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Charged bilayer membranes in asymmetric ionic solutions: Phase diagrams and critical behavior
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We consider the phase separation in an asymmetrically charged lipid bilayer membrane consisting of neutral
and negatively charged lipids that are in contact with in and out ionic solutions having different ionic strengths.
The two asymmetric leaflets are coupled through electrostatic interactions. Based on a free-energy approach, the
critical point and phase diagrams are calculated for different ionic strengths of the two solutions and coupling
parameter. An increase of the coupling constant or asymmetry in the salt concentration between the in and out
solutions yields a higher phase-separation temperature because of electrostatic interactions. As a consequence,
the phase-coexistence region increases for strong screening (small Debye length). Finally, possible three-phase
coexistence regions in the phase diagram are predicted.
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I. INTRODUCTION

Model membranes consisting of mixtures of saturated
lipids, unsaturated lipids, and cholesterol have received con-
siderable attention in recent years because they can be regarded
as model systems of biological cell membranes. Below a
certain temperature, the membrane undergoes a lateral phase
separation between a liquid-ordered phase (rich in saturated
lipid and cholesterol) and a liquid-disordered phase (rich in
unsaturated lipid). The resulting lipid domains are sometimes
called “rafts” and are believed to play an important role in
various biocellular processes such as signal transduction and
cooperative membrane trafficking [1].

A large number of experimental studies have been carried
out to further explore the consequences of domain formation
in model membranes and their relation with biomembrane
functioning. They include, among others, studies of domain
morphology [2,3], domain budding [4], growth dynamics of
domains [5], and formation of periodic lateral structures [6]. In
particular, we note that lateral phase segregation was directly
observed for lipids at the air-water interface and for giant lipid
vesicles using fluorescence microscopy [2–6]. Furthermore, in
an attempt to understand these experimental findings, several
theoretical models have been proposed [7–9].

More recently, several experimental works have been
conducted in order to understand how electrostatic interactions
affect the phase separation of model membranes composed of
charged and neutral lipids [10,11]. As charged lipids are ever
present in biomembranes, the role of electrostatic interactions
is important also for biological cells. The phase-coexistence
region was reported to be fully suppressed in lipid bilayers
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consisting of a three-component mixture of neutral saturated
lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine),
negatively charged unsaturated lipid DOPS (1,2-dioleoyl-sn-
glycero-3-phospho-L-serine), and cholesterol, because of the
electrostatic repulsion between charged lipids [10]. Further-
more, the extent of the phase-coexistence region appears
when salt (CaCl2) is added, an effect that can be understood
by the screening of electrostatic interactions in presence of
added salt. In a related experimental study, it was shown that
for mixtures of DPPC, negatively charged DOPG (L-α-1,2-
dioleoyl-sn-glycero-3-phosphoglycerol) and cholesterol, the
phase-separation temperature becomes higher as salt is added
[11]. Such effects were also considered in several theoretical
studies [12–14].

Another important aspect of biomembranes is the com-
positional asymmetry between their inner and outer leaflets.
Collins and Keller investigated the phase behavior in asym-
metric lipid bilayers and showed that the domain formation in
each leaflet is coupled through an interleaflet interaction [15].
In some cases it was reported that phase separation in one of
the leaflets induces a phase separation in the second leaflet,
while in other cases the lack of phase separation in one leaflet
suppresses domain formation in the second leaflet. Theoretical
models based on regular solution theory [16] or Landau theory
[17] attempted to take into account interleaflet interactions and
explored their consequences on the bilayer phase diagram.

In related works based on the Poisson-Boltzmann theory,
a model describing the immiscibility transition in asymmetric
and charged membranes was proposed by May and coworkers
[18,19]. Their model took into account an interleaflet electro-
static coupling between two rigid and charged planes modeling
a bilayer membrane. The spinodal line, characterizing the
phase coexistence, and the critical point were derived and
depend on the ionic strength of the solution as well as on the
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interleaflet electrostatic coupling. One of the main conclusions
was that a stronger interleaflet coupling enhances the lateral
phase separation. However, it was equally assumed by the
authors that the two aqueous solutions in contact with the two
leaflets have the same salt concentration. We note that this as-
sumption is an oversimplification for cellular biomembranes,
where due to ionic channels and other active processes, the
ionic strength is different on the two sides of the membrane
(the inner- and extracellular regions). This difference in ionic
strength, in turn, contributes to an additional gap between the
surface potential on the two sides of the bilayer and plays an
important role, for example, in neurotransmission processes.

