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I. INTRODUCTION

The term electrowetting, in its broadest sense, refers to techniques
by which one can control the apparent wettability (characterized by
the contact angle) of liquids, by applying an external electric
potential.1�11 While it has numerous applications,12�20 electrowet-
ting is known to be limited by the so-called contact angle saturation
(CAS)5,7,21�27 as depicted in Figure 1. As the term indicates, an
electric potential can incur a change in the contact angle, but only to a
certain extent. Further voltage increase has no additional effect on the
contact angle. This behavior is not accounted for by the standard
model of electrowetting, and its origin still remains a point of
controversy.5�7,12,21�33

When a small drop of liquid is placed on top of a solid surface, it
assumes the shape of a spherical cap.34 The contact angle θ0
between the drop and the surface, given by the Young formula,34�36

cos θ0 ¼ γsa � γsl
γla

ð1Þ
depends on the three interfacial tensions: solid/air γsa, solid/liquid
γsl, and liquid/airγla, where the air phase can be replaced by another
immiscible fluid.7,17,19

The Young formula, eq 1, can be obtained by minimizing the
capillary free energy with a fixed volume constraint36

FcapðθÞ ¼ Asaγsa þ Aslγsl þ Alaγla � VΔP ð2Þ

where Aij are the interface areas between the i and j phases, i,j = a
(air), l (liquid), and s (solid); the drop volume is V, and the
pressure difference across the liquid/air interface is ΔP. For
partial wetting, γsa < γslþ γla, the capillary free energy Fcap has a
minimum at the Young angle, θ0 (Figure 2a).

The contact angle θ can be varied from its initial value θ0 by
applying an external voltage of several volts to several hundreds
of volts across the liquid drop. A commonly used electrowetting
setup developed by Rinkel et al.1 and later perfected by Vallet
et al.5 is called electrowetting-on-dielectric (EWOD). The
apparatus, roughly sketched in Figure 3a, includes a flat electrode
as a substrate, which is coated with a thin dielectric layer (tens
of nanometers to several micrometers thick), whose purpose is
to prevent Faradic charge exchange (i.e., electrochemical re-
actions) at the electrode. It is common that this dielectric layer is
then topped with an even thinner hydrophobic (i.e., Teflon)
layer in order to control its surface tension. A drop of ionic
solution is placed atop the coated electrode, and a thin counter-
electrode (usually a bare platinum fiber) is inserted into the drop
from above. The drop is surrounded by air or by another
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limits.



6032 dx.doi.org/10.1021/la2004326 |Langmuir 2011, 27, 6031–6041

Langmuir ARTICLE

immiscible dielectric liquid. Applying a voltage across the drop
can cause a large change, of several tens of degrees, in the
contact angle.

As reviewed in ref 12, a simple relation between the contact
angle and the applied voltage can be derived. When an external
voltage U is applied, an electric double layer is formed at the
liquid/substrate interface. The total free energy Ftot has two
contributions: a capillary term Fcap defined37 in eq 2, and an

electric term Fel that depends on θ, U, and other system
parameters.

Ftotðθ,UÞ ¼ FcapðθÞ þ Felðθ,UÞ ð3Þ
Within the standard model of electrowetting (under external
voltage control), the electric term is evaluated as

Fel ¼ � 1
2
CldU

2 ð4Þ

where Cld is the capacitance of the liquid/substrate interface,
which is modeled as a parallel-plate capacitor:

Cld = ε0Ald
d
εd

þ λD
εl

� ��1

=
ε0εd
d

Ald ð5Þ

whereAld is the substrate area that is covered by the liquid drop, d
is the width of the dielectric layer, and εd and εl are the dielectric
constants of the dielectric coating and liquid drop, respectively.
The Debye screening length, λD, is the width of the electric
double layer. In most cases, d/εd . λD/εl, and the second
approximation in eq 5 can be justified. The parallel-plate
capacitor model has been shown10 to be valid as long as fringe
fields are negligible (d, Ald

1/2) and the drop of volume V is not
too small for double layers to be created (λD,V1/3). An implicit

Figure 1. Schematic plot of electrowetting contact angle, θ(U). For
zero voltage, the contact angle is the same as the Young angle, θ0. At low
applied voltages, U, the contact angle follows the Young�Lippmann
formula, eq 6 (dashed line), cos θ(U) � cos θ0 = cos θYL(U) � cos
θ0 ∼ U2, but for higher voltages the contact angle gradually deviates
from the Young�Lippmann behavior and saturates toward some finite
value, θsat.

Figure 2. Schematic plots of (a) the capillary free energy Fcap for a
spherical drop of fixed volume and (b) a hypothetical (negative) total
capacitance, �Ctot, as function of contact angle θ in the electrowetting
setup. Theminimum of the capillary term Fcap occurs at the Young angle
θ0, while the electric term Fel =�1/2CtotU

2 (or equivalently of�Ctot) is
assumed to have a minimum at a finite saturation angle, θsat.

Figure 3. (a) Sketch of an EWOD setupwith AC voltageU of frequency
f and (b) its equivalent AC circuit. The two parallel-plate capacitors of
capacitances C1 and C2 and areas A1 and A2 represent the substrate/
liquid and the counter-electrode/liquid interfaces, respectively. The bulk
liquid drop is represented by a resistor R1 through which the two
capacitors are charged and discharged. The charging time through the
resistor is equal to the build-up time τb of the double layers at the two
interfaces. The discharge resistor R2 represents the Faradic charge
transfer processes that relax the electric double layer near the counter-
electrode with relaxation time τr. Such a mechanism is prevented at the
substrate electrode because of its dielectric coating.
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assumption made in eq 4 is that the counter-electrode does not
contribute to the total capacitance.

