ðrÞ ’ "DPB
3h2ðlh=rÞ þ 1

; (11)

where the function hðuÞ is obtained by solving a cubic
equation,

hðuÞ¼
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

27
þu

4

s
þ

ffiffiffi
u

p
2

3
5

1=3

�
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

27
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4

s
�

ffiffiffi
u

p
2

3
5

1=3

: (12)

PRL 108, 227801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

227801-2



The length, l2h ¼ lBd=
ffiffiffiffiffiffi
10

p
in Eq. (11), depends both on the

dipole size d ¼ p0=q and the Bjerrum length, lB ¼
e2=4�"DPBkBT. It is the only length scale in the problem
characterizing the hydration shell thickness as can be seen
from the behavior of "ðrÞ [inset of Fig. 1]. In the vicinity of
the ion (r � lh), the dielectric response is very small and it
smoothly rises to bulk values as the influence of the ion
decreases, within distances of a few lh.

By averaging " of Eq. (11) over a sphere of radius R
around each ion, and equating R with the typical distance

between two ions, ð2csÞ�1=3=2, at concentration cs, we
obtain the expression of h"ðcsÞi. As can be seen in Fig. 1,
the nonlinear dielectric decrement is reproduced and fits
rather well the experimental data for RbCl and CsCl salts
of Ref. [19]. For low salt concentration, the averaging of "
can be done analytically and results in a linear decrement
with � ’ 110"DPBl

3
h, which is proportional to the hydration

shell volume. Using parameter values as in Fig. 1, we get
�="0 ’ 17 M�1.

So far, in order to induce the necessary ion-dipole cor-
relations, we had to rely on calculating the dielectric
response around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treatment
of the statistical mechanics of ionic and dipolar degrees
of freedom (including their interactions) is developed.

We generalize the Debye-Hückel approximation to dipolar
systems in the presence of salt, via a loop expansion
[24,25] of the Gibbs free energy, G ¼ GDPB þ �G. To
one-loop order, the calculation of �G yields

�G½�ðrÞ� ¼ 1

2�
Tr log½�"0r2 þ 2�s�e

2 coshð�e�ðrÞÞ

þ �d�p
2
0ð@����ðrÞ@� þ ���ðrÞ@� � @�Þ�;

(13)

with

���ðrÞ ¼ ���

g0ðuÞ
u

� u�u�

u2

�
g0ðuÞ
u

� g00ðuÞ
�
: (14)

To get a consistent expression for the dielectric constant
we need to pay extra attention in the loop expansion to the
expressions of the ion and dipole activities, �s and �d.
While at mean-field level �s and �d are equal to the ion
and dipole (water) densities, cs and cd, respectively, their
corrections are derived by expanding Eq. (3) to one-loop
order. To this order, only the correction to �d will affect the
mean-field value of the dielectric constant, "DPB, and is
written as

�d ¼ cd � 2�

3a3
"DPB � "0

"DPB

�
1� 3

4�2
ð	DaÞ2

þ 3

8�3
ð	DaÞ3tan�1 2�

	Da

�
; (15)

where a is a microscopic cutoff length and 	D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�lBcs

p
is the inverse Debye length. The origin of the cutoff in our
formulation is related to the fact that Coulombic interac-
tions diverge at zero distance, while in reality such a
divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However for
the sake of simplicity, we use the cutoff length a, which is
related to the minimal distance between adjacent dipoles
and charges, and thus indirectly also to the size of dipoles
and ions. By introducing a minimal distance, we also avoid
unphysically high dipolar concentrations in the vicinity of
the ions.
We can now calculate consistently the corrections to the

dielectric constant up to one-loop order. The correction
term can be split into water and salt contributions,
"� "DPB ¼ �"d þ�"s,

�"d ¼ ð"DPB � "0Þ2
"DPB

4�

3cda
3
;

�"s ¼ �ð"DPB � "0Þ2
"DPB

	2
D

�cda

�
1� 	Da

2�
tan�1 2�

	Da

�
:

(16)

The term �"d represents the fluctuation effect of the water
dipoles beyond the mean-field DPB level. It varies as
�1=ðcda3Þ. This pure water fluctuation term essentially
adds a positive numerical prefactor of rather largemagnitude
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FIG. 1 (color online). The dielectric constant h"i averaged
inside a specific volume around a single ion (solid line) as
function of ionic concentration, cs. The comparison is done
with experimental values for RbCl (empty circles) and CsCl
(full circles) [19]. In the inset, the exact (solid line) and approxi-
mated [dashed line, Eq. (11)] solutions of the DPB equation (9)
are shown as a function of the distance r from a point charge
(ion). Choosing as a fit parameter the dipole moment of water to
be p0 ¼ 4:8 D (instead of the physical value p0 ¼ 1:8 D) [23]
allows us to obtain "DPB ¼ 80"0 and lh ’ 1:5 �A.
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to the mean-field value of "DPB, meaning that the one-loop
correction is important even for the pure water case.

The second term �"s has by itself two contributions.
The leading term in the dilute solution limit, 	Da � 1,
depends linearly on the salt concentration, �"s ¼ ��cs,
with

� ¼ ð"DPB � "0Þ2
"DPB

8lB
cda

: (17)

When the Debye length 	�1
D is of the same order of

magnitude as a (high salt limit), the last term in �"s
becomes dominant and the dielectric decrement levels off
until eventually it will reverse the trend and may even
cause a dielectric increment as seen in some experiments
in the very high salt limit [19].

We compare our prediction for the dielectric constant ",
Eq. (16), to experimental values [19] for seven different
ionic solutions in concentration range of 0–6 M. We sepa-
rate the seven salts into three subgroup according to the
size of the alkaline cations as presented in the three parts of
Fig. 2. In each of the figure parts the a parameter is fitted
separately. We treat a as a free parameter and find its value
by the best fit of our prediction, Eq. (16), to experimental
data, while keeping the physical value of the water dipolar
moment, p0 ¼ 1:8 D. The best fit to the data can be seen in
Fig. 2(a) and corresponds to the largest ionic size of Csþ
and Rbþ. In Fig. 2(b) the fit for Kþ ions is also quite good,
while in Fig. 2(c) for the smallest ions, Naþ and Liþ, and
especially for the larger values of cs � 4 M, the deviation
is more pronounced.

Note that our formula takes into account only in a broad
sense the finite size of ions (and the distance of closest
approach between them) via the a parameter. It is beyond
the level of the theory to give more specific ionic predic-

tions. Hence, the obtained value of a ’ 2:7 �A is not very
sensitive to the type of salt, but its main contribution comes

from the water dipoles themselves whose diameter [27] is

about 2:75 �A. On the other hand, as can be clearly seen
from Fig. 2, important cooperative effects of ions and
dipoles are accounted for in our nonlinear expression for
"ðcsÞ. For small cs, the dashed line represents the best
linear fit [28] and works well only when cs � 1 M, while
the nonlinear prediction of Eq. (16) succeeds in fitting the
large concentration range as well.
In conclusion, we are able to reproduce rather well the

linear and nonlinear dielectric decrement behavior over a
large range of ionic concentrations, and the obtained values
of " are in quantitative agreement with the data for several
types of monovalent salts. In addition, we found a qualita-
tive description of the hydration shell characterized by a
single length scale, lh. Note that our model does not
contain any significant ionic-specific effects. To improve
on the latter, we would need to include ionic finite size and
specific nonelectrostatic short-range interactions. These
modifications would affect the dielectric constant and vis-
cosity of the solution as well as its surface tension.
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