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Many theoretical studies were devoted in the past to ion-specific effects trying to interpret a large
body of experimental evidence, such as surface tension at air/water interfaces and force measure-
ments between charged objects. Although several mechanisms were suggested to explain the results,
such as dispersion forces and specific surface-ion interactions, we would like to suggest another
source of ion-specificity originating from the local variations of the dielectric constant due to the
presence of ions in the solution. We present a mean-field model to account for the heterogeneity of
the dielectric constant caused by the ions. In particular, for ions that decrease the dielectric constant
we find a depletion of ions from the vicinity of charged surfaces. For a two-plate system, the same
effect leads to an increase of the pressure in between two surfaces. Our results suggest that the effect
of ions on the local dielectric constant should be taken into account when interpreting experiments
that address ion-specific effects. © 2011 American Institute of Physics. [doi:10.1063/1.3549915]

. INTRODUCTION

The first interest in ion-specific effects dates back to the
end of the 19th century, when Franz Hofmeister and his co-
workers! measured the thermodynamic properties of protein
precipitation in various salt solutions. They tested numerous
salt species and found that the protein solubility properties
can be arranged in a specific ionic order. This classification
of cations and anions is known today as the Hofmeister
series. Since then many other experiments demonstrated
that ion-specific effects take place in a large variety of
chemical and biological systems.? These experiments include
measurement of surface tension at air/water interface,’
proteins stability,’ forces between charged surfaces such
as mica or silica surfaces,””® osmotic pressure in systems
containing biological macromolecules,’”!! and many more.

Noticeable efforts have been devoted over the years to
understand the physical mechanisms that lead to ion-specific
effects.>!>"1> A typical problem is to obtain density pro-
files of ions near charged surfaces such as macromolecules,
membranes, and colloids or neutral dielectric interfaces
(e.g., air/water interface) and use the profiles to calculate
macroscopic quantities such as osmotic pressure and surface
tension.

Theoretical endeavors offer a variety of perspectives re-
garding the origin of the ion-specific effects. Most recently,
dispersion interactions'>'® depending on the polarizability of
the ions have been proposed to furnish the missing link be-
tween ionic profiles and ion-specific interactions. These inter-
actions add an additional term to the total ionic energy close
to a noncharged dielectric interface. This term varies as B/ 2,
where z is the distance of the ion from the surface, located
at z = 0. The ion-specificity then emerges from a variation in
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the specific ion polarizability, leading to different values of
the coefficient B.

Apart from the dispersion interactions, ion-hydration
interaction'>!3 has been suggested to lead to an effective
short-range ion-specific interaction with the bounding sur-
face. For example, an attractive potential of the ions to the
surface in the shape of a square well takes into account their
larger affinity as compared to ion—water interaction. This at-
traction then boosts the concentration of the ions in the surface
vicinity.

In a similar fashion but with an opposite effect, Onsager
and Samaras dealt in their seminal work!” with repulsive im-
age charge interactions as a source of ionic depletion from
a noncharged dielectric interface. Image charge interaction is
a short-range surface interaction having an exp(—2z/Ap)/z
dependence, where Ap is the Debye screening length. This
repulsive interaction becomes significant for air/water inter-
faces and is responsible for the increase of surface tension
of saline solutions as compared with pure water. More re-
cently, additional interactions have been proposed to augment
the original Onsager and Samaras model and offer an expla-
nation to ion-specific surface tension of electrolyte solutions
in agreement with experiments.'® !

In another approach,® it was suggested that surface
charge density is a crucial parameter controlling ionic speci-
ficity. The density is determined by the net charge and spe-
cific volume (i.e., radii) of the ions. For small ions, the surface
charge density can be large, leading to a strong attractive inter-
action with the polar water molecules. This results in a “hard”
hydration shell with high energy cost of removing it. Oppo-
sitely, for large ions, the surface charge density is smaller, and
therefore, the energy cost of breaking the ion-water complex
is lower, leading to a “soft” hydration shell. Due to the dif-
ferent energy costs of “hard” and “soft” hydration shells, it is
favorable to have pairing where both cations and anions are
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either small or large. An interesting feature of this ionic pair-
ing mechanism is a possible explanation of a reversal in
the order of the Hofmeister series, as observed in several
experiments.°

Besides the analytical approaches, computer simulations
gain much needed insight into the intricacies of the ionic
specificity’®?! and are used to investigate various cross-
interactions between the system components (solutes, solvent,
and surfaces). Computer simulations capture a very detailed
microscopic picture as compared to continuum theories such
as the Poisson—-Boltzmann (PB) theory and its extensions.
However, they often lack the simplicity and predictive power
of analytical models and their straightforward intuition.

From the current state of theoretical and experimental
studies, it appears to be quite clear that ion-specific effects
are due to the interplay between the ion—ion, ion—solvent,
and ion—surface interactions, taking into consideration both
electrostatic and nonelectrostatic interactions. However, it is
still not well understood what are the important physical and
chemical properties of the solutes and solvent that determine
these specific interactions.