In an electrowetting setup, the contact angle θ(U) depends on
the external voltage U. By substituting eq 5 into eq 4 and mini-
mizing Ftot of eq 3 with a fixed volume constraint, the Young�
Lippmann formula12 for the contact angle θYL(U) is obtained

cos θYLðUÞ ¼ cos θ0 þ g�1U2 ð6Þ
where g�1 � ε0εd/(2γlad). It is a common practice to extend
this DC voltage model to AC setups by using the root mean
square (rms) voltage in eq 6,U2fUrms

2 . Note that similar results
can be obtained using force balance at the three-phase contact
line.38

Experiments5�7,12,21�24,29�31 have shown that the ∼U2 be-
havior predicted by the Young�Lippmann formula is indeed
found for a range of low applied voltages, but the prefactor of the
U2 term, eq 6, does not usually match the experimental data. For
larger values of U, a deviation from the U2 behavior is observed
and a saturation in the contact angle, θ(U) f θsat, is reached
gradually, as is schematically sketched in Figure 1. In addition, it
is convenient to define a characteristic value of the crossover
voltage U* by requiring that θYL(U*) = θsat in eq 6:

ðU�Þ2 ¼ gðcos θsat � cos θ0Þ ð7Þ
Over the last decades, several models have been presented in

an attempt to explain CAS.12 Most of these models7,22,26,31�33

are based on specific leakage mechanisms. Others, as in ref 24,
proposed heuristic arguments in order to predict CAS in electro-
wetting systems without relying on a specific mechanism.

Considering that the origin of CAS is not well understood from
general principles, the objective of the present work is to offer a
different approach to CAS, and to electrowetting in general. In the
following section, we consider the general circumstances in which
CAS can occur intrinsically (without leakage). We present a low-
voltage limit compatible with the Young�Lippmann quadratic
voltage dependence and a high-voltage limit in which CAS is
obtained. Furthermore, we identify a possibility for a novel electro-
wetting regime we call reversed electrowetting. In section III, we
present an application of this approach to EWODexperimental set-
ups using a geometry-dependentmodel, and use AC circuit analysis
to calculate the free energy. Section IV is dedicated to showing
several numerical and analytical results and their compatibility with
experiments. We conclude in section V with a summary along with
some further discussion and an outlook on future research.

II. A GENERALIZED MODEL OF ELECTROWETTING

A. Generalized Free Energy and Contact Angle Saturation.
Our starting point is eq 3 above. Assuming that all the electric
energy is stored via charge separation, it can be written in terms of
the total capacitance, Fel = �1/2CtotU

2. The total electrocapillary
free energy Ftot is now written as

Ftotðθ,UÞ ¼ FcapðθÞ � 1
2
CtotðθÞU2 ð8Þ

where all capillary contributions are included in Fcap. As Fcap is
independent ofU, the relative magnitude of the two terms in eq 8
is controlled by the negative U2 dependence of the Fel term.
Physical insight can be gained from eq 8 by making different

assumptions regarding the behavior of Ctot(θ). Particularly,
interesting results follow from the assumption that Ctot(θ) has

a maximum at some finite angle (see Figure 2b), as will be shown
below to be the case for EWOD setups. Our model therefore
differs from previous models that took Ctot to be equal to Cld

(eq 4), which yields a monotonically decreasing Fel. For reasons
to be immediately apparent, we denote the angle where Ctot(θ)
has amaximum (or, equivalently, Fel has aminimum) as θsat. This
angle, in general, is different from the Young angle, θ0, which
minimizes the capillary term, Fcap.
We now show how the existence of a global electric free-

energy minimum at a finite contact angle yields CAS. With no
applied voltage (U = 0), Ftot = Fcap and the system adheres to the
Young angle, θ = θ0 (Figure 2a). Similarly, when the applied
voltage U is very large, the free energy is dominated by the
electric term, |Fel|�U2. Fcap, and the system tends toward θsat,
which minimizes Fel (or, equivalently, maximizes Ctot;
Figure 2b). Now, if the two contributions are concave for the
accessible range of θ, then the minimum of Ftot shifts smoothly
from θ0 toward θsat as U is increased from zero to an arbitrary
large value, as is schematically illustrated in Figure 4. This
description is consistent with CAS and implies that the saturation
angle found in experiments can be identified with our definition
of θsat.
Below we analyze more quantitatively the consequences of

such a global electric minimum at the low- and high-voltage
limits. In the former, we show an ∼U2 variation of the contact
angle with a prefactor that can match the Young�Lippmann
formula or be different from it. In the latter, an asymptotic∼U�2

approach to θsat is found.
B. The Low Voltage Limit. For U f 0, the minimum of Ftot

occurs close to θ0. Expanding this minimum condition F 0
tot(θ) = 0

to first order in δθ = θ(U)� θ0, while recalling that Fcap0 (θ0) = 0,
we obtain

F00capðθ0Þδθ� 1
2
U2 C0

totðθ0Þ þ C00
totðθ0Þδθ

� �
= 0 ð9Þ

Figure 4. Schematic plot of the total free energy Ftot(θ,U) = Fcap(θ) þ
Fel(θ,U) for a sequence of five applied voltages:U4 >U3 >U2 >U1 >U= 0.
Since the two energy terms are concave in the accessible range of θ, their
sum is also concave and has a minimum. IncreasingU from zero to a large
U4 causes a gradual shift of the minimum from θ0 toward θsat. Note that it
cannot cross beyond θsat regardless of how high the voltage U is because
θsat is the minimum of the dominating Fel term.
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yielding