In the present work, we extend the model of Refs. [18,19] in
order to mimic asymmetric biomembranes in a more complete
way. In Sec. II we introduce a model based on Poisson-
Boltzmann theory to describe phase separation for asymmetric
charged bilayers “sandwiched” between two ionic solutions
having different ionic strength. In Sec. III the variation of the
critical point and the entire phase diagram as a function of
the ionic strength (Debye length) and interleaflet electrostatic
coupling is explored. It is shown that the phase separation
is enhanced as the salt concentration is increased and is due
to the enhanced electrostatic screening. When an electrostatic
coupling between the leaflets is introduced, the lateral phase
separation occurs at higher temperatures as compared with the
no-coupling case. We also show that the phase-separation tem-
perature increases when the concentration difference between
the two salt reservoirs becomes larger. Finally, discussion and
comparison with other works are presented in Sec. IV.

II. MODEL

The system is modeled as a binary lipid-bilayer composed
of a mixture of negatively charged and neutral lipids. Although
many experiments are done in the presence of added choles-
terol as a third component, it is reasonable to stay within
the simpler case of a binary lipid mixture. As cholesterol is
noncharged, its presence will not change in any major way our
predictions on the role of electrostatics.

The bilayer consists of two undeformable and parallel
leaflets, lying in the xy plane and in contact, respectively,
with the two monovalent salt solutions, as shown in Fig. 1.
Let us label all quantities residing on the inner leaflet by the
subscript 1 and those on the outer one by 2. The inner leaflet
(leaflet 1) is located at z = d and is in contact with the inner
reservoir located at z > d, while the outer leaflet (leaflet 2) is
located at z = 0 and is in contact with the outer reservoir at
z < 0. In some experiments spontaneous budding of charged
domains toward the vesicular interior was reported [10]. This
can be explained by considering the increase in the osmotic
pressure coupled with the change in spontaneous curvature of
the outer leaflet. However, in the present study we assume
that the bilayer remains flat and neglect the effect of the
osmotic pressure generated across the bilayer. Our model is
further based on three principal assumptions: (1) Because we
do not consider membrane undulations and their curvature,
the two leaflets have the same area A. (2) The neutral and
negatively charged lipids have the same cross-sectional area
per lipid �. This is supported by many experiments on
fluid-like membranes. (3) Furthermore, each leaflet is taken

inout

FIG. 1. Schematic representation of the electrostatic potential for
a binary lipid bilayer consisting of negatively charged and neutral
lipids. The head groups of leaflets 1 and 2 are located at the plane z =
d and z = 0, respectively. The (dimensionless) electrostatic potentials
in solutions 1 (z > d) and 2 (z < 0) are denoted by ψ1(z) and ψ2(z),
respectively. The dimensionless surface potentials at the two leaflets
are denoted by �1 = ψ1(z = d) and �2 = ψ2(z = 0), while ψL (z)
is the (dimensionless) electric potential inside the hydrocarbon core
region (0 � z � d) of the lipid membrane. The dielectric constant of
the aqueous region (water) and lipid hydrocarbon core are denoted
by εW and εL , respectively.

as an incompressible two-dimensional fluid. Hence, the two
leaflets consist of the same total number of lipid molecules
N = A/�.

The total free energy per lipid molecule is given by

ftot(φ1,φ2) = fmix(φ1) + fmix(φ2) + fel(φ1,φ2), (1)

where all energies are measured in units of kBT (kB is the
Boltzmann constant and T the temperature), and φ1 and φ2

are the mole fractions of the negatively charged lipid in
leaflets 1 and 2, respectively. The free energy ftot consists
of two nonelectrostatic fmix terms (one for each leaflet) and an
electrostatic one fel that induces an interleaflet coupling.

The nonelectrostatic fmix is the Flory-Huggins free energy
of lateral mixing in each of the leaflets separately:

fmix(φ) = φ ln φ + (1 − φ) ln(1 − φ) + χφ(1 − φ), (2)

where χ is the (nonelectrostatic) interaction parameter be-
tween the two different lipids. Quite generally, χ is taken to
vary inversely with the temperature. The free energy fmix is a
sum of the ideal entropy and enthalpy of mixing between the
two lipid species. In the absence of the electrostatic interaction,
fel = 0, the two-phase coexistence region in the (χ ,φ) plane
is delimited by a demixing curve that terminates at the critical
point: χc = 2 and φc = 0.5.