The traditional PB theory accounts for electrostatic inter-
actions on a mean-field level with well understood drawbacks
and limitations.?? It neglects all ion-specific effects except
for the ion valency. This ceases to be true for some modified
mean-field-derived approaches where image effects are added
in by hand.?® Apart from the electrostatic interactions, other
nonelectrostatic interactions can be made part of the theory.
This was done in the standard Derjaguin—Landau—Verwey—
Overbeek theory of colloid stability,>* where the total interac-
tion decomposes into a sum of the van der Waals and electro-
static interactions.

In the present work, we would like to suggest a phe-
nomenological approach to treat different ionic species. Our
approach shares some of the simplicity of the PB theory, while
taking into account the ionic specificity on a mean-field level.
In particular, we focus on the effect the ions have on the
local solution polarity as codified by its static dielectric func-
tion. The static dielectric function is treated as a spatially-
dependent function e(z), where the spatial dependence is
given implicitly by the local ionic concentration, thus intro-
ducing ionic specificity in an implicit manner. In Sec. II, we
elaborate on the dependence of the dielectric constant on the
ionic concentration and discuss its physical range. In Sec. III,
we present a mean-field model that accounts for the effect of
the ions on the dielectric constants. Finally, results for density
profiles and the interplate pressure are presented in Secs. [V
and V, respectively.

Il. ION DEPENDENT DIELECTRIC CONSTANT

The static dielectric function of an electrolyte solu-
tion is generally found to be smaller than that of the pure
solvent.?>2% This decrement of the dielectric constant has
been attributed to various sources, which underlie the changes
in the dielectric response of the solution. We mention here two
of the most important ones:

lonic polarizability. Each ion in an aqueous solution cre-
ates a cavity and displaces one or several water molecules in
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this process. Since the ions usually have smaller static and dy-
namic polarizabilities than water, they modify the dielectric
response of the solution.?” This effect, though omnipresent,
is nevertheless small and does not have substantial conse-
quences.

Hydration shell. The gist of the dielectric decrement in
aqueous electrolytes is connected with the structural mod-
ification of water molecules in the immediate proximity to
the ion due to large electrostatic fields emanating from the
dissolved ions.?” By the action of these strong electrostatic
fields, hydration shells are formed around solvated ions,
where nearby water molecules are oriented along the ion elec-
trostatic field, leading to an additional pronounced dielectric
decrement as is depicted schematically in Fig. 1.

The lowering of the dielectric constant in the vicinity
of an ion can be attributed to the effects described above,
which represent the quintessential mechanisms of the dielec-
tric decrement. In an ionic solution, the same effect would
lead to an overall reduction of the total solution dielectric con-
stant as a function of the ionic concentration. In addition to
these primary mechanisms, there are other possible sources
of the dielectric decrement such as excluded volume®® and
dynamical effects?® that can have a noticeable contribution.

In numerous experimental studies*** and simulations,’
the dependence of the dielectric constant was found to depend
linearly on the salt concentration n for molar concentrations
ranging between zero and 1.5 M:

e(n) =g + pn, 6]

where e(n) is the dielectric constant of the ionic solution,
go is the dielectric constant of pure solvent, and S is a phe-
nomenological coefficient (in units of M~!) of the linear term.
The most common case where 8 < 0 corresponds to a dielec-
tric decrement. Throughout this paper the value of &y = 80 is
taken to be that of pure water.

The dielectric decrement parameter  has salt-specific
values.®3%3* In Table I, we show a range of such
values adopted from different experiments and computer

4

Hydration Shell

FIG. 1. A schematic drawing of water molecules around a monovalent
cation in presence of an electrostatic field, E. Arrows represent the dipoles
of water molecules while the hydrogen bond network is not shown explicitly.
The water molecules in the vicinity of the cation form a hydration shell
and are oriented along the field lines generated by the cation, leading to a
decrease of their contribution to the screening of the external electrostatic
field. The more remote molecules are less affected by the cation and
orient themselves along the external field lines. Furthermore, the cation
polarizability results in a different contribution to the electrostatic screening
as compared to the contribution of a water molecule.
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TABLE 1. Values of the linear coefficient 8, Eq. (1), in units of M~! for
various salts. [adapted from the references as indicated].

Ref. 26 Ref. 30 Refs. 31 and 32 Ref. 33 Ref. 34
HCl1 -20 -18.1 -
LiCl -14 -12.6 -11.55 .
NaCl -11 -11.8 -12.8 -10.77
KCl1 -10 -11.8 -8.27
CsCl -12.6 -7.79
RbCl -10 -7.96
NaF -12 -11.8
KF -13 -11
CsF -12.6
Lil . -14.95
Nal -15 -14.17
KI -16 —-13.38
Csl . -14.17
NaOH 21

simulations. The cited values are all negative and vary from
about -8 to —21 M(dielectric decrement). There is also a
noticeable spread of the 8 values, especially when one com-
pares experiments with computer simulations. Examining the
B values given in Refs. 26 and 30 for homologous series of the
halides: Cl, F, and I, and the alkaline metals: Li, Na, K, Cs,
and Rb, some remarks can be made. In some cases, a trend
can be seen where the magnitude of § decreases as the ionic
radius (size) increases for the alkalines. This can be seen for
the homologous series of XCl where X is the alkaline ion. For
the homologous halide series, the trend of |8| with the halide
ionic size is not monotonous. We note that the above linear
form of the static dielectric constant ¢(n) depends on the con-
centration of the salt and cannot, in general, be entangled in a
simple manner into separate ionic contributions of the cations
and anions. Any such separation requires additional hypothe-
ses and experiments that are unavailable at present.

lil. THE MODEL

In what follows, we concentrate on the dielectric decre-
ment effects of ions (when B is negative) and systematically
assess the modification wrought in the equilibrium ionic pro-
files as well as interactions between two apposed charged sur-
faces. Note that we treat the problem of counter-ions only (no
co-ions) in order to simplify the model and results.