δθ =
1
2

C0
totðθ0Þ

F00capðθ0Þ � 1
2
U2C00

totðθ0Þ
U2 ð10Þ

and to leading order in U2 one has

θðUÞ = θ0 þ 1
2
C0
totðθ0Þ

F00capðθ0ÞU
2 ð11Þ

and equivalently

cos θðUÞ = cos θ0 � 1
2
C0
totðθ0Þsin θ0
F00capðθ0Þ U2 ð12Þ

We see that, at low voltages, the deviation from the Young
angle is proportional to U2, just as in the Young�Lippmann
formula. However, the prefactor is a function of θ0 and can take
different values than in eq 6, and even change its sign (see section
II.D). It is shown in section IV.D under which conditions the
prefactor converges to that of the Young�Lippmann formula for
low voltages in typical EWOD experimental setups.
C. The High Voltage Limit. For U f ¥, the electric energy

becomes large relative to the capillary energy and so the mini-
mum of Ftot occurs at θ(U) = θsatþ δθ. Expanding the condition
Ftot0 (θ) = 0 around θsat, one has

F0capðθsatÞ þ F00capðθsatÞ δθ� 1
2
C00

totðθsatÞU2 δθ = 0 ð13Þ

or

θðUÞ = θsat þ F0capðθsatÞ
1
2
U2C00

totðθsatÞ � F00capðθsatÞ
= θsat þ 2

F0capðθsatÞ
C00

totðθsatÞU
�2

ð14Þ
Hence, saturation in θ is approached asymptotically, as U�2, in
qualitative agreement with experiments.12,14

D. Reversed Electrowetting. An interesting conclusion can
be drawn from the discussion in section II.A. Recalling that in our
model electrowetting results from an interplay between capillary
and electric energies (each with its own minimum at θ0 and θsat,
respectively); as voltage is increased, the electric energy gradually
becomes dominant and the contact angle is driven away from θ0
toward θsat (Figure 4). Since θ0 is determined only by the
capillary parameters (as in the Young formula, eq 1) and θsat is
determined solely by the electric parameters, it is possible to
envisage a system in which the saturation angle θsat is actually
larger than the Young angle, θsat > θ0 rather than θsat < θ0 as in
the usual case. In such a setup, applying a voltage will cause an
increase of the contact angle, in total contradiction with the
Young�Lippmann formula, eq 6. Hence, the model proposed
here allows for the possible existence of a new regime of
electrowetting, which we refer to as reversed electrowetting.
By examining the slopes of each energy term near the

minimum of the other (see Figure 2), it is possible to show that,
in the low- and high-voltage limits, eqs 11 and 14, the prefactors
of both U2 and U�2 terms can take either positive or negative
values depending on whether θ0 > θsat or θ0 < θsat; for the low-
voltage limit, Fcap00 (θ0) is positive by definition, but Ctot

0 (θ0) is
positive only if θ0 > θsat and negative for θ0 < θsat. Likewise, for
the high-voltage limit, Ctot

00 (θsat) is negative by definition, but
Fcap0 (θsat) is negative only if θ0 > θsat and positive for θ0 < θsat.

Thus, we have shown how reversed electrowetting manifests
itself in those limits.

III. A TWO ELECTRODE MODEL OF EWOD

Our goal in the remainder of this work is to elaborate on the
physical conditions that are involved in determining a finite θsat
angle in specific EWOD experimental setups. However, we would
like to stress that the proposed mechanism is general and may be
applied to other realizations and experimental setups manifes-
ting CAS.
A. SystemSetup andGeometry.A setup of an EWOD is pre-

sented in Figure 5. The drop (dielectric constant εl) is assumed
to retain its spherical-cap shape, with height h from the surface,
total volume V, and contact angle θ. The metal electrode is
coated with a dielectric layer of thickness d and dielectric con-
stant εd. The top counter-electrode is modeled as a thin cylinder
of radius b and the gap between the two electrodes is hg. The two
electrode areas covered by the liquid are A1 and A2, respectively.
For spherical-cap shaped drops, A1 and A2 are related to the
contact angle θ through the fixed volume constraint:

A1¼ πa2

A2¼ 2πbðh� hgÞ
tan

θ

2
¼ h

a

V¼ πh
6
ð3a2 þ h2Þ ð15Þ

where a is the radius of the covered portion of the substrate
electrode.

Figure 5. Schematic EWOD setup as used in our analysis. A liquid drop
shaped as a spherical cap of volume V, height h, and dielectric constant εl
is placed atop a flat metal electrode. The metal electrode is covered with
a dielectric coating of thickness d and dielectric constant εd. A metal wire
(used as a counter-electrode), modeled as a thin cylinder of radius b, is
inserted into the drop from above. The gap between the two electrodes is
hg. The area of the substrate electrode covered by the drop is A1 and that
of the counter-electrode is A2. The applied voltage is U and the contact
angle with the substrate is θ.
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It should be noted that θ can only take values in the range
θmin < θ < π. The lower limit, θmin, occurs when the drop height
matches the gap between the lower tip of the counter-electrode
and the substrate, h = hg (see Figure 5), resulting in

cot
θmin
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V

πhg
3 �

1
3

s
ð16Þ

We will show that θsat > θmin and hence θmin is an inaccessible
lower bound of the contact angle. The upper limit θ = π is the
dewetting limit.
B. The AC Free-Energy.The free energy, eq 8, depends on the

total capacitance Ctot, which includes all relevant contributions.
Unlike the traditional Young�Lippmann treatment in which
only the capacitance of the liquid/substrate interface is taken into
account, we consider explicitly the existence of an additional
double-layer, residing at the interface between the liquid drop
and the counter-electrode.
Experimental setups and applications usually employ AC

circuits to produce an electrowetting effect. Under those circum-
stances, double layers are transient: with each AC half-cycle, a
double layer of opposite polarity is formed at each electrode/
liquid interface and subsequently dissolved away. In addition to
relaxation by reversal of polarity, other mechanisms of relaxation
can act at the counter-electrode/liquid interface such as electro-
chemical Faradic processes. The dynamical processes are, there-
fore, governed by two intrinsic time scales (beside the AC
frequency):
1. The double-layer build-up time, τb, which can be estimated

to be

τb =
λDL
D

ð17Þ

where λD = [(ε0εlkBT)/(2e
2csalt)]