The electrostatic free energy fel can be calculated through
the charging process [20]:

fel(φ1,φ2) = −
∫ φ1

0
�1(s1,0) ds1 −

∫ φ2

0
�2(φ1,s2) ds2, (3)

where �1 = e	1(z = d)/kBT and �2 = e	2(z = 0)/kBT are
the dimensionless surface potentials on leaflets 1 (z = d) and
2 (z = 0), respectively, and e is the elementary charge, while
the electric potential inside the lipid hydrocarbon core region
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(0 � z � d) is denoted by 	L (z). Within mean-field theory,
the electric potential 	(z) satisfies the Poisson-Boltzmann
equation

d2	

dz2
= 2en

εW

sinh
e	

kBT
, (4)

where n is the salt concentration in bulk and εW the dielectric
constant of the aqueous solution (water). Using the dimension-
less electrostatic potential ψ(z) ≡ e	(z)/kBT , we obtain the
following Poisson-Boltzmann equations in regions 1 and 2 for
ψ1,2(z), and Laplace equation in the core region for ψL (z):

d2ψ1

dz2
= κ2

1 sinh ψ1, z > d,

d2ψ2

dz2
= κ2

2 sinh ψ2, z < 0, (5)

d2ψL

dz2
= 0, 0 � z � d,

where κ−1
1 and κ−1

2 are the Debye screening length in regions
1 and 2, respectively, defined by (κ1,2)−1 = √

εWkBT/2e2n1,2.
Using the Gauss theorem, the boundary conditions of the two
leaflets are given by

εW

dψ1

dz

∣∣∣∣
z=d

− εL

dψL

dz

∣∣∣∣
z=d

= e2φ1

kBT �
,

(6)

εW

dψ2

dz

∣∣∣∣
z=0

− εL

dψL

dz

∣∣∣∣
z=0

= − e2φ2

kBT �
,

where � is the cross-sectional area per lipid head group and εL

is the dielectric constant of the lipid hydrocarbon core region.
Far from both sides of the membrane, the bulk electric potential
is taken to be zero, ψ1(z → ∞) = 0 and ψ2(z → −∞) = 0.

Under these boundary conditions, the above equations can
be solved analytically, yielding transcendental expressions for
the two surface potentials, �1 and �2:

�1 = −2 sinh−1 (p1φ1 + p1H��) ,
(7)

�2 = −2 sinh−1 (p2φ2 − p2H��) ,

where �� = �1 − �2 is the membrane potential gap.
Throughout the paper we will make use of three dimensionless
quantities defined as

p1 = 2π
B

κ1�
∼ κ−1

1 ,

p2 = 2π
B

κ2�
∼ κ−1

2 , (8)

H = �

4πεW
B

εL

d
∼ εL

d
,

where 
B = e2/(4πεWkBT ) � 7 Å is the Bjerrum length. The
ratio p2/p1 = κ1/κ2 is related to the ratio between the two
Debye screening lengths (κ1,2)−1 of the two solutions, and
H is the rescaled electrostatic coupling parameter between
the two leaflets. By further defining φ1 ≡ φ1 + H�� and
φ2 ≡ φ2 − H�� as effective mole fractions of the negatively
charged lipid in each leaflet, we can rewrite Eq. (7) as

�1 = −2 sinh−1(p1φ1) ,
(9)

�2 = −2 sinh−1(p2φ2) .

Furthermore, the potential difference across the membrane
�� = �1 − �2 satisfies a transcendental equation

�� = −2 sinh−1(p1φ1) + 2 sinh−1(p2φ2) , (10)

since φ1,2 themselves depend on �� as defined above.
By substituting back the surface potentials, Eq. (7), into

Eq. (3), we obtain the final expression of the electrostatic free
energy:

fel(φ1,φ2) = 1
2H (��)2 + fm(φ1) + fm(φ2). (11)

The first term corresponds to the charging energy stored
in the two charged leaflets that are analogous to a two-
plate capacitor. The second and third terms represent the
electrostatic energy of the two isolated charged monolayers.
In the absence of the electrostatic coupling between the two
leaflets (H = 0), fel is simply the sum of the free energies
of two isolated leaflets, i.e., fel(φ1,φ2) = fm(φ1) + fm(φ2).
Within the Poisson-Boltzmann theory, fm was derived in
Ref. [21], and we briefly repeat this derivation in the Appendix.
The result is

fm(φ) = 2
∫ φ

0
sinh−1(ps) ds

= 2φ

⎧⎨
⎩

1 −
√

(pφ)2 + 1

pφ
+ ln

[
pφ +

√
(pφ)2 + 1

]⎫⎬
⎭ ,

(12)

where p = p1 for φ = φ1, and p = p2 for φ = φ2. We first
solve Eq. (10) to obtain �� and then use it to calculate the
total free energy from Eqs. (1), (2), (11), and (12).