We set up a phenomenological model based on a modi-
fication of the standard PB theory, which includes the effect
of the counter-ion concentration n(7) on the local dielectric
constant, in a consistent manner, via the local variation of
n(r) in e(n). This model can be formulated in two distinct but
equivalent versions. First, one can dress it in the form of the
modified PB theory starting with the appropriate generaliza-
tion of the PB free-energy functional where the fundamental
quantity is the local electrostatic potential. Equivalently, as
is shown in the Appendix, the PB free-energy functional can
also be cast in the form of a density functional theory (DFT),
where the fundamental quantity is the local density of the
counter-ions, n(r).
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The mean-field free energy is similar to the regular PB
ansatz, except for the coupling between the electrostatic field,
—V, and the positively charged counter-ion concentration,
n. For simplicity, we delimit ourselves to systems that are
translationally invariant in the lateral (x, y) directions having
a spatial dependence only on the z-direction. The free energy
then reads

FIY' . n]/A = / dz[ - %wf’)z eny

+kgTn(logn — 1) — ,uni|

+Y _elolys, @)

where A is the lateral cross-sectional area, e is the electron
charge, kg the Boltzmann constant, 7" the temperature, and
w the chemical potential. The last term is the contribution of
the charged surfaces to the free energy, where —o < 0 is the
negative surface charge density, ¥, is the electrostatic surface
potential, and the last term is summed over all charged sur-
faces. Note that throughout the manuscript eo is the surface
charge density and o is the corresponding number density.

Using the variational principle for the free energy,
Eq. (2), with respect to n and i gives the Euler-Lagrange
equations determining the electrostatic potential and density
profiles as follows:

OF 0= dmwen+ ey’ = 0 3)
_——= T —\ & =

5y en & n ,

SF 1, n

— =0=>u=——~Mmy”"+ey +kgTlogn, 4
én 8

where ¢'(n) = de/dn.

As was discussed in our previous work,>> as long as
the system has only one-dimensional spatial inhomogeneity,
the pressure is a z-independent constant, and in fact, repre-
sents the first integral of the Euler-Lagrange equations. Us-
ing Eq. (25) of Ref. 35, we arrive at the following form of the
pressure, P,

P= —é[s(m +e'mnly” +kpTn =const. (5

The pressure is composed of an appropriately modified
Maxwell stress tensor, which takes into account the density
dependence of the dielectric constant,’® as well as the stan-
dard “van ’t Hoff” term proportional to the counter-ion con-
centration.

Combining Egs. (3) and (5), the following first-order dif-
ferential equation for 7 is derived:

d_n__ 2we? n ©)
dz keT f'(n)’

where

A

n—P

100 =200 G+ ey

@)

and P = P/kgT. The solution of Eq. (6) yields the equi-
librium profile of the counter-ion density. The boundary
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condition at the charged interface is obtained by tak-
ing the variation of Eq. (2) with respect to the surface
potential v,

dy

Es—

i =4meo ®)

5

where ¢; = e(n;) is the value of the dielectric constant extrap-
olated to the surface and n, is the counter-ion concentration
at the surface.

IV. THE SINGLE PLATE CASE

We first consider the case of a single charged plate placed
at z = 0. This case can be regarded as a two-plate system in
the limit of infinite interplate spacing, where the pressure in
Eq. (5) vanishes, P = 0. The function f(n) from Eq. (7) is
then given by

[ n
f(n)=e(n) m &)

Evaluating Eq. (5) at the surface with ¢ = ¢; and n = n;, we
obtain an algebraic equation for n;, given by
2melo?

de
ng = s Te2(n) (8(nx) + an X”s) . (10)

As has already been noted in Sec. II, for ionic con-
centrations of 0 < n < 1.5M, the function &(n) can be re-
garded to a reasonable accuracy as linear in n, Eq. (1). This
is a key assumption of our model where all the effects dis-
cussed in Sec. II contribute to a single phenomenological
parameter 8 = de/dn. We stress that the linear dependence
mentioned in the previous sentence is a phenomenological
approach and cannot be justified theoretically for any value
of concentration.*8

The derivative of f(n) is given by

281 + (g0 + Bn)(eo + 2Bn)

2/n(eo + 28n) ’

and the boundary condition, Eq. (10), can be expressed as a
cubic polynomial in 7, as follows:

4716202,43) 2melo’e
O P, m 2 0

)=

Y

ﬂ2n§+2ﬂaon§+(sé— T P

(12)

A. The g = 0 profile

The equation for the counter-ion density profile that we
derived above, Eq. (6), appears very different from what one
finds in the standard PB theory. Let us show that the PB
solution is indeed obtained by setting B = 0 in our model.
Substituting § = 0 in Eq. (11), the density profile obeys the
following equation:

8me? 3/2

dn
PB_ _ nilk (13)

dz  \ keTeo
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and its solution reproduces exactly the familiar profile of
Gouy and Chapman (GC),?’