1/2 is the Debye length,
kBT is the thermal energy, csalt is the salt concentration,D is
the diffusion constant, and L is a typical system size.39

2. The double-layer relaxation time, τr, which can similarly be
expressed in terms of system parameters through the RC
circuit relaxation formula

τr ¼ R2C2 ¼ τ
C2

A2
ð18Þ

where F = R2A2 is defined as the zero-current (Faradic)
resistivity to charge transfer by electrochemical processes
and A is the contact area.

In order to discuss the period-averaged properties of the system,
we employ a standard AC circuit analysis. As shown in Figure 3b,
we model the two liquid/electrode interfaces as two capacitors
with capacitances C1,C2, defined in a similar fashion as in eq 5:

C1 ¼ Cld =
ε0εdA1

d

C2 =
ε0εlA2

λD

ð19Þ

Note that the main contribution to C1 comes from the coated
dielectric layer of thickness d (d/εl. λD/εl), while forC2 the only
contribution comes from the double layer of thicknessλD (because
the counter-electrode is not coated). The cylindrical geometry of
the counter-electrode is not considered because b . λD.
The two capacitors are charged and discharged through a

resistor R1 that represents the bulk of the liquid drop. The

relaxation of the double layer at the counter-electrode is modeled
by an extra discharge circuit with a resistor R2, while the capacitor
C1 does not have a discharge circuit since charge transfer at the
substrate electrode is prevented by its dielectric coating. The
appropriate resistance values can be inferred from the build-up
(τb) and relaxation (τr) times, eqs 17 and 18, again through the
RC circuit relaxation formula:

R1 ¼ τb C1
�1 þ C2

�1
� �

R2 ¼ τr
C2

ð20Þ

Drawing on the AC circuit analogy, the period-averaged free
energy is:

Ftotðθ,U ,ωÞ ¼ Fcap þ Fel

¼ FcapðθÞ � 1
2

1
ωjZtotðθ,ωÞjU

2 ð21Þ

where U is understood to be the rms value and Ztot is the total
impedance of the circuit (Figure 3b), which can be represented
schematically as

Ztot ¼ ZC1 x ZR1 x ZC2 jjZR2

� � ð22Þ
It is straightforward to show that the squared magnitude of the
total impedance is

jZtotj2 ¼ 1
C1

2 τb
2 þω�2

� �þ 2
C1C2

τb
2 þ τrðτr þ τbÞ

1þω2τr2

� �

þ 1
C2

2 τb
2 þ τrðτr þ 2τbÞ

1þω2τr2

� �
ð23Þ

SinceC1 is proportional toA1, which vanishes at θfπ, andC2

is proportional to A2, which vanishes at θf θmin, |Ztot|
2 diverges

at both θf θmin and θf π. Therefore, it must have a minimum
at some intermediate value: θmin < θsat < π. Hence, our model of

Figure 6. Total reactance 1/(ωZtot) (in nanoFarad) as a function of
the contact angle. Parameters for the EWOD system are τb = 1.34 ms,
τr = 0.53 s, and f =ω/2π = 1 kHz, and all other parameters are chosen as
shown in Table 1. The reactance has a maximum for a finite value of
θsat = 53.3�, at which the system exhibits CAS. The minimal contact
angle is θmin = 37�, eq 16.
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electrowetting presented in section II.A is indeed applicable to
typical EWOD setups.
Substituting eqs 15 and 19 into eqs 21 and 23 yields an

expression for C1(θ) and C2(θ) and, consequently, for Fel as a
function of θ. Its minimization can be done numerically (section
IV.A) and yields the equilibrium contact angle (for given applied
voltage and frequency). In some limits (sections IV.C and IV.E),
analytical approximations can be derived as well.

IV. RESULTS AND DISCUSSION

A. The Electrowetting Curve, θ(U). In order to demonstrate
quantitatively the model validity, we performed numerical calcu-
lations for parameter values that are in accord with some typical

experimental setups. In Figure 6, we present the reactance
1/ωZ (appearing in eq 21) computed for parameter values as
in Table 1 and with an AC frequency f = ω/2π = 1 kHz. The
build-up time was calculated using eq 17 to be τb = 1.34 ms, while
the relaxation time was calculated using eq 18 with40 F = 1Ω 3m

2,
yielding44 τr = 0.53 s. For the chosen values of parameters, the
ratio of capacitances for zero voltages (θ(U = 0) = θ0) is about
C2/C1= 25. In the figure, a maximum at a finite angle θsat = 53.3�
is clearly seen. Notably, this saturation angle is much larger than
the minimal possible angle in this setup, θmin = 37� (see eq 16).
As a consequence, CAS is obtained for finite values of A2, much
before the limit A2 f 0 characteristic to θmin.
Figure 7 presents the calculated electrowetting curve θ(U) for

the same system,whereθ(U) is calculated byminimizing Ftot from
eq 21, together with a plot of the Young�Lippmann formula
where an effective geff prefactor is used to fit the full calculation.
This is similar to what is done in many experimental works where

Table 1. Parameter Values of a Typical Electrowetting Setupa

parameter symbol value

dielectric constant of liquid εl 80

Debye length in liquid λD 1.34 nm

volume V 5 μL

width of dielectric layer d 0.1 μm

dielectric constant of dielectric layer εd 2.67

liquid/air surface tension γla 72.8 mN/m

dielectric/air surface tension γsa 12.7 mN/m

liquid/dielectric interfacial tension γsl 47 mN/m

gap between counter-electrode and substrate hg 0.7 mm

radius of counter-electrode b 12.5 μm
aThe liquid drop contains an aqueous ionic solution and is placed on top
of a Miyaline-C/Teflon substrate.