In order to analyze the membrane stability toward a lateral
phase separation, we calculate the spinodal surface given in
the (φ1, φ2, χ ) parameter space by the condition(

∂2ftot

∂φ2
1

) (
∂2ftot

∂φ2
2

)
−

(
∂2ftot

∂φ1∂φ2

)2

= 0. (13)

Using the total free energy of Eq. (1), we obtain[
1

φ1(1 − φ1)
− 2χ +

(
∂2fel

∂φ2
1

)]

×
[

1

φ2(1 − φ2)
− 2χ +

(
∂2fel

∂φ2
2

)]
=

(
∂2fel

∂φ1∂φ2

)2

. (14)

The first and second derivatives of the electrostatic free energy,
fel(φ1,φ2), are given by Eq. (11) and can be expressed as

∂fel

∂φ1
= 2 sinh−1(p1φ1) = −�1,

(15)
∂fel

∂φ2
= 2 sinh−1(p2φ2) = −�2,

and

∂2fel

∂φ2
1

= f ′′
m(φ1) + Hf ′′

m(φ1)f ′′
m(φ2)

1 + H [f ′′
m(φ1) + f ′′

m(φ2)]
,

∂2fel

∂φ2
2

= f ′′
m(φ2) + Hf ′′

m(φ1)f ′′
m(φ2)

1 + H [f ′′
m(φ1) + f ′′

m(φ2)]
,
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∂2fel

∂φ1∂φ2
= Hf ′′

m(φ1)f ′′
m(φ2)

1 + H [f ′′
m(φ1) + f ′′

m(φ2)]
, (16)

where f ′′
m(φ) = d2fm(φ)/dφ

2 = 2p/
√

(pφ)2 + 1. Finally, the
spinodal surface χsp(φ1,φ2) for fixed p1,p2,H can be deter-
mined according to Eqs. (10), (14), and (16).

The chemical potential is a function of the lipid concentra-
tion

μ1 = ∂ftot

∂φ1
= 2 sinh−1(pφ1) + ln

φ1

1 − φ1
+ χ (1 − 2φ1),

(17)

μ2 = ∂ftot

∂φ2
= 2 sinh−1(pφ2) + ln

φ2

1 − φ2
+ χ (1 − 2φ2).

Under the assumptions mentioned at the beginning of this
section, the condition for phase coexistence (the binodal line)
requires the equality of the chemical potential of the two
phases, A and B, on each of the two leaflets, meaning that
both μ1,A = μ1,B and μ2,A = μ2,B should be simultaneously
satisfied on the two leaflets. In addition, the thermodynamic
potential

g(φ1,φ2) = ftot(φ1,φ2) − μ1φ1 − μ2φ2 (18)

should be equal for the two phases, i.e, gA = gB. These
conditions are sufficient to calculate the two-phase coexistence
region as well as the corresponding tie lines inside the
coexistence region, as will be discussed below in Sec. III. We
remark that the same conditions were also used in previous
works [16,17].

A. The symmetric in and out reservoir case, p1 = p2

Let us first discuss the case of equal ionic strength (p1 = p2)
of the two solutions and review some of the results reported
already in Ref. [18]. The critical point, because of the in and out
symmetry, is located on the φ1 = φ2 line, and the expression
for the spinodal line is given by

χsp = 1

2φ(1 − φ)
+ p√

1 + p2φ2 + 4pH
, (19)

where p = p1 = p2 and φ = φ1 = φ2. The minimum value of
χsp corresponds to the critical point.

Let us take now explicitly the limits of high and low salt
concentrations for the symmetric p case. The high-salt limit
(p � 1) corresponds to the Debye-Hückel regime for which
the spinodal line is given by

χsp ≈ 1

2φ(1 − φ)
+ p

1 + 4pH
, (20)

and the critical point is located at χc = 2,φc = 0.5. This means
that the bilayer behaves as if it were a neutral membrane when
the salt concentration is sufficiently high.

In the other limit of low salt (p 
 1), the spinodal line is
given by

χsp ≈ 1

2φ(1 − φ)
+ 1

φ + 4H
, (21)

and it is independent of p. If the electrostatic coupling is weak
enough (H � 1), the respective critical point is located at

χc = (2 +
√

3)

(
1 − 8H

3

)
,

(22)

φc = 3 − √
3

2
− 4H (

√
3 − 1)

3
.

In the absence of the electrostatic coupling (H = 0), the
critical point coincides with that in the previous works
[18,19,22]:

χc = 2 +
√

3 � 3.73 ,
(23)

φc = (3 −
√

3)/2 � 0.634 .

III. GLOBAL PHASE DIAGRAMS AND CRITICAL
BEHAVIOR

Based on the model described in the previous section, we
present results for the critical point and phase diagrams in the
case of two coupled and charged leaflets. In particular, we
focus on the difference between a symmetric case in which the
two solutions have the same ionic strength (p1 = p2) and the
asymmetric case in which they differ (p1 �= p2).