(2) = : : 2 (14)
npp(z) = 2715 \z + hoc ,

where Agc = 1/(2rlgo) is the GC length, /g = e?/(eoksT)
is the Bjerrum length, and &, = & for the standard PB case.
The counter-ion concentration at the surface is obtained via
the Grahame equation, n™® = 27l302,*" or alternatively can

be expressed in terms of Agc, nt® = 1/Q2nlgrle).

B. The boundary condition for 8 #0

Returning to the general 8 # 0 case, the counter-ion con-
centration adjacent to the surface, n;, satisfies the more gen-
eral relation given in Eq. (12). Introducing the dimensionless
parameters y = Bnt® /ey and o = n;/n"®, Eq. (12) can be
rewritten as

_ l—ax+1l—«a

~ (15)

14

where nB ~ g2

p as obtained from the above mentioned
Grahame equation.

It is evident from Eq. (15) that for any g #0,
o =ng/ nEB < 1 and the counter-ion close to the surface, is
reduced with respect to PB value. Surprisingly, even when
B > 0 and the local dielectric constant increases (electrostat-
ically favorable), there is an effective repulsion of the ions
from the interface.

It is also instructive to express Eq. (15) in terms of the
dimensionless parameter g = &;/e0 — 1 = Bny/ep, which
measures the B-dependent relative change of the dielectric
constant at the interface. The dimensionless algebraic equa-
tion of the boundary condition, Eq. (15), can now be written
in terms of y and ¢,

¢ +2¢° +(1=2y)g —y =0, (16)
and its solution yields

3 2
y = e t29°+q ) (17)
14 2¢
Using Eq. (17) one can analyze the dependence of &y, the
dielectric constant value at the interface, on S.
In several limits the expressions of n,(f8) and g(y) sim-
plify in the following manner:

(i)  For strongly negative 8 < —1, equivalent to y < —1,
the counter-ion concentration at the surface is decaying,

)

-1

s ——~ — , 18
n 25 B (18)
while the change in the surface dielectric constant
approaches a limiting value g = —0.5, leading to

&s = &o/2. For these values of n; and ¢, the polarization
energy [see right hand side of Eq. (5)] associated with
the water molecules is equal the energy of the ions “ef-
fective” polarization, yielding a limiting value for the
electrostatic energy.
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B [1/M] Y

FIG. 2. In (a) the ion concentration at the interface, ny, is plotted as a function of . The inverse of Eq. (15) is denoted by the solid line. The surface charge
density is ¢ = 0.01 A=2. Approximated analytical solutions for several limits are denoted by roman numerals (see text). In (b) the parameter g is plotted as a
function of y. The inverse of the exact relation, Eq. (17), is denoted by the solid line. The approximated analytical solutions are denoted by the same notations
as in (a).

(i) For small |B] < 1 or |y| < 1, the correction to ny is increased as well. Surprisingly, n; is decreased for increased

small and given by B as aresult of the interplay between all the contributions, see
R BnP® 2 Ref. 39.

A (_Y) , (19) The exact dependence of ny(8) from Eq. (15), and ¢g(y)

nPB &o from Eq. (17), is compared with the above limiting expres-

while the leading order of ¢ is linear in y, ¢(y) =~ y. sions in Flg 2. There is a smooth' crossover at y;» >~ —1 be-

(iii) In the limit of extremely polarizable ions (8, y > 1), tween regimes (7) and (if), and similarly at y,3 >~ 1 for the

n, varies as crossover between regimes (ii) and (iii). The crossover val-

ues are taken to satisfy the conditions of the approximations.
Calculating higher order terms for the three regimes gives

PB
He o~ 2¢0m; 1_§ €0 ~ B2 (20)
$ B 4\ 2pnPB ’ intersection values that are similar to our crossover values.

and g (or g;) grows as

C. The profiles for g #0

q= \/Z (1 — i) ~J7. 21 The above analysis for the limiting regimes for g(y) or

W2y equivalently &;(y) applies also for the concentration and di-

electric profiles. We first present our results for negative 3,

One would expect that for 8 > 0, where the ions increase which is the more prevalent case for most monovalent ions
the dielectric constant, the surface ionic density n, will be (e.g., halides and alkalines) (see Table I).

8 ( ) T T T T 80
a
a -
6 . 70
|
1 -
—
Z 4h PB i 60 w
< \
-\ -
\
- 50
. 1 1 1 1 40
20 25 0 5 10 15 20 25
z[A] z[A]
FIG. 3. Counter-ion concentration n(z) and local dielectric constant &(z) profiles for y = —1.8 < yj3. In (a) the solid line shows the counter-ion concentration

for negative g = —20 M~!. The dashed line corresponds to the standard PB case (§ = 0), as given by Eq. (14). In (b) the local dielectric constant £(z) is shown
for the same B value. The surface charge density is o = 0.01 A~2 and the calculated surface values are nEB =73M,n; =1.9Mand g; = 43.
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200

160

120

80

FIG. 4. Counter-ion concentration profile n(z) and local dielectric constant £(z) for y = 2.3 > y»3. In (a) the solid line shows the counter-ion concentration for
positive B = 25M~!. The dashed line corresponds to the standard PB case (8 = 0), as given by Eq. (14). In (b) the corresponding local dielectric constant is
shown for the same B value. The surface charge density is 0 = 0.01 A2 and the calculated surface values are nEB =73M,n; =4.7M, and g; = 197.