Figure 7. Calculated contact angle as a function of applied voltage, U
(full line), as well as a plot of the Young�Lippmann formula (dash-
dotted) using geff (dashed line, see text). Parameter values of the
EWOD system are taken from Table 1 and τb = 1.34 ms, τr = 0.53 s,
and f =ω/2π = 1 kHz.Many of the features of CAS, shown schematically
in Figure 1, are reproduced. AtU = 0, the contact angle is θ0 = 118�. For
small U, there is an initial compliance with the rescaled Young�
Lippmann formula, eq 6, θ(U) ≈ θYL(U), followed by a crossover
occurring at U* = 76.9 V, calculated from eq 7. At larger U, the contact
angle tends asymptotically to a saturation angle θsat = 53.3�. The
asymptotic θ(U) � θsat ∼ U�2 is plotted (dotted line) following
eq 14 and approximates rather well θ(U) for voltages larger than
120 V. An operational definition of the saturation voltage Usat (see text)
yields Usat = 252.1 V. Note that θsat is conceivably larger than the
minimal possible angle θmin = 37�, eq 16.

Table 2. Parameter Values of a Hypothetical Reversed Elec-
trowetting Setup

parameter value

εl 2

λD 1.34 nm

V 5 μL

d 0.1 μm

εd 2.67

γla 20 mN/m

γsa 15 mN/m

γsl 5 mN/m

hg 0.7 mm

b 12.5 μm

Figure 8. Calculated contact angle as a function of applied voltage, U
(solid line), for reversed electrowetting together with a manually scaled
(geff < 0) Young�Lippmann formula (dashed line). Parameter values of
an EWOD system are taken fromTable 2, and τb = 1.34ms, τr = 13.2 ms,
and f = ω/2π = 1 kHz. At U = 0, the contact angle is θ0 = 60�. Even for
small U, there is a deviation from the naive Young�Lippmann formula,
eq 6, because θ(U) � θ0 ∼ U2, with a positive prefactor. The U2 rise is
followed by a crossover occurring atU* = 65.5 V. At largerU, the contact
angle tends asymptotically to a saturation angle θsat = 101.9�. Using
the same definition of the saturation voltage Usat as in Figure 7 yields
Usat = 208.5 V.



6037 dx.doi.org/10.1021/la2004326 |Langmuir 2011, 27, 6031–6041

Langmuir ARTICLE

the g value is fitted from the low U dependence, and not by using
explicitly eq 6. We use a specific geff = (1þ ω2τb

2)�1/2 as derived
in section IV.D. The figure shows that several common experi-
mental features are reproduced (as compared with the schematic
in Figure 1); an initial compliance with the scaled Young�
Lippmann formula at low voltages is followed by a crossover at
intermediate voltages to a different regime. Using eq 7 (with geff),
the crossover voltage is evaluated to beU*= 76.9 V. AtU >U* an
asymptotic convergence of the contact angle toward a saturation
value is seen, θ(U)f θsat = 53.3�. This is further demonstrated in
Figure 7, where the asymptotic θ(U) � θsat ∼ U�2 is plotted
(dotted line) following eq 14. The asymptotic behavior approx-
imates rather well θ(U) for voltages larger than 120 V.
It is appropriate to define another voltage, Usat, characterizing

the saturation range of the potential. An operational definition
that we employ is that at Usat, the calculated θ(Usat) deviates
from θsat by 2%. With this definition, we obtain Usat = 252.1 V.
The electrowetting curve presented in Figure 7 agrees qualita-
tively with experimental observations,8,12,28 which show the
effect of contact angle saturation. Unfortunately, because the
parameter values needed for quantitative comparison with
experiments are lacking at present, we used instead reasonable
estimations.
B. The Reversed Electrowetting Curve, θ(U). We now

illustrate how reversed electrowetting θsat < θ0, which is a natural
outcome of our model, can be seen in the laboratory. Let us
consider a system similar to the one presented in the previous
section with the two following changes (see Table 2): the
interfacial tensions are chosen such that θ0 = 60�, and we now
model a nonpolar liquid with a dielectric constant εl = 2, which
yields a build-up time of τb = 1.34 ms and a relaxation time of
τr = 13.2 ms. The AC frequency is f = ω/2π = 1 kHz as before.
Figure 8 presents the calculated electrowetting curve θ(U).