We start by giving some estimates for the physical choices
of the parameter values of p1, p2, and H . The cross-sectional
area of a lipid head group is set to about � � 65 Å2 (taken to
be the same for the two lipids), and the membrane thickness
is d � 50 Å. From these values together with εW � 80ε0,
εL � 3ε0 (ε0 is the vacuum permittivity) and T � 300 K, we
obtain p � 0.67κ−1 where κ−1 is measured in angstroms,
and H = 5.6 × 10−4. In the following, we use a range of
values p = 0.5,5,50 and extended the H range to cover H =
0.005,0.01,0.05. In the case of monovalent salt, the values
p = 0.5,5,50 correspond, respectively, to κ−1 = 0.75, 7.5,
75 Å or to n = 16 M, 160 mM, 1.6 mM. Since the electrostatic
coupling parameter H is proportional to εL/d, the larger H

values correspond to smaller d and/or larger εL . Obviously,
the range in the p parameter of 102 gives a range of 104 in
ionic strength, which probably is too large to compare with
experiments. Hence it should be taken just to indicate trends
with changing the salinity.

We show first the phase separation in asymmetric charged
bilayers sandwiched between the two ionic solutions having
the same ionic strength (p1 = p2), repeating the results of
Ref. [18]. Then we present results for asymmetric charged
leaflets that are in contact with two ionic solutions having
different ionic strengths (p1 �= p2).

A. Symmetric in/out reservoirs: p1 = p2

In Fig. 2 we show the critical interaction and composition
(χc,φc) as a function of p for the symmetric reservoir case,
p = p1 = p2. Both χc and φc are obtained by numerically
minimizing Eq. (19). The solid, dashed, dot-dashed lines
correspond, respectively, to H = 0.005,0.01, and 0.05. The
horizontal dotted lines located at χc = 2 + √

3 = 3.73 and
φc = (3 − √

3)/2 = 0.634 are the critical values for the H →
0 limit and for high-salt conditions.
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FIG. 2. (a) The critical interaction χc and (b) critical composition
φc as a function of p on a semilog plot for different H values in the
symmetric case (p1 = p2 = p). The solid, dashed, and dot-dashed
lines are for H = 0.005,0.01,0.05, respectively. For H = 0, the
critical values are represented by the dotted lines located at (a)
χc = 2 + √

3 � 3.73 and (b) φc = (3 − √
3)/2 � 0.634.

When χ > χc, the membrane undergoes a lateral phase
separation, whereas for χ < χc the membrane is in a single
(homogeneous) phase. For all H values, we find that χc

becomes smaller as p decreases. Namely, the phase-separation
temperature is increased, and the two-phase region has a larger
extent for smaller p. This is because the Coulombic repulsion
between the charged lipids becomes too weak to overpower
the attractive interaction that drives the phase separation. When
H is large, χc becomes much smaller, as will be discussed in
Sec. IV. In the high-salt limit or when p is small enough, the
limit of χc → 2 and φc → 0.5 can be seen, as was discussed
in Sec. II. In the opposite low-salt limit, χc and φc approaches
those of Eq. (22).

B. Asymmetric in and out reservoirs: p1 �= p2

The calculated value of χc for the asymmetric case, in which
the two solutions have different ionic strengths, is plotted
in Fig. 3. Since χsp equals to χc at the critical point, χc

is obtained by calculating numerically the minimum value
of χsp via Eq. (14). The horizontal axis is the ratio p2/p1

in logarithmic scale, where p2/p1 = 1 corresponds to equal
ionic strength of the two reservoirs. The solid, dashed, and
dot-dashed lines denote fixed p1 = 0.5, 5, and 50, respectively,
while the coupling parameter H has three different values
H = 0.005,0.01, and 0.05 in the three figure parts. Similar to
the findings of Fig. 2, χc decreases as the coupling H increases.
This dependence of χc on H is similar as in the symmetric
case and is further discussed in Sec. IV. In all plotted cases
there is a peak around p2/p1 = 1, without a break in its slope
there even for the solid line. For p2/p1 < 1, χc decreases as
the salt concentration in solution 2 is increased, similar to the
symmetric case.

Moreover, the Coulombic repulsion between charged lipids
in the same leaflet becomes weak and χc decreases when p2/p1

becomes smaller. For p2/p1 > 1, χc is found to decrease and
its value is more pronounced when H becomes larger, although
the electrostatic screening is weaker. The physical origin of this
behavior will be further discussed in Sec. IV.

0.01 0.1 1 10 100
2

2.5

3

3.5

0.01 0.1 1 10 100
2

2.5

3

3.5

0.01 0.1 1 10 100
2

2.5

3

3.5
(a) (b) (c)

FIG. 3. The critical value χc as function of the asymmetry parameter, p2/p1, which also is equal to the ratio of the two Debye lengths,
κ1/κ2. The solid, dashed, and dot-dashed lines are for p1 = 0.5,5,50, respectively. The values of the H parameter are (a) H = 0.005,
(b) H = 0.01, and (c) H = 0.05.
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FIG. 4. Phase diagrams in the (φ1,φ2) plane for χ = 3.8 and p1 = 5. The solid lines are the tie lines and the dashed lines are the spinodal
lines. The three-phase-coexistence regions are denoted by shaded triangles. The values of the other parameters are (a) H = 0.005 and p2 = 0.5;
(b) H = 0.005 and p2 = 5; (c) H = 0.005 and p2 = 50; (d) H = 0.05 and p2 = 0.5; (e) H = 0.05 and p2 = 5; and (f) H = 0.05 and p2 = 50.