The concentration profile is shown in Fig. 3. It has a
plateau in the vicinity of the surface, till about distances of
z > 5 A and larger, where there is an algebraic decay as in the
regular PB profile (dashed line). The value of y = —1.8 used
in Fig. 3 is smaller than the crossover value, y;, = —1 and
lies within regime (i). For completeness, we also present in
Fig. 4 the 8 > 0 case, where y = 2.3 is larger than y,; = 1
[regime (ii)]. Although the value of n; is reduced, the profile
exhibits a regular algebraic decay similar to the PB profile
(dashed line).

In the more common case of 8 < 0 (dielectric decrement
by the ions), the ions should be depleted from the nearby wall
region. This proximity behavior of the counter-ion cloud bears
some resemblance to the case of steric effects,*® which leads
to similar (but not identical) exclusion of counter-ions from
the vicinal region.

The crossover values y;, can be transformed into re-
lations between B and the surface charge density —o,
yielding a regime diagram as shown in Fig. 5(a). The

crossover line between regimes (i) and (ii) is given by the
relation

0}
op= |——,
= 2mlg|Bi2l

which holds only for B < 0. This crossover line separates
between concentration profiles with a plateau-like behavior
in the vicinity of the surface, to those where the concentra-
tion profile is nearly identical to the PB one, and can be un-
derstood in terms of the dual role played by counter-ions as
they accumulate at the surface. On one hand, just as in the
standard PB model, the ions are attracted to the oppositely
charged surface and diminish the local electrostatic field. On
the other hand, for 8 < 0, the ions reduce the local dielec-
tric constant and, hence, are repelled from the surface. In
regime (i), the latter prevails and leads to a plateau in the
counter-ion density when o and || are above the crossover
line, as in Fig. 3(a).

(22)

0.02 L T T 8
(b)

0.015 46
7MY AN U NN X S R | —
ot
= 0.0l 142
— N

o
20
0.005 42
0 1 1 1 i 0
-50 25 0 25 50 15 20
B [1/M]

FIG. 5. In (a) the regime diagram in the (8, o) plane in shown. Two cross-over lines separate the three limiting regimes: (i), (ii), and (iii). In (b) typical
concentration and dielectric constant profiles for each regime are shown, with surface charge density, ¢ = 0.01 A=2. The dashed line corresponds to regime (i)
with B = —20M~!, ny, = 1.9M, and &, = 43. The solid line corresponds to regime (ii) with 8 = 1 M~ n, =7.2M, and &5 = 87. The dotted line corresponds

to regime (iii) with 8 = 25 M_l, ny =4.7M, and &g = 197.
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250 . . . 3
(a)
200 - 4
— 150 | . 3
Z 2
- <
> 100 PB - - - 2
7 - -
50 , . 1
I
/
’
0 1 1 1 0
0 A 5 10 15 20 0 A 5 10 15 20
/ z [A] / z [A]

FIG. 6. Profiles of electric potential, concentration and dielectric constant for parameter range as in regime (i). In (a) the electrostatic potential v is shown
for o = 0.01 A=2 and B = —20M~!. The solid line corresponds to the exact numerical solution, while the dotted line denotes the approximated one, Eq. (24),
and the dashed line is the regular PB (8 = 0) result. In (b) and its inset, the concentration and dielectric constant profiles are shown,respectively, for the same
parameters as in (a). The position of [ = 2.3 A as calculated from Eq. (25) is marked in (a), (b), and the inset. It corresponds to the crossover from the slowly

varying behavior to regular PB algebraic decay.

Similarly, the crossover line between regimes (i) and (iif)
is given by

€0
o= |——,
» 2mlg B3

which holds only for 8,3 > 0. In regime (iii) large values of
B increases substantially the value of ¢ close to the surface
[Fig. 4(b)], but has no large effect on n(z) ~ npg(z). This
somewhat surprising result is due to the attenuation of the
electrostatic attraction for very large increase in the values of
¢ at the surface.

In Fig. 5(b), we demonstrate the qualitative difference
between the various regimes by plotting three corresponding
counter-ion concentration profiles. For all shown profiles, the
surface charge concentration is o = 0.01 A2, while the pa-
rameter B takes the values 8 = —20, 1, and 25 M~ for the
dashed, solid, and dotted lines, respectively.

For the profiles of regime (i), B < 0, one can calculate
approximately the electrostatic potential in the vicinity of the
charged surface by assuming that the counter-ion concen-
tration varies slowly close to the surface and roughly obeys
n & ny. The potential is then given by the quadratic form

(23)

2me ( 2 1 262)
—(—nyz 02).
& + ,3 Ux
The width of the vicinal plateau, /, can be estimated by noting
that the electrostatic field for which the dielectric decrement
becomes negligible is simply related to the crossover value,
o1z given in Eq. (22). By demanding that —v’(/), the electro-
static field at z = [ matches —4meo, /(€9 + Bny), the plateau
width [ is estimated to be

1B | 211

b
&0 wlgeo

where n; >~ g9/(2|8]) in regime (i), Eq. (18). The profile
for z > 1 can then be estimated as a regular PB profile
with adjusted surface charge o = o), and a shifted z axis,
z — z — . The validity of Egs. (24) and (25) is examined

Y(z) ~ (24)

| =20

(25)

in Fig. 6 by comparing them to the exact numerical results.
Several observations are worth noticing. First, the value of
1 ~23A is rather short-range. It gives an estimate to the
width of the depleted ionic layer. Second, the assumption of
a saturated ionic layer reproduces well the electric potential
up to z >~ 31.