The plot features an initial compliance with the negatively
rescaled Young�Lippmann formula (at low voltages such that
the contact angle increases with the applied voltage). This is
followed by a crossover at intermediate voltages toward satura-
tion. Using eq 7 (with geff), the crossover voltage is evaluated to

be U* = 65.5 V. For U > U*, an asymptotic convergence of the
contact angle toward a saturation value is seen, θ(U) f θsat =
101.9�. Using the same definition as in section IV.A, the
saturation voltage is found to be Usat = 208.5 V.
Since our reversed electrowetting predictions (Figure 7) are

rather for specific parameter values, it will be of benefit to check
their validity with experiments conducted on similar electrowet-
ting setups.
C. The Frequency Dependence of Electrowetting. In order

to explore the effect of the frequency of the AC voltage within our
model, the dependence of the saturation angle θsat on frequency
was calculated numerically by minimizing eq 21 and plotted in
Figure 9 for several values of τr = 0.53 s, 0.053 s, and 5.3 ms. It can
be seen that, for this specific choice of parameters, the AC
saturation angle reaches a constant value for the entire high
frequency range down to f = 1 kHz, even for the smallest of
the chosen relaxation times (τr = 5.3 ms). Moreover, the larger
τr is, the wider is the range for which the saturation angle is
constant. This can be explained by taking into account that

Figure 9. Saturation angle, θsat, as a function of the AC frequency f, for
the EWOD systemwith parameter values as in Table 1, τb = 1.34ms, and
for several τr values: τr = 0.53 s (solid line), 0.053 s (dashed line), 5.3 ms
(dash-dotted line). In the range f g 1 kHz, the AC saturation angle,
which takes into account relaxation of the double layer by electroche-
mical processes, matches the τrf¥ (dotted line) ofθsat

¥ = 53.3� even for
the smallest τr = 5.3 ms (fastest Faradic relaxation).

Figure 10. Contact angle as function of AC frequency f for several
applied voltages U. (a) Calculated values corresponding to 57 V (solid
line), 93 V (short dashed line), 113 V (long dashed line), and 143 V
(dash-dotted line) with parameters as in Table 3 and τb = 0.1 ms, τr =
2.4 ms. The value of θ0 = 118� is indicated by a dotted line. (b) Experi-
mental results adapted from ref 8 for the same voltages as in (a): (0)
57 V, (O) 93 V, (4) 113 V, and (3) 143 V. A quantitative agreement
between the calculation and experiment can be seen. Note also that the
electrowetting effect diminishes at high frequencies as predicted analy-
tically in eq 24.
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whenever τr . 1/f, the counter-electrode double layer can
hardly relax.
The frequency dependence of the contact angle has been

experimentally studied in ref 8 for several applied voltages.
Figure 10 shows a comparison of a minimization of eq 23 for a
range of frequencies, with experimental data. The calculations
have been performed for system parameters as in Table 3, which
have been inferred45 from ref 8, except for λD = 300 nm, which
was used as a fitting parameter to the experimental results. This
value corresponds to ionic strength of less than 10�6 M and is
compatible with deionized water used in ref 8. The build-up time
was deduced from the featured experimental results to be τb =
0.1 ms, and the relaxation time, τr = 2.4 ms, was calculated using
eq 18 with F = 1 Ω 3m

2.
Comparison of the two plots shows that our model reproduces

rather well the frequency dependence found in experiments. It
can be seen that the electrowetting effect diminishes with rising
frequency and seems to vanish at f > 100 kHz where there is
hardly any deviation from the Young angle. This can be easily
understood taking into account that for f > 10 kHz, 1/f becomes
small as compared to the double layer build-up time τb= 0.1 ms.
Under those circumstances, ions move too slowly and cannot
build considerable over-concentrations at the electrodes. Thus, at
those high frequencies, the period-averaged effect of the double
layers decreases considerably.
The above results imply that it is of value to further explore the

limit of slow electrochemical processes, τr . τb, ωτr . 1, which
leads to a simplified expression for the free energy. Substituting
eq 23 into eq 21 we obtain in this limit

jZtotj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τb2 þω�2

p
CtotðθÞ

Felðθ,U ,ωÞ ¼ � 1
2ωjZtotjU

2 � � CtotðθÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2τb2

p U2

ð24Þ
whereCtot

�1 =C1
�1þ C2

�1 is the total capacitance of an equivalent
systemwithout any electrochemical processes. The (1þω2τb

2)�1/2

prefactor in eq 24 depends on the AC frequency and reflects a
diminishing electrowetting effect for rising frequencies.

We note that the DC limit can be obtained by first assuming
no electrochemical processes, τr f ¥ in eq 23 (leading to
eq 24), and only then taking the DC limit of ω f 0 to get
Fel =� 1/2CtotU

2 of eq 8. This limit can be useful in applications
where both the substrate and counter-electrode are dielectri-
cally coated.
If electrochemical processes are not totally excluded but are

just slow (order of seconds, in accordance with the value calcu-
lated in section IV.A), it is expected that the results obtained in
this work will be applicable for that time scale, above which other
mechanisms might take over. Such time-dependent behavior has
been observed in ref 24.
D. Convergence to the Young�Lippmann Formula. In its

DC limit (ω f 0), eq 24 provides a pathway to establish a
relationship between our model and the Young�Lippmann
formula and to show the conditions under which the two
converge. Using eqs 15 and 19 (see Appendix for more details),
we have

Ctot ¼ C1 1þ C1

C2

	 
�1

¼ C1 1þ β�1 2� ξ3

ξ2 � l�1hgξ

" #�1

ð25Þ

where l � (3V/π)1/3 is a typical drop length,

β � 6εldb
εdλDl

ð26Þ

is a dimensionless parameter, and

ξ � 1� cos θ
2þ cos θ

	 
1=3
ð27Þ

is a monotonically increasing function of 0 e θ e π.
As long as the second term in the brackets of eq 25 is small, our

model agrees with the standard model, Fel = �1/2C1U
2, eq 4,

with C1 = Cld. For a typical system, as the one presented in
Table 1, the value of the constant prefactor is rather small β�1= 0.01.
Since hg/l e ξ e 21/3, it is clear that the quotient can only be
large when ξ f hg/l or, equivalently, when the contact angle
becomes small enough. Otherwise, the second term is negligible
and the two models converge.
Note that this view of the validity of the Young�Lippmann

formula as being related to a certain range of the contact
angles is a departure from the common approach which
regards its validity being related to a certain range of applied
voltages.
By creating this link between the Young�Lippmann formula

and ourmodel it can be deduced that the proper way of extending
the Young�Lippmann formula (within its validity range) from
DC to AC is to replace U2 f Urms