The calculated phase diagrams in the (φ1,φ2) plane for
χ = 3.8 and 4.0 are shown in Figs. 4 and 5, respectively.
We plot all phase diagrams for a fixed p1 = 5, while varying
p2 and H . As can be seen in Fig. 3, the system undergoes
a phase separation for χ values larger than χc. The solid
lines are the tie lines within the coexistence region, while
the dashed lines correspond to the spinodal lines. Each pair
of points connected by the tie line satisfies the conditions
μ1,A = μ1,B, μ2,A = μ2,B [Eq. (17)] and gA = gB [Eq. (18)],
while the spinodal lines are obtained from Eqs. (10), (14), and
(16). In some of the figures, inner and external spinodal lines
can be seen. However, the inner lines are preempted by the
external ones. Since Fig. 4(b) and 4(e) and Fig. 5(b) and 5(e) are
for the symmetric case (p1 = p2), these four phase diagrams
are symmetric with respect to the diagonal line, φ1 = φ2. All
other phase diagrams correspond to asymmetric situations,
p1 �= p2.

The phase-coexistence region becomes relatively larger
when p2/p1 � 1, corresponding to strongly screened systems.
However, χc for the asymmetric case is smaller than that
of the symmetric case. When H = 0.005, most of the tie
lines are nearly parallel to either φ1 or φ2 axis. This implies
that the phase separation in each leaflet takes place almost
independently and without any noticeable correlation with the
second leaflet. On the other hand, for H = 0.05, the tie lines
are tilted, indicating a strong coupling between the two leaflets.

The three-phase-coexistence regions are indicated by
shaded triangles in the phase diagrams. The tie lines in the
vicinity of the three-phase-coexistence regions are almost
orthogonal to the principal diagonal φ1 = φ2, indicating that
φ1 is small when φ2 is large and vice versa. This occurs
when the local concentration of charged lipid in one of the
leaflets is increased, while the concentration in the second
leaflet is decreased conversely. This behavior is caused by the
electrostatic coupling between the leaflets, as is discussed in
the next section.

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTS

Several points merit further discussion. First, we compare
our theoretical results with experiments, where it was reported
that the phase separation is enhanced when salt is added to
charged bilayers [10]. Such a tendency is well reproduced
in Figs. 4 and 5 when the salt concentration in solution 2
is increased or equivalently p2 is decreased. A similar trend
was also presented in previous works [12–14] for charged
membranes without any electrostatic interleaflet coupling. In
addition, it was reported by Vequi-Suplicy et al. [11] that the
phase-separation temperature increases in the presence of salt.

In previous experimental studies [10,11], vesicles were
first dispersed in the aqueous solution, and only then salt
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FIG. 5. Phase diagrams in the (φ1,φ2) plane for χ = 4.0 and p1 = 5. The solid lines are the tie lines, and the dashed lines are the spinodal
lines. The three-phase-coexistence regions are denoted by shaded triangles. The values of the other parameters are (a) H = 0.005 and p2 = 0.5;
(b) H = 0.005 and p2 = 5; (c) H = 0.005 and p2 = 50; (d) H = 0.05 and p2 = 0.5; (e) H = 0.05 and p2 = 5; and (f) H = 0.05 and p2 = 50.

was added, affecting only the ionic strength of the solution
outside the vesicles. For this experimental procedure the value
of p2/p1 is smaller than unity (recalling that p2 corresponds
to the outer reservoir). This situation is presented in Fig. 3
where χc ∼ 1/Tc decreases as p2/p1 < 1 becomes smaller,
in accord with the experimental observations. In addition,
we find that also for p2/p1 > 1, χc is decreased even if
the electrostatic screening is weak. In order to confirm this
behavior in experiments, only the outer solution should be
diluted in order to yield p2/p1 > 1. Controlled experiments
done on asymmetric charged membranes with asymmetric in
and out ionic strengths are needed to confirm the predictions
of the present work. Because the lipid composition in each
leaflet prepared by gentle hydration or electroformation is not
well controlled, it is better to prepare vesicles by transferring
water-in-oil droplets coated by lipids from an oil phase to a
water phase [23,24] or by using asymmetric Montal-Mueller
planar bilayers [15,25].