When compared to the corresponding PB results, the
electrostatic potential shows a marked increase depend-
ing on the dielectric decrement. For parameters used in
Fig. 6, the electrostatic potential almost doubles in size
as compared with its standard PB value. The effect per-
sists for z up to several dozens of angstroms. Nevertheless,
the more important effect of the electrostatic potential on
the ionic density itself is much shorter ranged, and is at-
tributed to the spatial variation of the dielectric response, see
inset Fig. 6(b).

V. THE PRESSURE FOR THE TWO-PLATE SYSTEM

We now move on to analyze the case of two apposed
charged planar surfaces. For simplicity sake, we restrict our-
selves to the symmetric case where two equally charged plates
are located at z = £ D/2 and evaluate the corresponding dis-
joining pressure P = P/kgT.

For an arbitrary function ¢(n) and P 5 0, the boundary
condition, Eq. (8), is generalized as follows:

(s e )
e(ny Esns .

This equation can then be cast into a form that contains only
ng and &(n,) without its derivatives,*!

R 2 2.2
ng—p=_T°9 (26)
kBTSZ(ns)

b A

2weto ng P
+log — + — = const.
P ng

kpTe(ns)n, @D

It shows that the pressure is in fact determined solely by the
values of the surface energy and the (ideal) entropy of mixing
at the surface.
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FIG. 7. The pressure P is shown as a function of the separation D for surface
charge density o = 0.01 A=2.The solid, dashed, dotted and dash-dotted lines
correspond to values of 8 = 0, =5, —10, and —20 Y respectively.

Employing the linearity assumption, e(n) = &y + Bn, the
derivative of f(n) is given by

2B%n(n — P) + (g0 + Bn)(eo + 2Bn)

[l = -
2\/ (n — P)eo + 2pn)?

. (28

and the boundary condition, Eq. (26), can be expanded as a
cubic polynomial in n; as follows:

Bn® + (2Beo — BB + ( 2B P,

4 e’ p . 2mwelo’e
e P, (P TETE) g (29
kT >" ( Ot T ) @)

The counter-ion density profiles are given by Eqgs. (6),
(28), and (29), while the dependence of the pressure on the
inter-plate separation D is obtained by solving these equa-
tions for various values of P, and inverting the function D(P)
into ﬁ(D).

J. Chem. Phys. 134, 074705 (2011)

Let us first verify that our theory has the correct PB limit
for B = 0. The differential equation of the density, Eq. (6)
reads

dn 8me? -
i Jn = o), 30
& kBTeon (n — Ppp) (30)

where Ppg is the standard PB pressure. With K = K (P)

=+2nlg P, the solution of the above equation can be shown
to be

[n(z)— P
arctan % =—-Kz, 31

or can be expressed as

A

n(z) = P(1 +tan’ Kz) = (32)

cos? Kz’
This is exactly the standard solution of the GC equation be-
tween two equally charged walls. The pressure is then ob-
tained by solving the boundary condition®’ that reduces to the
following transcendental equation:

KD D

Ao

For the general case of 8 # 0, the basic equation for the
counter-ion density profile as well as the boundary condition
have to be solved numerically. In Fig. 7, the dependence of
the pressure P on the separation D is shown for several val-
ues of B. The dashed line of B = —5M~! is almost identical
to the standard PB prediction given by the solid line (8 = 0).
This implies that 8 = —5 M~ is roughly the value where the
dielectric decrement begins to affect the disjoining pressure.
For more negative f = —20M ™!, the pressure strongly de-
pends on the dielectric decrement and increases substantially
with respect to the PB prediction. For example, at a separa-
tion D = 25A , the pressure P = 0.7M with B =-20 M!
is increased by 67% comparing to Ppg = 0.42 M.

For small separations (and large pressure) the assumption
of linear dependence of ¢ on n breaks down due to high values
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FIG. 8. In (a) the pressure deviation as compared to the PB pressure (8 = 0), AP=P— ﬁpB, is plotted as function of D, for surface charge density
oc=001A2Tn (b) similar results as in (a) are plotted on a log—log scale. The dashed, dotted, and dash-dotted lines correspond to values of § = —5, —10,

and —20M~!, respectively.
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FIG. 9. In (a) the total pressure P is shown as a function of the parameter 8 for surface charge density o = 0.01 A=2. In (b) the pressure correction, A P
= P — Ppg, as compared to the PB pressure, is similarly plotted. The solid, dashed, dotted and dash-dotted lines correspond to values of D = 40, 30, 20 and

17 A, and standard PB pressure f’pB = 0.82,0.63,0.31 and 0.19 M respectively.

of n > 1.5 M. The results shown in Fig. 7 include only separa-
tions where the model is still valid. In the regime of extremely
high surface counter-ion densities our model predicts unphys-
ical results, such as negative local dielectric constant (only in
the case of P > 0). This breakdown does not imply any deep
inconsistency but is just a straightforward consequence of the
linearity ansatz, Eq. (1). This problem can easily be overcome
by introducing a more general nonlinear ansatz with a satura-
tion behavior.