2 /(1 þ ω2τb
2)1/2. This is

exactly the how the Young�Lippmann formula was scaled
(by geff) in section IV.A.
E. The Saturation Angle for Slow Relaxation (ωτr . 1,

τr. τb).Within the slow relaxation framework, eq 24, the mini-
mization of Fel (yielding θsat) is equivalent to minimizing the
total inverse capacitance R � 1/Ctot. Using eqs 15 and 19, we
obtain

RðξÞ ¼ 3d
2πε0εdl2

1

ξ�1 � 1
2
ξ2

þ 2β�1

ξ� l�1hg

2
664

3
775 ð28Þ

Table 3. Parameter Values of an Electrowetting System of
Deionized Water Solution on Miyaline-C/Teflon Substratea

parameter value

εl 80

λD 300 nm (fitted)

V 5 μL

d 5 μm

εd 2.67

γla 72.8 mN/m

γsa 12.7 mN/m

γsl 47 mN/m

hg 0.7 mm

b 40 μm
aThe parameter values are inferred from ref 8, except for λD, which was
fitted to obtain a quantitative agreement with experiments. The resulting
value is indeed compatible with that of deionized water (ionic strength
less than 10�6 M).45
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Minimizing R(ξ) yields a sixth-order polynomial in ξ:

ξ6 � 2βξ5 þ 4βl�1hgξ
4 � 2 2þ βl�2hg

2
� �

ξ3 � 2βξ2

þ 4βl�1hgξþ 2 2� βl�2hg
2

� � ¼ 0 ð29Þ
It is possible to examine two separate limits for minimizing
R(ξ), leading to two simple analytical expressions for θsat.
1. Acute Saturation Angles (Large β). If ξ3(θsat) , 2, then,

near its minimum, eq 28 reduces to

R
�����ξ = ξsat

=
3d

2πε0εdl2
ξþ 2β�1

ξ� l�1hg

" #
ð30Þ

with a minimum at ξ = ξsat that satisfies

1� 2β�1 ξsat �
hg
l

� ��2

¼ 0 ð31Þ

The solution yields

ξsat ¼
ffiffiffi
2
β

r
þ hg

l
ð32Þ

and θsat can now be obtained

cos θsat ¼ 1� 2ξsat
3

1þ ξsat
3 ð33Þ

Inserting typical values from Table 1 to check for self-consis-
tency, we get ξsat

3 ≈ 0.173 , 2 as required. Using eq 33, the
saturation angle in this case is calculated to be θsat= 56.1�, which
is not far from the value obtained by a full numerical calculation,
53.3�. As a rule of thumb, we remark that the above condition,
ξsat
3 , 2 holds for θsat smaller than π/2, for which ξ3(π/2) =
0.5 , 2.
2. Large Saturation Angles (Small β and hg/l). For systems

with small β, the above approximation should fail, as is apparent
from eq 32. For such cases, we can use a different approximation
assuming that the gap hg is small enough, such that

ξsat .
hg
l

ð34Þ
The saturation angle can then be found from a different

approximated form of R(ξ) (eq 28), near its minimum:

R
�����ξ = ξsat

=
3d

2πε0εdl2
1

ξ�1 � 1
2
ξ2

þ 2β�1

ξ

2
664

3
775

¼ 3d
πε0εdl2

1

2� ξ3
þ β�1

	 

ξ�1 ð35Þ

Minimizing R(ξ), we get a quadratic equation in the variable ξ3:

ξ6 � 4ðβþ 1Þξ3 þ 2ðβþ 2Þ ¼ 0 ð36Þ
whose solution is

ξsat
3 ¼ 2ðβþ 1Þ (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðβþ 1Þ2 � 2ðβþ 2Þ

q
ð37Þ

For small β, it is possible to further simplify the expression for ξsat
to obtain

ξsat
3 = 2 1�

ffiffiffiffiffi
3β
2

r !
ð38Þ

Checking for self-consistency, the condition holds for small
enough gaps.

V. SUMMARY AND OUTLOOK

In this work, we propose a novel approach toward electro-
wetting that, among other results, can account for contact angle
saturation (CAS) applicable to some electrowetting setups. The
model is based on a generalized version of the free energy
accounting for various electric contributions. The interplay between
the capillary (Fcap) and electric (Fel) terms depends on the applied
voltage U, because Fel ∼ �U2. Therefore, when an external
voltage is applied, it will drive the system away from its capillary
free energy minimum and toward its electric free energy minimum.

Our approach is distinctly different from other views of
electrowetting that make use of the Young�Lippmann formula.
In our model, the electric term can exhibit a variety of depen-
dencies on the contact angle as determined by the exact system
geometry. Particularly, if the electric term Fel has a global
minimum at a certain contact angle θsat, then for high enough
voltages this angle also minimizes (asymptotically) the total free
energy Ftot. Additional increase of the applied voltage does not
change the location of the global minimum, and the contact angle
saturates at θsat. We identify exactly this angle with the saturation
angle found in experiments. This very general assumption (Fel
with a minimum) is all that is needed to show that in the low-
voltage limit a Young�Lippmann compatible ∼U2 behavior is
expected, while in the high-voltage limit an∼U�2 saturation should
be present. Numerical calculations suggest that combination of
these two limiting behaviors approximates rather well the full
expression for θ(U) in the whole voltage range.