In the following, we discuss the physical reason why χc

decreases for p2/p1 > 1. Such a tendency is more pronounced
for larger H ∼ εL/d, because the electrostatic coupling
between the two leaflets becomes stronger. Notice that the
electrostatic coupling depends on p1 and p2 as well as on H .
As schematically presented in Fig. 6, the electrostatic coupling
is weaker when the salt concentration in solution 2 is higher
(upper panel of Fig. 6), and the phase separation is suppressed.

leaflet 1

leaflet 2

leaflet 1

leaflet 2

FIG. 6. Schematic illustration of the phase separation for an
asymmetric charged lipid bilayer when p2/p1 > 1. On the upper
panel, the salt concentration in solution 2 is high (but still obeying
p2/p1 > 1). On the lower panel, the salinity in solution 2 is reduced
resulting in an increase of p2/p1. The electrostatic coupling becomes
then stronger and the phase separation is induced.
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On the other hand, when the salt concentration in solution 2
is low (lower panel of Fig. 6), the screening is not as efficient,
and phase separation is induced due to the strong electrostatic
coupling. Note that in the latter case, the strong demixing
in leaflet 1 is induced by changing the salt concentration in
other reservoir (solution 2), which is coupled directly with the
opposite leaflet. This is indeed an interesting situation because
the higher salinity in solution 1 relative to 2 triggers the phase
separation in leaflet 1 due to the strong interleaflet electrostatic
coupling. The region where the tie lines are almost parallel
to the φ1 axis means that the phase separation mainly takes
place in leaflet 1. As can be seen in Fig. 4(c) and 4(f) as well
as in Fig. 5(c) and 5(f), such a region becomes much larger
than the region where the phase separation strongly occur in
leaflet 2 for large p2. On the other hand, the phase separation
also occurs in leaflet 2, although the concentration difference
between two phases is very small. As shown in Fig. 3, χc is
slightly decreased when p1 is smaller and can be understood by
noting that the screening sufficiently weakens the electrostatic
coupling.

In Figs. 2 and 3 we have shown that χc is smaller for
larger H , i.e., when the electrostatic interaction across the
membrane is large. Because of the electrostatic coupling,
the local charge accumulation in one of the two leaflets
suppresses the charge accumulation in the other leaflet, and it
is energetically unfavorable for the charged domains on each
leaflet to face each other. As a result, a phase separation is
induced in the other leaflet driven by the electrostatic coupling.

Next we elaborate on the physical meaning of the slope of
the tie lines in Figs. 4 and 5. When the tie lines are located close
to the three-phase region (triangle) and/or when H is large, the
tie lines tend to be almost orthogonal to the principal diagonal.
These tie lines connect two points on the binodal line that
have a large compositional asymmetry between φ1 and φ2. It
indicates that the charged domains in one leaflet do not prefer
to face the charged domains in the other leaflet. The model by
Baciu and May [18] as well as the present model deal with
the compositional coupling between the two leaflets arising
exclusively from electrostatic interactions. Consequently, it is
energetically favorable for the charged domains on each leaflet
not to face each other.

In order to see the contribution of the electrostatic coupling
clearly, we consider the electrostatic coupling in the symmetric
case (p1 = p2). The free energy of the interleaflet interaction
fcoup is obtained by subtracting the contributions of individual
leaflets from the total free energy

fcoup(φ1,φ2) = ftot(φ1,φ2) − fmix(φ1) − fmix(φ2)

− fm(φ1) − fm(φ2). (24)

For small composition differences, the potential difference
across the membrane is approximately given by

�� ≈ − 2p

4Hp + √
1 + p2φ2

av

(φ1 − φ2), (25)

where φav = (φ1 + φ2)/2 is the average composition of the
charged membrane. Substituting Eq. (25) into Eq. (24), we

obtain an interleaflet free energy that can be expanded in terms
of φ1 − φ2 [26],

fcoup(φ1,φ2) ≈ − 2Hp2

1 + p2φ2
av + 4Hp

√
1 + p2φ2

av

(φ1 − φ2)2.

(26)

From Eq. (26), it is clear that fcoup is negative and becomes
smaller when the difference between φ1 and φ2 is large,
because the coefficient of (φ1 − φ2)2 is negative. This is
consistent with the tie lines in the phase diagrams, and a similar
tendency can be seen even for the more general asymmetric
systems.

In general, the physical origin of the coupling between the
two leaflets can vary and does not have to rely exclusively on
electrostatics interaction. Examples of such nonelectrostatic
effects were considered in previous works [26,27] and include
cholesterol flip-flop, dynamic chain interdigitation, van der
Waals interaction or composition-curvature coupling. The
coupling between the two leaflets can be expressed generally
by

fcoup = �(φ1 − φ2)2 (27)

as shown in Eq. (26). The coupling coefficient � becomes
negative in the case of the electrostatic coupling. However,
Wagner et al. [16] analyzed a model for coupled bilayers
containing such a phenomenological term as in Eq. (27)
but with � > 0. It is, therefore, important to consider the
sign and typical value of � for different systems containing
electrostatic and nonelectrostatic couplings and to reveal how
the interactions between the two leaflets contribute to the
coupling constant, �. Further experimental and theoretical
investigations are required to gain more insight on this
coupling and its origin.