The deviation AP = P — Ppy of the pressure with re-
spect to the PB pressure Ppg, is plotted in Fig. 8(a) as a func-
tion of D. The AP deviation is significant for separations as
large as a few nanometers. For D < 30 A, the relative devi-
ation may be as large as 65%, while for D ~ 50 A the devi-
ation is smaller than 0.05 M, leading to corrections smaller
than 20%. In Fig. 8(b), the deviation is plotted on a log—log
scale, where A P shows a power-law decay, AP ~ D% With
a linear fit the extracted o exponent is « = —2.7, —2.8, and
—3.1 for B = =5, —10, and —20M !, respectively.

For B « —1 one can estimate the pressure analytically
using rescaled separation D.g and surface charge density oeg.
We consider an approximated profile with a plateau near the
surface, having a thickness

| = o — 012 ’

ng

(34)

employing the same arguments as in Sec. IV C. Note that
the values of ny and o}, are now given by Eq. (29) instead
of Eq. (12). The pressure associated with this profile can be
calculated from the region where the behavior is PB-like,
namely, for —D/2 41 < z < D/2 — 1. This region can be
considered as an independent profile with a surface charge
density o = o and separation D¢ = D — 2[. In analogy
with the two limiting regimes of the standard PB theory,?’
we find them here as well. First, ideal-gas regime where
Desr < Agfc and the pressure depends inversely on the sep-
aration: P =~ ot/ Degr, where the rescaled GC length is de-
fined as AL = 1/(27lgoes). Second, when Degr > AU, the
pressure dependence is given by the standard Gouy—Chapman

result valid for sufficiently large inter-surface separations, i.e.,
P ~m/QlgDZ).

The pressure as a function of the parameter 8 is presented
in Fig. 9(a) for several values of the separation D. The signif-
icance of the dielectric decrement effect becomes substantial
for B < —5M~! as can be seen in the plot. For smaller val-
ues of 8 the deviation from the standard PB value, P(8 = 0)
is small and negligible for all the values of D. The magni-
tude of the deviation AP as a function of B is presented in
Fig. 9(b). For B < —11.5M~!, the deviation is of the order of
at least 10% of the total pressure for all the values of D. For
example, for D =30 A and 8 = —11.5M"!, the pressure
P =0.37 M and the deviation is AP = 0.053 M.

For completeness, we present pressure profiles for 8 > 0
in Fig. 10. It is evident from comparing Fig. 8(a) and Fig. 10
that for positive values of 8 the deviation A P is much smaller.
This is in agreement with the analysis of the density profiles
(see Sec. IV C), where a similar small deviation from the stan-
dard PB profile is found for g > 0.

0.2 3 T T T

o1s .

AP [M]

0.1 F -

A

D [A]

FIG. 10. The pressure correction, AP =P — f’pB as a function of D, is plot-
ted for several B > 0 values: solid, dashed, and dotted lines correspond to
B =5,10,and —20 M‘l, respectively.
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VI. CONCLUSIONS

The model presented in this work accounts for local
changes in the dielectric constant of a solution due to the
presence of ions with an effective polarization effect. Assum-
ing linear dependence of the dielectric constant & on the ionic
concentration n, we introduce a phenomenological parameter
B that describes the relation between & and n, € = g9 + Bn.
This parameter is ion-specific and as shown in several ex-
periments and computer simulations its value is negative and
varies between —8 and —21 M~

The concentration dependence of the dielectric constant
leads to an additional coupling between the counter-ion con-
centration and the electrostatic potential. Consequently, the
counter-ions play a dual role. On one hand, their net charge
induces an attractive interaction with the charged surface. On
the other hand, the counter-ions effective dipole moment due
to the concentration dependence of the dielectric constant
leads to another electrostatic interaction that could be either
attractive for 8 > 0, or repulsive for 8 < 0. The interplay be-
tween theses two interactions leads to changes of the free-
energy minimal configuration.

Analyzing the behavior in (8,0) parameter plane, we
find three regimes. The most pronounced effect is found for
regime (i) and B <« —1 M~! | where ions are strongly de-
pleted from the charged surface due to the decrement of ¢
and the resulting penalty of electrostatic energy. This deple-
tion results in a plateau of the ionic concentration profile close
to the charged surface. We estimate the plateau thickness an-
alytically and find that it is of the order of few angstroms. In
regime (ii) where || < 1 M™!, the effect of local changes of
the dielectric constant is negligible comparing to the contribu-
tion that comes from the net charge of the ions. The profiles
in this regime are characterized by an algebraic decay simi-
lar to the standard PB theory. For 8 > 1 M~! in regime (iii),
the dielectric constant is increased nearby the surface, leading
to a weaker attraction of the ions to the surface. The surface
concentration is reduced comparing to the standard PB theory,
but the overall change in the profiles is small.