When applying our approach to EWOD setups, we take two
contributions to Fel into account: (i) the double layer at the
drop/substrate interface and (ii) another double layer at the
drop/counter-electrode interface. The latter was previously
unaccounted for because it was considered to be negligible due
to geometry, or that its relaxation time was considered to be very
fast. However, we estimate the relaxation time to be long (on the
order of seconds) and, therefore, the effect of the counter-
electrode double-layer cannot be neglected for AC systems.
Similarly, it cannot be neglected for low voltages (which will
exclude electrochemical processes from taking place at all)27 or in
DC applications that include a dielectrically coated counter-
electrode. Using AC circuit analysis, we show that Fel indeed has a
global minimum that produces the CAS effect.

The value of the saturation angle as well as the entire
electrowetting curve θ(U) can be found numerically for any
choice of system parameters, and our specific choice is inspired
by the experiments reviewed in ref 12. There is a qualitative
agreement with experimental results, which includes an initial
compliance with the Young�Lippmann formula (scaled
correctly), followed by a crossover to CAS. The values obtained
for the saturation angle, crossover voltage, and saturation voltage
are also compatible with experimental values.

In addition, we investigated the frequency dependence of
electrowetting. It is shown that the value of the saturation angle is
independent of the AC frequency for a large range of frequencies
(1�100 kHz) for a specific choice of parameters. A numerical
analysis of the frequency dependence of electrowetting was
conducted for a set of system parameters inferred from ref 8
and shows semiquantitative agreement with the experiment.
These results show that an approximation of the free energy
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can be justified, such that the entire frequency dependence is
captured in a scaling factor of the applied voltage. It predicts that
the electrowetting effect should diminish with rising frequency,
as indeed found in experiments.8

In its DC limit, our model can converge to the Young�
Lippmann formula, depending on the values of the Young and
saturation angles. We use this result to show a novel way to
extend the Young�Lippmann formula from DC to AC systems.
We conclude that the validity of the Young�Lippmann formula
is related not to the range of applied voltages, as it is commonly
viewed, but rather to the accessed range of contact angles. In
commonly used EWOD setups, which are intentionally devised
to have as high a Young angle and as low a saturation angle as
possible (so the effect can bemore easily measured), ourmodel is
compatible with a compliance to the Young�Lippmann formula
at low voltages (and hence high contact angles).We note that the
DC limit of our model can bemost useful in DC applications that
employ low voltages and/or include a dielectrically coated
counter-electrode.

Our model does not rely on any leakage mechanisms to
predict CAS. Nevertheless, we would like to stress that leakage
mechanisms treated in previous works7,22,26,31�33 can be added.
Interestingly, it is conceivable that a crossover between inherent
CAS (as in the present model) and CAS originating from leakage
mechanisms is responsible for the time-dependent saturation
angle reported in ref 24.

The fact that the saturation angle depends on electric parameters
whereas the Young angle depends on the capillary parameters leads
to the surprising possibility of reversed electrowetting. Therefore, it
may be possible to construct a system in which the Young angle
is lower than the saturation angle. In such a system, the effect
of applying an external voltage would be an increase in the
contact angle, in total contradiction with the Young�Lippmann
formula that allows only a decrease in the contact angle. We give an
example of a choice of parameters that should yield reversed
electrowetting.

Recently, the separate control of the Young and saturation
angles was demonstrated in experiments.46 This ability was
utilized to construct a set of dye cells47 that are “complementary”
in their opposite response to applied voltage (black-to-white or
vice versa). We believe that further research in this direction will
provide ample opportunity to test for the existence of reversed
electrowetting. Finding such evidence would have a potential
impact that can go much beyond our specific model.

We hope that some of the predictions presented in this paper
will be tested in future experiments in a quantitative fashion,
gaining more insight on electrowetting and the CAS phenom-
enon. For example, it will be interesting to study how retracting
the counter-electrode and, hence, reducing its contact area A2

affects the saturation angle, as well as coating it with a dielectric
material. Our results suggest that more research into processes
taking place at the counter-electrode is needed, especially with
regards to CAS in DC EWOD setups.

’APPENDIX

It is convenient to express the geometrical parameters and the
capacitances in terms of a monotonic function of the contact angle

ξðθÞ ¼ 1� cos θ
2þ cos θ

� �1=3

ðA.1Þ

where l = (3V/π)1/2, derived from the drop volume V, is a
characteristic length.

The geometrical parameters defined in eq 15 can then be
written as

h ¼ lξðθÞ
a ¼

ffiffiffi
1
3

r
l 2ξ�1 � ξ2
� 1=2

A1 ¼ πl2

3
2ξ�1 � ξ2
� 

A2 ¼ 2πbhg lhg
�1ξ� 1

� �
ðA.2Þ

Combining the above expressions with the definitions of the two
capacitances, we obtain

C1 ¼ π

3
ε0εdl2

d
ð2ξ�1 � ξ2Þ

C2 ¼ 2πbl
ε0εl
λD

ðξ� l�1hgÞ ðA.3Þ

With the use of a dimensionless parameter

β ¼ 6εl
εd

db
λDl

ðA.4Þ

the ratio between the two capacitances can finally be expressed as

C1

C2
¼ β�1 2� ξ3

ξ2 � l�1hgξ
ðA.5Þ
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