The present work is concerned with macrophase separation
in lipid membranes. Membranes consisting of neutral and
charged lipids can form also modulated phases [28] that
exhibit characteristic periodic structures. Hirose et al. [29]
considered the coupling between two microphase separated
bilayer leaflets. Various patterns, phases and their phase
transitions were predicted by assuming a phenomenological
coupling between the two leaflets.

We would like to close by mentioning again the two
main approximations used in the present model. (1) We have
treated the two leaflets as undeformable flat sheets. By doing
so we neglected any possible bilayer deformation that can
occur because of osmotic pressure difference resulting from
a difference in ionic concentrations (p1 �= p2) on the two
membrane sides. In experiments, phase-separated domains
produce budding toward the interior of the vesicle, and
this is a direct consequence of the osmotic pressure on
the spontaneous curvature [10]. In future studies it may be
of advantage to consider the combined effect of the phase
separation and membrane deformation. (2) We have used
the Poisson-Boltzmann theory for symmetric monovalent salt
in order to describe the electrostatic potential. It is known
that such a mean-field theory does not treat correctly ion-ion
correlation, especially when multivalent cations are involved.
This important effect should also be taken into account in
follow-up modeling.
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In conclusion, we have considered the phase separation
in a charged and asymmetric lipid bilayer, located between
two ionic solutions having different ionic strengths. Consid-
ering the electrostatic effects on the phase separation, we
have introduced the electrostatic coupling between the two
leaflets. We studied the effect of the ionic strength difference
between the two solutions, p1 �= p2, and the electrostatic
coupling H on the membrane phase behavior. When the
electrostatic coupling H is introduced, χc ∼ 1/Tc becomes
smaller than for the uncoupled case. Moreover, even if the
screening effect is small, χc decreases by increasing the
asymmetry in the salt concentrations. An increase in the ionic
strength leads to an enlarged coexistence region in the phase
diagram.
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APPENDIX: SURFACE POTENTIAL AND CHARGING
FREE ENERGY OF AN ISOLATED LEAFLET

1. Leaflet electrostatic potential

We present the derivation of the surface potentials �1,2

[Eqs. (7) and (9)] and the electrostatic free energy of an isolated
leaflet [Eq. (12)]. In order to find �1, we multiply the Poisson-
Boltzmann equation (4) by ψ ′

1(z) and integrate it once, yielding∫
ψ ′

1ψ
′′
1 dz = κ2

1

∫
ψ ′

1 sinh ψ1 dz, (A1)

where ψ ′
1 = dψ1/dz and ψ ′′

1 = d2ψ1/dz2. Using the appro-
priate boundary conditions results in the following expression:

ψ ′
1 = −2κ1 sinh

(
ψ1

2

)
, (A2)

and at z = d,

ψ ′
1(d) = −2κ1 sinh

(
�1

2

)
. (A3)

Using Eq. (6) and ψ ′
1(d) = ψ ′

2(0) = ��/d, it follows that

sinh

(
�1

2

)
= −2π
B

κ1�
φ1 − 2π
B

κ1�

�

4πεW
B

εL

d
��. (A4)

From this expression, the surface potential �1 is

�1 = −2 sinh−1 (p1φ1 + p1H��) , (A5)

where p1 = 2π
B/κ1�, H = �εL/4πεW
Bd as well as other
parameters were introduced in Sec. II. The surface potential
on the second leaflet, �2, can be obtained in the same way.

2. Electrostatic free energy of an isolated leaflet

Next we calculate the electrostatic free energy of an
isolated leaflet, Eq. (12), using the charging method. A similar
derivation can be found, e.g., in Refs. [19,21]. This energy
corresponds to the energy that a leaflet feels in solution without
the electrostatic coupling to the second leaflet. When a charged
leaflet at z = 0 is in contact with an ionic solution situated at
z > 0, the Poisson-Boltzmann equation gives

ψ ′ = −2κ sinh

(
ψ

2

)
. (A6)

This equation is the same as Eq. (A2). The nonlinear first-order
differential equation can then be integrated analytically:

ψ(z) = −2 ln

{
1 + 2

exp(κz)coth
[

1
2 sinh−1(pφ)

] − 1

}
.

(A7)

From this expression, the surface potential � = ψ(z = 0) is
given by

� = −2 sinh−1(pφ). (A8)

Through the charging process, the electrostatic free energy of
an isolated leaflet is obtained by the following integral over �

yielding an analytical expression for fm:

fm(φ) = −
∫ φ

0
�(s) ds = 2φ

{
1 −

√
(pφ)2 + 1

pφ

+ ln
[
pφ +

√
(pφ)2 + 1

] }
. (A9)
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