Calculating the disjoining pressure between two planar
surfaces, we find a substantial increase for negative values
of B of the order of —10 M~'. The deviation of the pres-
sure calculated in our model as compared to the standard PB
pressure reaches ~200% for 8 = —20 M~! and a separation
D ~ 18 A. The range of this additional effect persists up to
a few nanometers. For 8 = —10 M™!, the deviation is sig-
nificant for separations smaller than ~ 30 A. The dependence
of the correction A P on the separation D exhibits an inverse
power-law decay. The power varies between —2.7 to —3.1 for
different values of 8 as discussed in Sec. V. For positive val-
ues of B we find that the pressure does not vary substantially
comparing to the standard PB prediction.

It is rather important to notice that the effect of the di-
electric decrement on the disjoining pressure shows up as an
effective “solvent structural force”,** see Fig. 7, between the
two charged surfaces that acts at relatively small interplate
separations, though no structural forces were assumed a priori
in our approach. This might signal a more general relationship
between the dielectric decrement and water structure effects.

J. Chem. Phys. 134, 074705 (2011)

In the present formulation, where the dielectric decrement it-
self does not contain any spatial scale, the dependence of the
additional “water structural force” on the interplate separa-
tion appears to scale with an inverse power of this separation.
However, for a model where the dielectric decrement levels
off for larger values of the counter-ion density, the additional
phenomenological constant will introduce a new length scale
into the problem. Then, possibly also the additional “water
structural force” would show such a length scale.

Further refinements and applications can be considered.
For example, the model can be generalized to include salt
ions, instead of counter-ions only as was done here. This will
introduce another screening effect (the Debye length) that will
compete with the other contributions. Moreover, the concen-
tration dependence of the dielectric constant can be taken to
reproduce the real experimental results in order to improve
the quantitative accuracy. Finally, by generalizing the model
to curved geometries it will be possible to calculate potential
of mean force between spheres and cylinders.

The results derived in this work are pertinent to the
mean-field approximation implemented specifically for the
planar geometry, where all effects of the dielectric disconti-
nuity at the bounding surfaces, i.e., the image charge effects
vanish identically. This is connected with the fact that dielec-
tric images, being due to surface-induced charges, imply that
the electrostatic potential depends not just on one coordinate
normal to the dielectric interface, but also on the in plane
transverse coordinates. Since on the mean-field level for pla-
nar interfaces the mean potential by definition depends only
on the normal coordinate, all image effects are thus absent.*?
This is true not only for the usual image interactions but
also for the image part of the self-energy, i.e., the Born en-
ergy. In any approximation that is beyond the simple mean-
field approach, such as, e.g., the systematic strong coupling
expansion®” or other approximations,”® these image and self-
energy terms naturally enter the formulation and have im-
portant consequences.** Furthermore, it was shown recently
that the image effects are important only for strongly coupled
(polyvalent) counter-ions whereas for monovalent ones they
are quite small.* This also limits the validity of our approach
to mostly monovalent ions and weakly charged interfaces but
this is exactly the regime where many if not most of the ion-
specific effects have been duly noted.”

The results presented in this work suggest that the ef-
fect of ions on the local dielectric constant should be taken
into account on an equal footing as other ion-specific inter-
actions such as dispersion and hydration. Furthermore, this
model may serve as a platform for more detailed models, tak-
ing into account other ion-specific effects.
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APPENDIX A: THE DFT FORMULATION FOR
TWO-PLATE SYSTEM

We would like to show how to extend our for-
mulation in Sec. III to the case where other inter-
actions, besides electrostatic ones, also depend on the
density profile, n(z). Just as in Sec. V, the equally
charged plates are taken to be at z = =D/2 yielding that
Y¥'(z =0) =0 at the symmetric midplane, z = 0. The first
Euler-Lagrange (EL) equation, Eq. (3), still remains valid,

V(@) = - /Zn( Ndz
YT e Sy T

A second integration would then yield 1(z) as a function of
n(z). Furthermore, it follows from the same mentioned EL
equation that

eny = —— (“’”w) + Dy

Instead of performing the minimization on the free energy
with respect to the density field, n, as in Eq. (4), we will first
express the free energy as a functional only of n. To be fol-
lowed only then by a free energy variation. Inserting Eq. (A2)
into the square brackets of the free energy, Eq. (2), the free

energy becomes
F/A= /dz[g(n)lﬂ —(ﬁw)

+kgTn(logn — 1) — ;m:| + X ea s .

(AD)

(A2)

(A3)

By integrating explicitly the second term in Eq. (A3) it is easy
to see that this contribution exactly cancels the surface term.
The free energy per unit surface area then assumes the form

F/A = / (%1//’2 +kgTn(logn — 1) — Wl> dz. (A4)

Substituting the expression for the local ¥’ field, Eq. (Al),
we get

= J L2etmn \Jy M

+kgTn(z)(logn(z) — 1) — ,un(z)]dz. (A5)

The free energy is now a functional of the local density n(z)
only. The variation of the above functional with respect to n(z)
leads to

1 de
ey — o (”)1//2+k Tlogn — p =0, (A6)
which is exactly the second EL equation, Eq. (4), derived in
Sec. III within the PB formulation.

The two formulations are indeed completely equivalent.

The DFT formulation is preferable when one has additional

J. Chem. Phys. 134, 074705 (2011)

terms in the free energy that depend either on the density or
its derivatives, but this venue is left for future work.
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regime (ii) in the adjacent text.
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